Discovery via Cyberinfrastructure

Russ Miller Cyberinfrastructure Lab, SUNY-Buffalo Hauptman-Woodward Med Res Inst

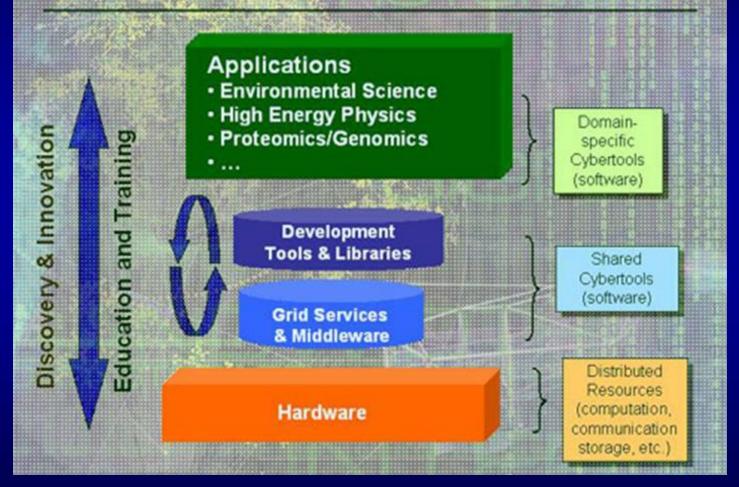


NSF, NIH, DOE, NIMA, NYS, HP

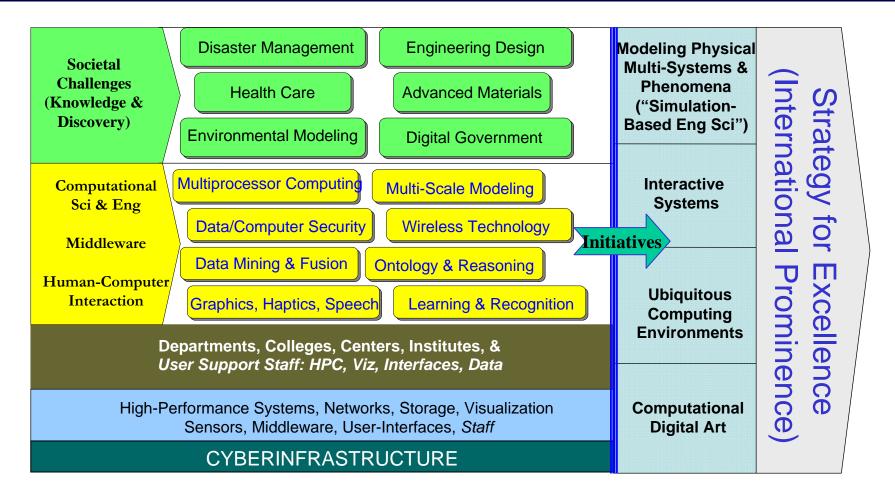
www.cse.buffalo.edu/faculty/miller/CI/

Academia in the 21st Century: High-Level View

- Empower students to compete in knowledge-based economy
- Embrace digital data-driven society
- Accelerate discovery and comprehension
- Enhance virtual organizations
- Provide increased education, outreach, and training
- Enhance and expand relationships between academia and the corporate world


Academia in the 21st Century: Medium-Level View

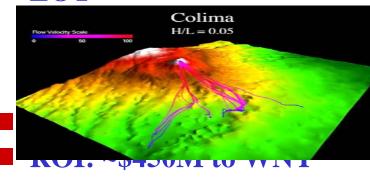
- Create links between enabling technologists and disciplinary users
- Improve efficiency of knowledge-driven applications in myriad disciplines
 - **New Techniques**
 - **New Algorithms**
 - **New Interactions (people & systems)**
- Support HPC infrastructure, research, and applications
- Deliver high-end cyberinfrastructure to enable efficient
 Collection of data
 - □ Management/Organization of data
 - **Distribution of data**
 - **Analysis of data**
 - □ Visualization of data


NSF Integrated Cyberinfrastructure

Integrated Cyberinfrastructure System

NSF Director Arden L. Bement: "leadership in cyberinfrastructure may determine America's continued ability to innovate – and thus our ability to compete successfully in the global arena."

Academic Computing Initiative: Inverted Umbrella (Sample)

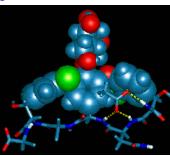

Academic Computing Initiative: Organization

Must be Pervasive Across the Entire University **Must Remove Barriers** Groups Must Interact **Research Groups Support Staff Students Departments Colleges Issues** □ Tenure & Promotion **University vs Colleges vs Departments vs Faculty vs Centers/Institutes vs Degrees vs Courses** Details are University Dependent

Center for Computational Research (CCR)

- **Founding Director (1998-2006)**
- Facts & Figures
 - **Top Academic HPC Center in World**
 - **~25 TF of HPC**
 - □ ~600 TB of High-End Storage
 - □ Significant Visualization
 - **Special-Purpose Systems**
 - □ ~30 FTEs Staff
 - **140 Projects Annually**

EOT


CCR Highlights (1998-2006)

- Provide HE-Comp
- Provide HE-Vis + AGN
- Special Purpose Systems
 - **Bioinformatics**
 - **Data Warehouse / Mining**
- Support Local/National Efforts Industry + Acad
- Create jobs in WNY
- Certificate Program
- Workshops + Tours
 - **Campus, Industry**
 - **High-School**

- Urban Planning & Design
- MTV Videos
- Peace Bridge, Med Campus
- Olmsted Parks, Thruway
- **NYS Agencies**
- Elected Officials
- Magnet on Campus
- Significant Funds
- Numerous Awards
- Significant Publicity

CCR Research & Projects

- Archaeology
- Bioinformatics/Protein Folding
- Computational Chemistry
- Computational Fluid Dynamics
- Data Mining/Database
- Earthquake Engineering
- Environ Modeling & Simulation
- Grid Computing
- Molecular Structure Determination
- **Physics**

Videos: MTV

- Urban Simulation and Viz
 - **StreetScenes**
 - I-90 Toll Barrier
 - Medical Campus
 - **Peace Bridge**

- Accident Reconstruction
- Scientific Viz
 - **Dental**
 - **Surgery**
 - MRI/CT Scan
 - Confocal Microscopy

Crystallization Wells

Colima

Collaboratories

CI Lab

University at Buffalo The State University of New York **Cyberinfrastructure Laboratory**

Real-Time Visualization

StreetScenes: Real-Time 3D Traffic Simulation

- Accurate local landmarks: Bridges, Street Signs, Business, Homes
 Can be viewed from driver's perspective
- Real-Time NavigationWorks with
 - **Corsim**
 - **Synchro**
- Generate AVI & MOV
 Multiple Simultaneous
 Traffic Loads
 Simulation
 Varying POV

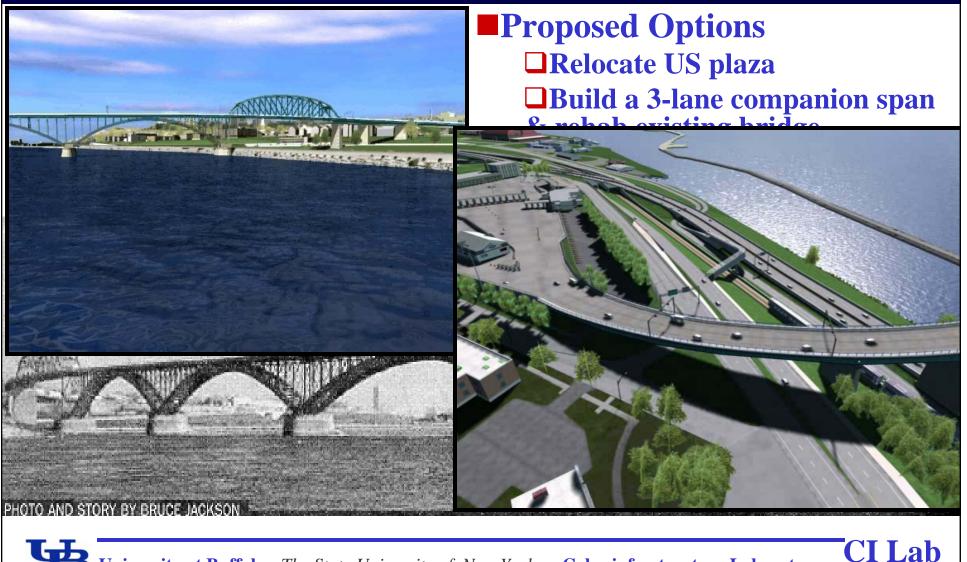
CI Lab

University at Buffalo The State University of New York **Cyberinfrastructure Laboratory**

Animation & Simulation

Rendered Scenes

Williamsville Toll Barrier Improvement Project


Initial Photo Match incorporating real and computer-generated components

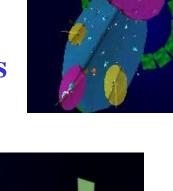
CI Lab

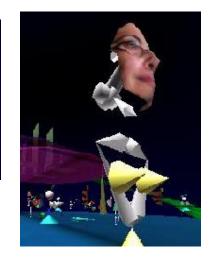
University at Buffalo The State University of New York **Cyberinfrastructure Laboratory**

Peace Bridge Visualization: Animation & Simulation

University at Buffalo The State University of New York **Cyberinfrastructure Laboratory**

MTVSong: I'm OK (I Promise)Band: Chemical RomanceIBC Digital & CCRGaming Environment: Death Jr.

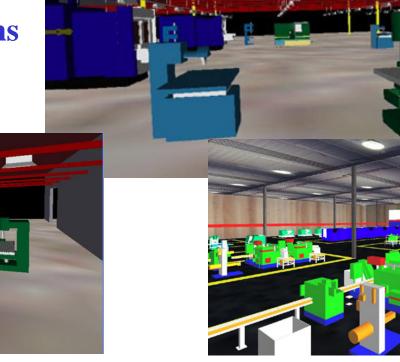

University at Buffalo The State University of New York **Cyberinfrastructure Laboratory**


Virtual Reality

Alive on the Grid: PAAPAB

Networked art application for CAVE
 Users from around the world
 First performance 2001
 Dance-floor environment
 Inhabited by life-size puppets
 Dance with each other
 Synchro

- **Recording Booth**
 - User enters booth
 - User dances
 - System records dance from tracking on head and hands
 - Dance mapped to Avatar
 - J. Anstey



Mechanical and Aerospace Engineering

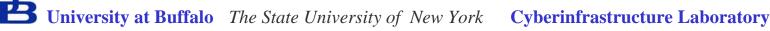
VR-Fact!

- Interactive virtual factory
 Creates digital mock-up of factory
- Drag & place modular machines
- Mathematical algorithms for consistency checks

Kesh

University at Buffalo The State University of New York **Cyberinfrastructure Laboratory**


Visualization


CI Lab

Collaborative Visualization Environments

- Enable distributed collaboration via software developed at CCR
- Enable visualization and interaction with data across a geographically disparate network topology
- Integrate multiple data sources:
 - **Scientific**
 - Multimedia
- Research Topics
 - **Distributed databases**
 - **OpenGL 3D programming**
 - **3D** Modeling
 - **Character animation**
 - **User interaction**
 - **Virtual Reality**

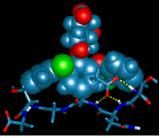
A. Ghadersohi, R. Miller, M. Green

Western New York

Some Facts

Buffalo, New York

- **The Queen City: 2nd Largest City in NYS**
- City of Lights
 - □ First U.S. city to have electric street lights
 - **Pan American Exposition (1901)**
 - **O Pres. McKinley Shot**
- Architecture
 - **Frederick Law Olmsted**
 - **Frank Lloyd Wright**
- Underground Railroad
 - □ Slaves escaped to freedom in Canada
- Four straight Super Bowl appearances
- Culinary Delights
 - **Beef on Weck, Pizza, Fish Fries**
 - □ (Buffalo) Wings: Anchor Bar, 1964
- Health Problems
 - □ Heart Disease/Stroke
 - Multiple Sclerosis



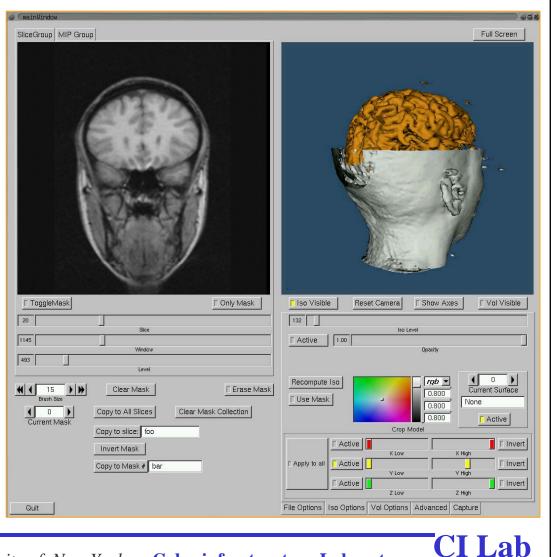
Recent Biomedical Advances (Buffalo, NY)

- **PSA Test (screen for Prostate Cancer)**
- Avonex: Interferon Treatment for Multiple Sclerosis
- Artificial Blood
- Nicorette Gum
- Fetal Viability Test
- **Edible Vaccine for Hepatitis C**
- Timed-Release Insulin Therapy
- Anti-Arrythmia Therapy
 - **Tarantula venom**

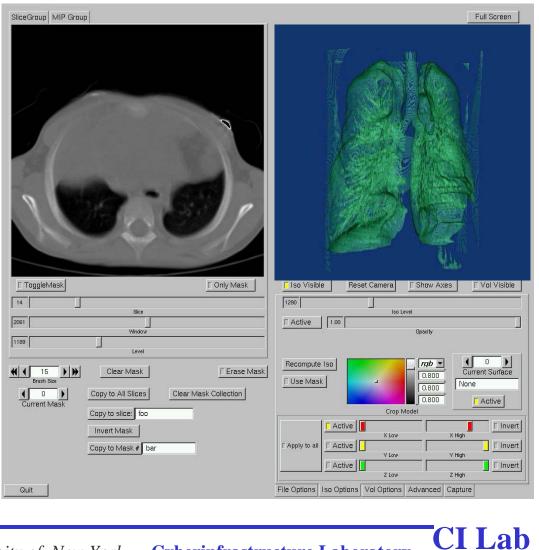
- Direct Methods Structure Determination
 - Listed on "Top Ten Algorithms of the 20th
 - Century"
 - Vancomycin
 - Gramacidin A

High Throughput

Crystallization Method: Patented


- NIH National Genomics Center: Northeast Consortium
- Howard Hughes Medical Institute: Center for Genomics & Proteomics

Scientific Visualization


Multiple Sclerosis Project

- Collaboration with Buffalo Neuroimaging Analysis Center (BNAC)
 - Developers of Avonex, drug of choice for treatment of MS
- MS Project examines patients and compares scans to healthy volunteers

3D Medical Visualization

- Reads data output from a CT or MRI Scan
- Collaboration with Children's Hospital
- Visualize multiple surfaces and volumes
- Export images, movies or CAD file
- Pre-surgical planningRuns on a PC

M. Innus

University at Buffalo The State University of New York **Cyberinfrastructure Laboratory**

Mapping Brain Activity

Sites Activated

Positron emission tomography (PET), shows sites activated and deactivated as subjects decide whether a sound is a target or not.

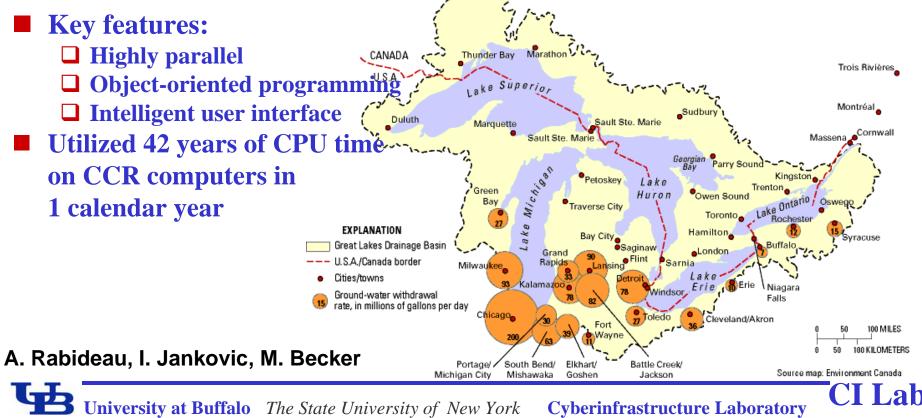
Current density maps of brain surface (1–700 ms after target) show dynamic pattern of brain activity during decision-making

process. A. Lockwood

-0.0000

1.00 ms

700.00 ms

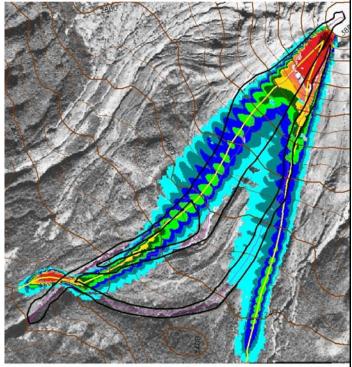

Sites Deactivated

Science & Engineering

Small Subset of Projects

Groundwater Flow Modeling

- Regional scale modeling of groundwater flow and contaminant transport (Great Lakes)
- Ability to include all hydrogeologic features as independent objects
- Based on Analytic Element Method, Analytic

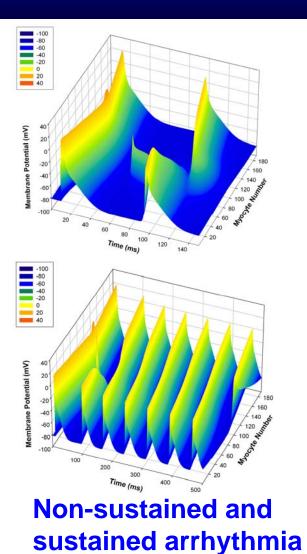


Avalanches, Volcanic and Mud Flows Geology, Engineering

- Modeling of Volcanic Flows, Mud flows (flash flooding), and avalanches
- Integrate information from several sources
 - **Simulation results**
 - **Remote sensing**
 - **GIS data**
- Present information to decision makers using custom visualization tools local & remote
- GRID enabled for remote access
- Key Features
 - Parallel Adaptive Computation
 - □ Integrated with GIS System for flows

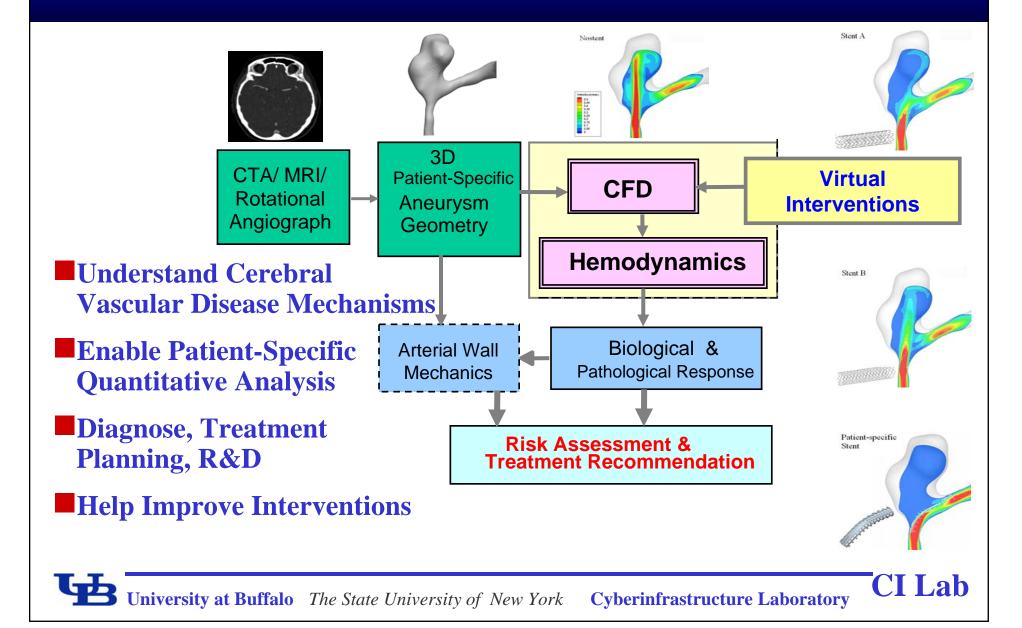
on natural terrain

A. Patra, B. Pitman, M. Sheridan, M. Jones

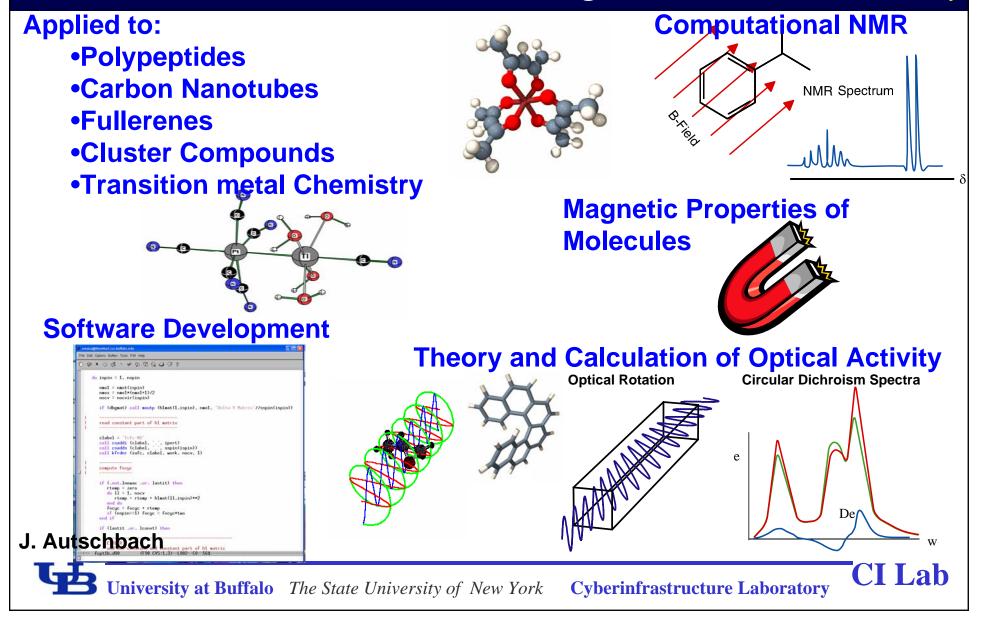


Flow models of Colima volcano In Mexico – courtesy Rupp et. al.'06

Cardiac Arrhythmia


- Comprehensive models of cardiac cells
- Modeling multicellular cardiac tissues and mechanisms of arrhythmias in the heart
- Simulation of genetic heart disease and arrhythmia suppression by drug application

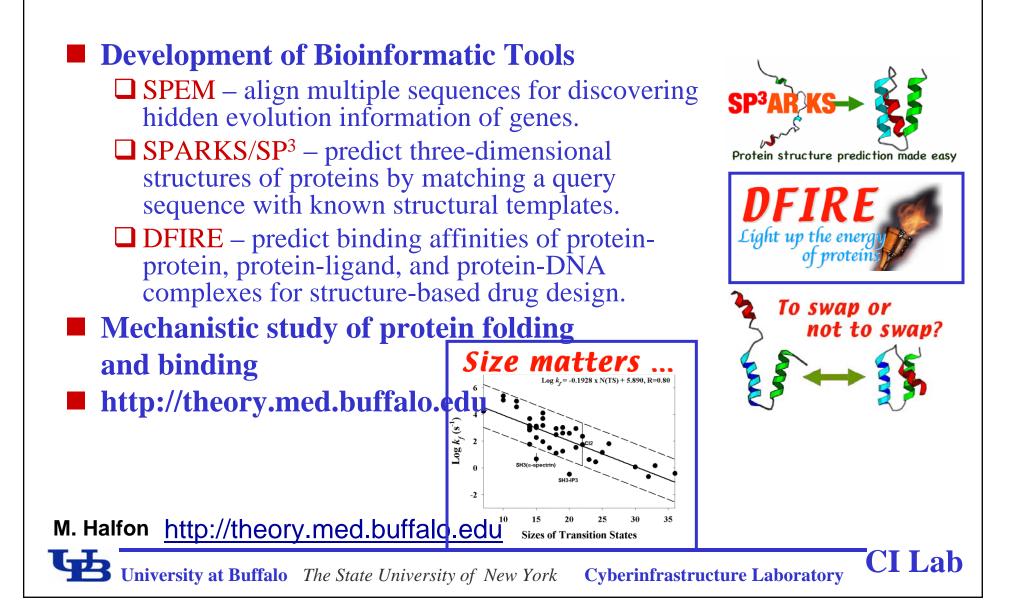
Center for Cellular and Systems Electrophysiology


University at Buffalo The State University of New York Cyberinfrastructure Laboratory

Cerebral Aneurysm: Virtual Intervention

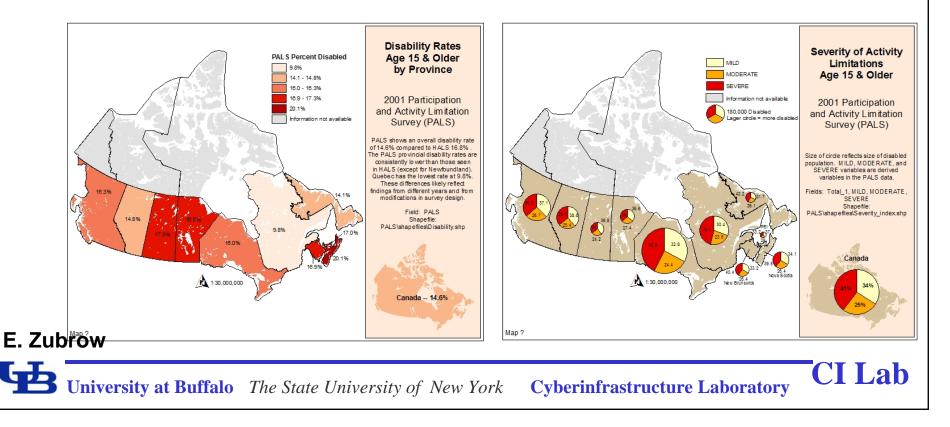
Theoretical and Computational Chemistry

Chemistry

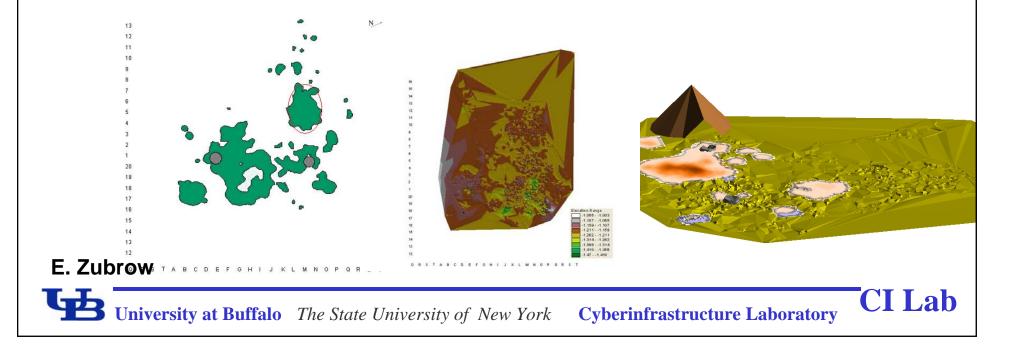


Computational Chemistry

- UB Software development in Quantum Chemistry
 - Q-Chem development of combined QM/MM methods for large molecular systems such as proteins
 - □ ADF development of algorithms to calculate magnetic and optical properties of molecules
- Used to determine
 - **3D** Molecular Structure
 - **Electronic Spectra**
 - **Chemical Reactivity**
- Applications
 - **Pharmaceutical Drug Design**
 - **Industrial Catalysis**
 - Materials Science
 - □ Nanotechnology
- T. Furlani, J. Autschbach, M. Freindorf

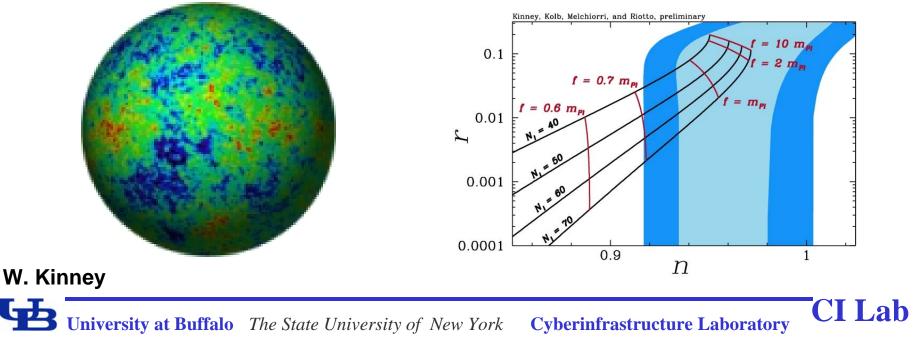


Bioinformatics Computational Biology & Bioinformatics


Literacy & Disability in Canada

- Exploring the relationship between illiteracy & disability across the Canadian landscape
- Social Systems GIS Lab in the Dept. of Anthropology is working with researchers from York University & the Canadian Abilities Foundation.
- Sponsored by The Adult Learning & Literacy Directorate of the Ministry of Human Resources & Social Development Canada.

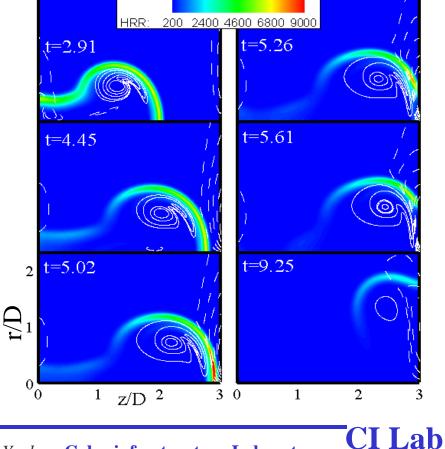
Verberie Paleolithic Site in France


- Intrasite spatial analysis and 3D modeling of the a Late Upper Paleolithic archaeological site in the Paris Basin of France
- Social Systems GIS Lab in the Dept. of Anthropology is working with researchers from the CNRS in Paris
- Sponsored by the National Science Foundation

Cosmological Parameter Estimation

Cosmology

- Wealth of new precision cosmological data
- WMAP Cosmic Microwave Background Measurement
- Sloan Digital Sky Survey: 3-D map of a million galaxies
- Interpret implications of data for models of the first trillionth of a second of the universe: *inflation*
- Monte Carlo Markov Chain data analysis: stochastic exploration of many-dimensional parameter spaces



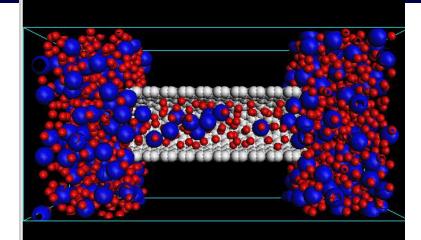
UB's Structural Engineering and Earthquake Simulation Laboratory (SEESL)

Computational Fluid Dynamics Understanding Combustion

- Flame-wall interaction modeling for a non-premixed flame propelled by a vortex ring.
- In this figure different time instants are shown during the interaction. White line contours and color contours represent vortex ring and flame, respectively.
- Key Features:
 - □ Modeling of Detailed GRI3. **Mechanism for Methane** Combustion
 - **Parallel algorithm using mpi**
 - 85-90% Parallel efficiency for up to 64 processors
 - FWI study is important to determine
 - **Engine Design**
 - **Quenching Distances**
 - □ Flame Structure
 - **Unburned hydrocarbon**
- Maximum Wall heat fluxes C. Madnia

University at Buffalo *The State University of New York* **Cyberinfrastructure Laboratory**

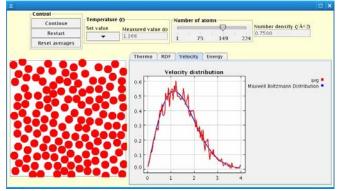
Chemical and Biological Engineering Molecular Simulation Software


Crystal Plane

Position

Clip
Highlight
Show plan

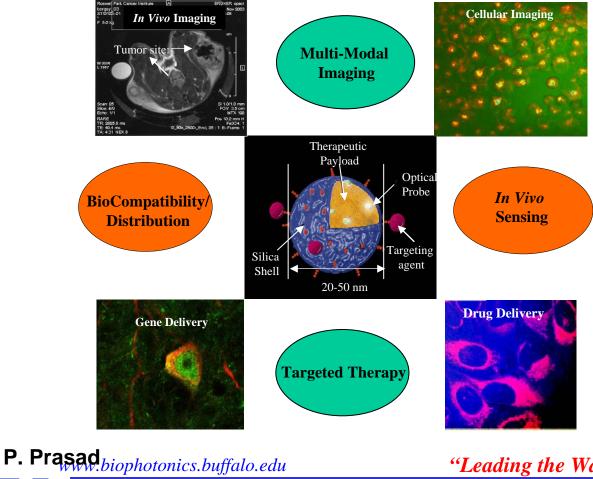
10-8-6-4-20246810

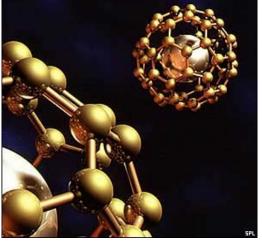

- Molecular simulation has wide application in existing and emerging technologies
- Recent advances in information technology make simulation more broadly accessible
- *Etomica* development environment permits easy construction of simulations
- Object-oriented, Extensible, Interactive, Portable and Adaptable
- Stand-alone simulations can be constructed as a teaching tools

FCC

- 🗆 ×

CI Lab




D. Kofke

University at Buffalo The State University of New York **Cyberinfrastructure Laboratory**

Institute for Lasers, Photonics, and Biophotonics Nanomedicine Program

World class Research Program Melding Nanotechnology with Biomedical Sciences

Building from the Bottom Up

State of the Art Molecular Imaging and Nanocharacterization Facilities

- Multiphoton Laser Scanning System
- Confocal Imaging including FRET, FLIM & FRAP analysis

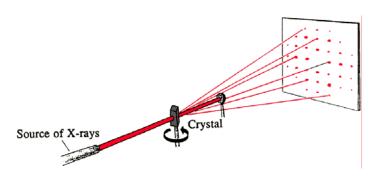
CI Lab

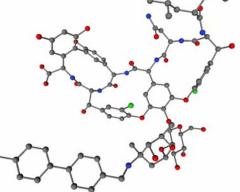
- Coherent Anti-Stokes Raman Imaging
- Optical Trapping/Dissection
- Advanced Laser Systems

"Leading the Way to Technology through Innovation"

University at Buffalo The State University of New York **Cyberinfrastructure Laboratory**

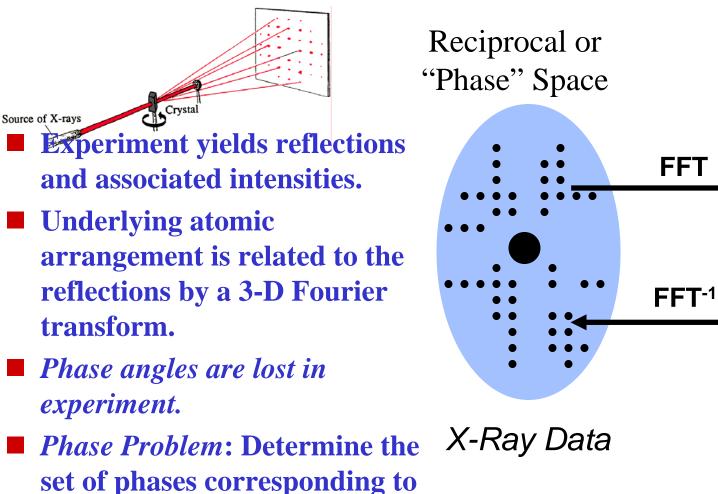
Shake-and-Bake


Molecular Structure Determination from X-Ray Crystallographic Data


X-Ray Crystallography

- Objective: Provide a 3-D mapping of the atoms in a crystal.
 - **Procedure:**
 - 1. Isolate a single crystal.

2. Perform the X-Ray diffraction experiment.



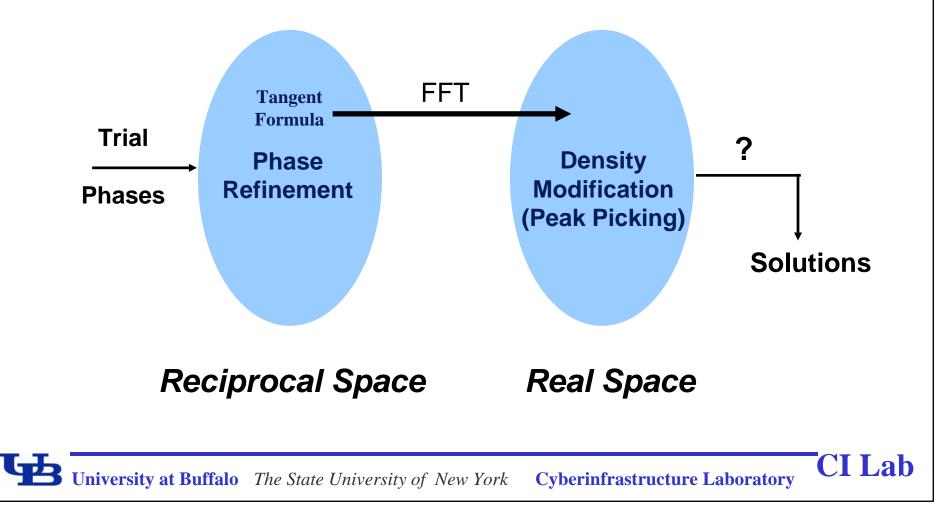
CI Lab

3. Determine molecular structure that agrees with diffration data.

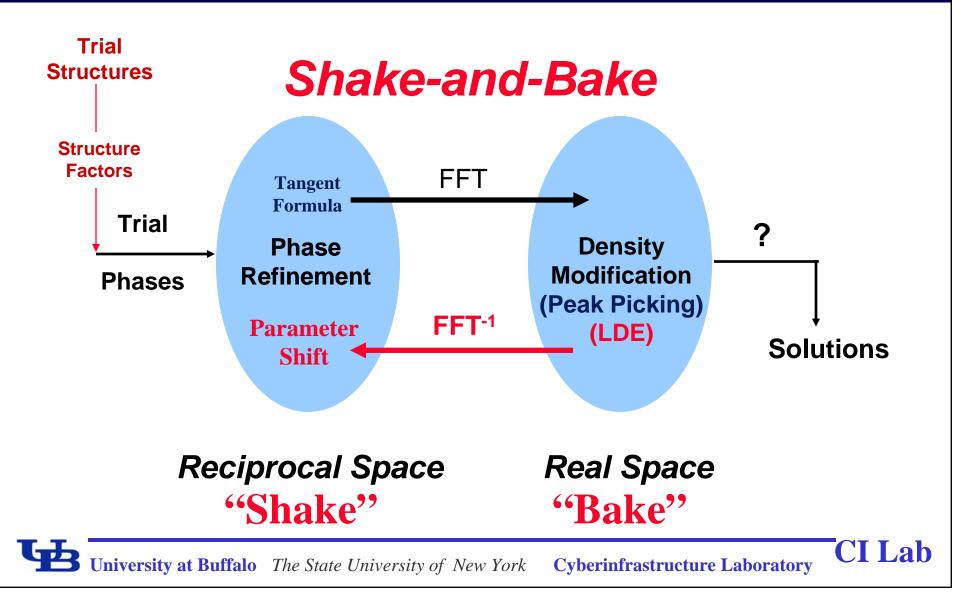
University at Buffalo The State University of New York Cyberinfrastructure Laboratory

X-Ray Data & Corresponding Molecular Structure

the reflections.

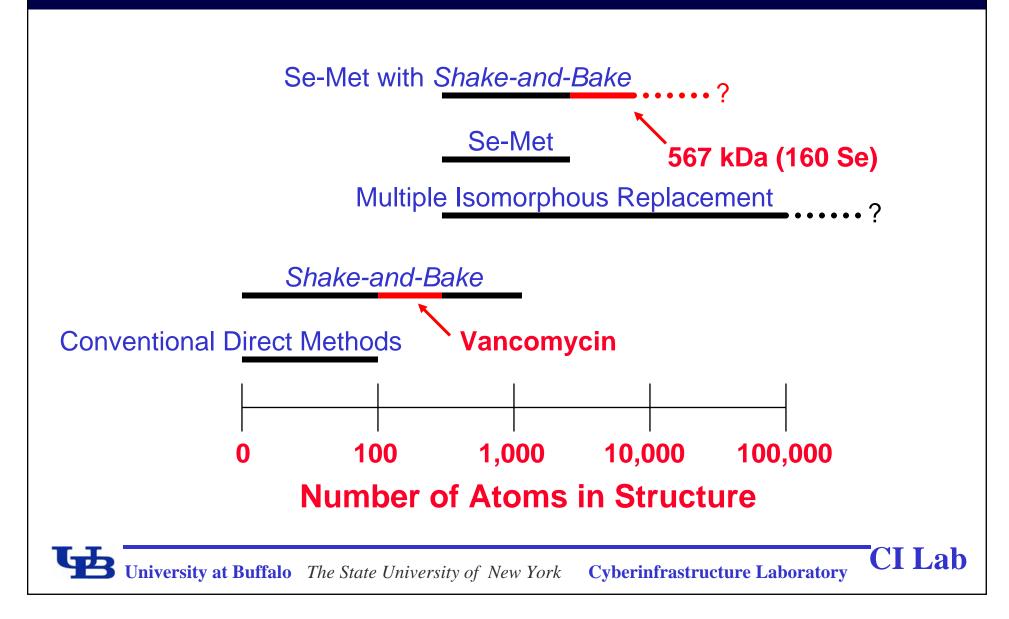

Molecular Structure

Real Space


University at Buffalo The State University of New York Cyberinfrastructure Laboratory

CI Lab

Conventional Direct Methods


Shake-and-Bake Method: Dual-Space Refinement

Ph8755: SnB Histogram

Histogram of Rmin Values															
25	0	0	0	0	0	0	2	5	8	10	18	17	10	4	Buckets:
															15
															Trials Read
															100
															Best Trial:
															3
															Best Job:
															PK_ano/manual_
										-					R-true:
															0.097
															R-random:
															1.121
30 0.3	52 0.3	374 0.3	396 0.4	18 0.4	40 0.4	62 0.4	84 0.5	07 0.5	29 0.5	51 0.5	73 0.5	95 0.6	17 0.6	39 O.E	62

Phasing and Structure Size

Grid Computing

Grid Computing Overview

- Coordinate Computing Resources, People, Instruments in Dynamic Geographically-Distributed Multi-Institutional Environment
- Treat Computing Resources like Commodities
 - **Compute cycles, data storage, instruments**
 - **Human communication environments**
- **No Central Control; No Trust**

University at Buffalo The State University of New York **Cyberinfrastructure Laboratory**

CI Lab

Major Grid Initiatives

TeraGrid (NSF)

- **Integrates High-End Resources**
- □ High-Performance (Dedicated) Networks
- **9** Sites (?); 250TF & 30PB (?)
- **100+ Databases Available**
- **OSG (DOE, NSF)**
 - □ High-Throughput Distributed Facility
 - **Open & Heterogeneous**
 - **Biology, Computer Science, Astrophysics, LHC**
 - **57** Compute Sites; 11 Storage Sites;
 - **10K CPUS; 6PB**
- **EGEE:** Enabling Grids for E-SciencE (European Commision)
 - □ Initial Focus on CERN (5PB of Data/Year)
 - **OHigh-Energy Physics and Life Sciences**
 - **Expanded Focus Includes Virtually All Scientific Domains**

CI Lab

- **200 Institutions; 40 Countries**
- **20K+ CPUs; 5PB; 25,000 jobs per day!**

Cyberinfrastructure Lab

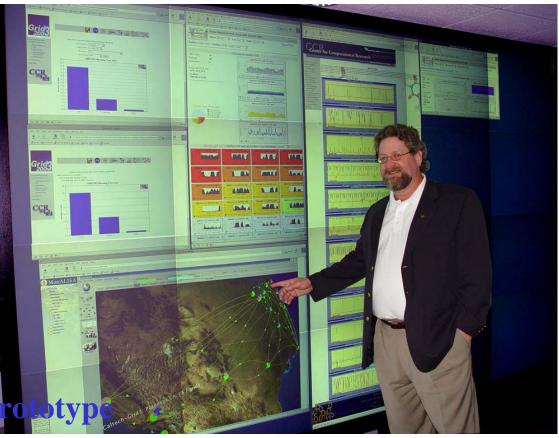
- CI sits at core of modern simulation & modeling
- CI allows for new methods of investigation to address previously unsolvable problems
- **Focus on development of**
 - **algorithms**
 - **portals**
 - □ interfaces
 - **middleware**
- Free end-users to do disciplinary work
- Funding (2001-pres): NSF ITR, NSF CRI, NSF MRI, NYS, Fed

Evolution of CI Lab Projects

ACDC-Grid

- **Experimental Grid: Globus & Condor**
- □ Integrate Data & Compute, Monitor, Portal, Node Swapping, Predictive Scheduling/Resource Management
- GRASE VO: Structural Biology, Groundwater Modeling, Earthquake Eng, Comp Chemistry, GIS/BioHazards
- D Buffalo, Buffalo State, Canisius, Hauptman-Woodward
- WNY Grid
 - ☐ Heterogeneous System: Hardware, Networking, Utilization
 - D Buffalo, Geneseo, Hauptman-Woodward, Niagara
- NYS Grid
 - **Extension to Hardened Production-Level System State-Wide**

Albany, Binghamton, Buffalo, Geneseo, Canisius, Columbia, HWI, Niagara, [Cornell, NYU, RIT, Rochester, Syracuse, Marist], {Stony Brook, RPI, Iona}


NYS Grid Resources

- Albany: 8 Dual-Processor Xeon Nodes
- Binghamton: 15 Dual-Processor Xeon Nodes
- Buffalo: 1050 Dual-Processor Xeon Nodes
- Cornell: 30 Dual-Processor Xeon Nodes
- Geneseo State: Sun/AMD with 128 Compute Cores
- Hauptman-Woodward Institute: 50 Dual-Core G5 Nodes
- Marist: 9 P4 Nodes
- Niagara University: 64 Dual-Processor Xeon Nodes
- **NYU: 58 Dual-Processor PowerPC Nodes**
- **RIT: 4 Dual-Processor Xeon Nodes**
- Syracuse: 8 Dual-Processor Xeon Nodes

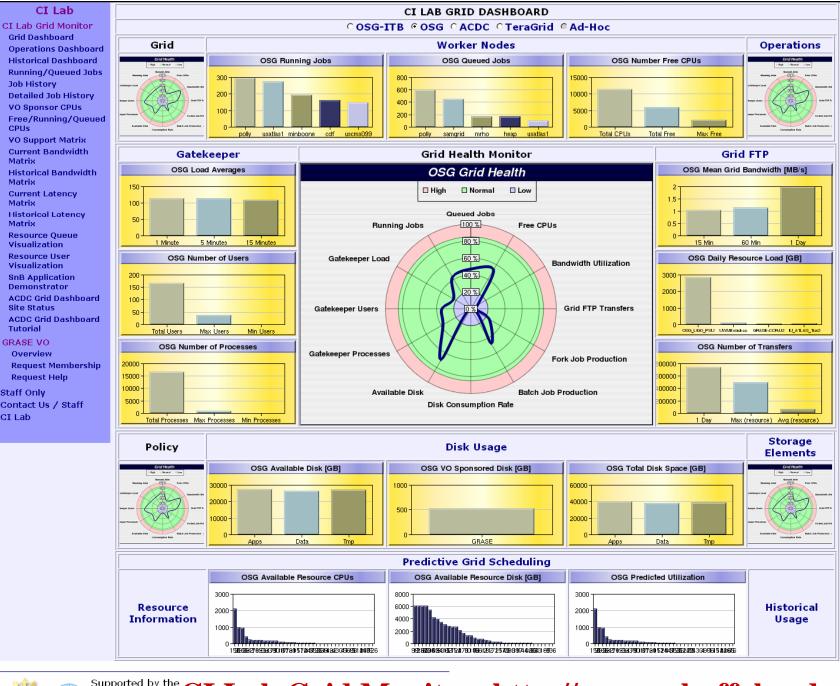
CI Lab

CI Lab Collaborations

- High-Performance Networking Infrastructure
- Grid3+ Collaboration
- iVDGL Member
 Only External Member
- Open Science Grid
 GRASE VO
- NYSGrid.org
 - **NYS CI Initiative**
 - **Executive Director**
 - **Various WGs**
- Grid-Lite: Campus Grid HP Labs Collaboration
- Innovative Laboratory I
 Dell Collaboration

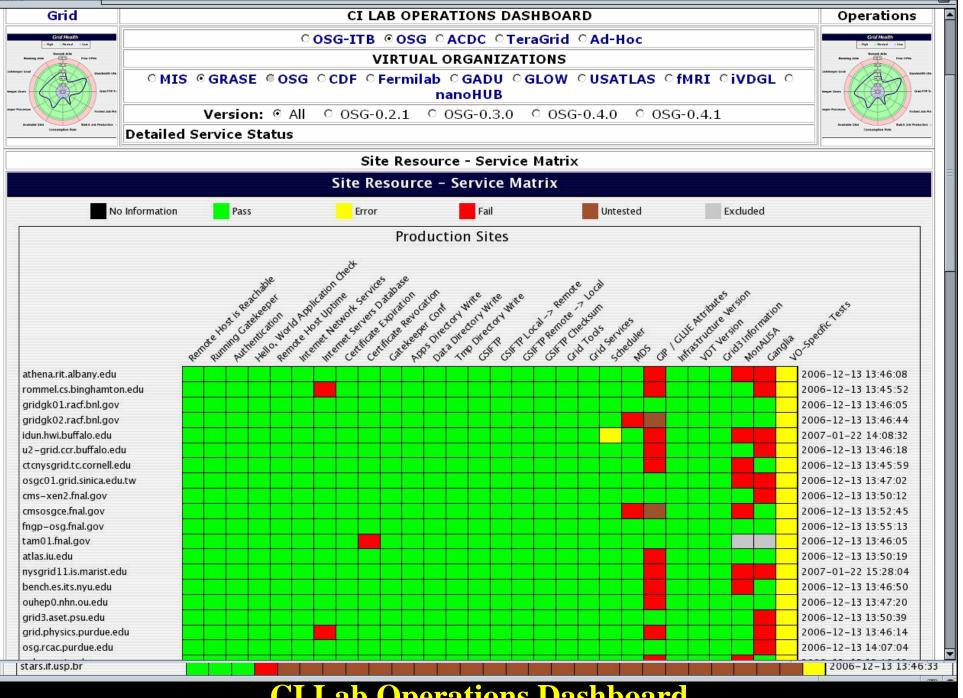
CI Lab

University at Buffalo The State University of New York **Cyberinfrastructure Laboratory**


CI Lab Projects

- Lightweight Grid Monitor (Dashboard)
- Predictive Scheduler
 - **Define quality of service estimates of job completion, by better estimating job runtimes by profiling users.**

Dynamic Resource Allocation


- Develop automated procedures for dynamic computational resource allocation.
- High-Performance Grid-Enabled Data Repositories
 - Develop automated procedures for dynamic data repository creation and deletion.
- Integrated Data Grid
 - **Automated Data File Migration based on profiling users.**
- Grid Portal

Support Nationa Foundat

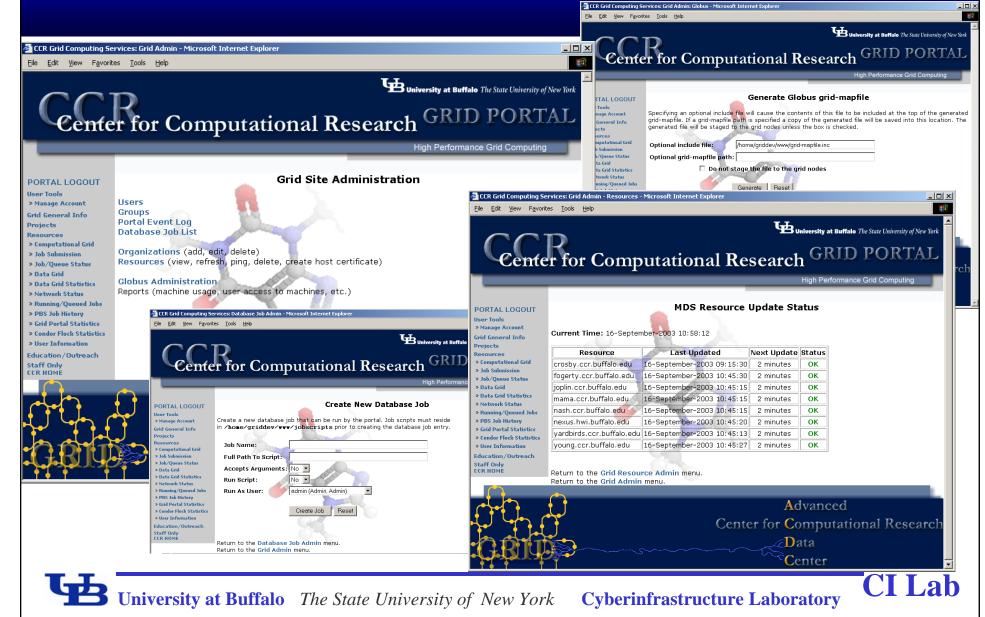
Supported by the National Science CI Lab Grid Monitor: http://osg.ccr.buffalo.edu/

CI Lab Operations Dashboard

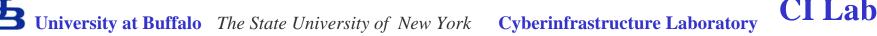
Predictive Scheduler

Build profiles based on statistical analysis of logs of past jobs

- **Per User/Group**
- **Per Resource**


Use these profiles to predict runtimes of new jobs
 Make use of these predictions to determine

 Resources to be utilized
 Availability of Backfill



Grid Administration

ACDC-Grid Data Grid Functionality

- Basic file management functions are accessible via a platform-independent web interface.
- User-friendly menus/interface.
- File Upload/Download to/from the Data Grid Portal.
- Simple Web-based file editor.
- Efficient search utility.
- Logical display of files (user/ group/ public).
- Ability to logically display files based on metadata (file name, size, modification date, etc.)

Grid-Enabling Application Templates (GATs)

Structural Biology

□ SnB and BnP for Molecular Structure Determination/Phasing

Groundwater Modeling

- **Ostrich: Optimization and Parameter Estimation Tool**
- POMGL: Princeton Ocean Model Great Lakes for Hydrodynamic Circulation
- **Split:** Modeling Groundwater Flow with Analytic Element Method

Earthquake Engineering

□ EADR: Evolutionary Aseismic Design and Retrofit; Passive Energy Dissipation System for Designing Earthquake Resilient Structures

Computational Chemistry

- □ *Q-Chem*: Quantum Chemistry Package
- **Geographic Information Systems & BioHazards**
 - **Titan:** Computational Modeling of Hazardous Geophysical Mass Flows

Grid Enabled SnB

- **Required Layered Grid Services Grid-enabled** Application Layer **O** Shake – and – Bake application **O** Apache web server **O** MySQL database □ High-level Service Layer **O** Globus, NWS, PHP, Fortran, and C **Core Service Layer** • Metacomputing Directory Service, Globus Security Interface, **GRAM, GASS** Local Service Layer
 - **O** Condor, MPI, PBS, Maui, WINNT, IRIX, Solaris, RedHat Linux

6 0 0

💊 https://grid.ccr.buffalo.edu/

. 🖂 Mail 🐔 Home 🔤 Netscape

🐏 New Tab | 💊 CCR Grid Computing Services:

Cyberinfrastructure Laboratory

Grid Portal

Dr. Russ Miller UB Distinguished Professor of Computer Science & Engineering

CI Lab Grid Portal Info Overview Portal Login Grid Account Info Computational Grid **Job Submission Job/Queue Status MDS Information** Network Status Running/Queued Jobs **PBS Job History** Condor Flock Statistics **GAT/Resource Matrix**

Data Grid

Data Grid Tree Data Grid Upload Data Grid Download Data Grid File Manager Data Grid Replica Manager Data Grid Simulator Data Grid Admin Tools Data Grid Admin File Tools

Contact Us / Staff CI Lab Staff Only

🔊 🖂 🙏 🖭 🚺

Welcome to the Cyberinfrastructure Laboratory Grid Portal

The **Cyberinfrastructure Laboratory**, in conjunction with the **Center for Computational Research**, has created an integrated Data and Computational Grid. This site is devoted to a Grid Portal that provides access to applications that can be run on a variety of grids. A related site contains a **Grid Monitoring System** designed by the Cyberinfrastructure Laboratory.

Applications may be run on the Cyberinfrastructure Laboratory's ACDC Grid, Western New York Grid, and New York State Grid, which includes computational and data storage systems from dozens of institutions throughout the State of New York.

The applications available to the users cover a variety of disciplines, including Bioinformatics, Computational Chemistry, Crystallography and Medical Imaging, to name a few.

The grids developed by the CI Lab support teaching and research activities, as well as providing infrastructure that includes high-end data, computing, imaging, grid-enabled software, all of which relies on the New York State Research Network (**NYSERNet**).

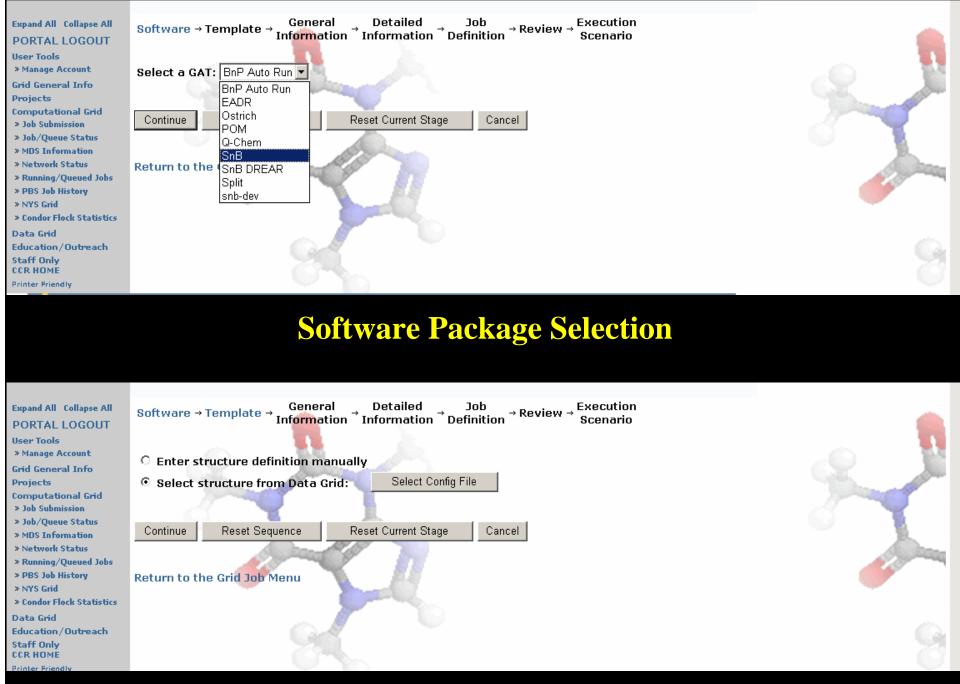
This work is funded by the National Science Foundation (ITR, MRI, CRI), three program projects from The National Institutes of Health, and the Department of Energy.

Software : BnP **Field :** Protein crystal structure determination

Startup Screen for CI Lab Grid Job Submission

Expand All Collapse All PORTAL LOGOUT	Software → Template →	GeneralDetailedJob Information → Information → Definition → Review → Scenario							
User Tools » Manage Account Grid General Info	Ad	vanced Computational Data Center Grid Job Submission Instructions							
Projects Computational Grid » Job Submission » Job/Queue Status » MDS Information	The grid-enabling application templates used on the ACDC-Grid are created from the application developers grid user profiles that con the users standard information uid, name, organization, address, etc., and more specific information such as group id and access leve information for each of grid-enabled applications. This information is stored in a database for each of the grid-enabled applications an can be accessed through selected queries throughout the ACDC-Grid Web Portal.								
 » Network Status » Running/Queued Jobs » PBS Job History » NYS Grid » Condor Flock Statistics 	Additionally, each grid-enabled scientific application profile contains information about specific execution parameters, required data files, optional data files, computational requirements, etc. and statistics on application historical ACDC-Grid jobs for predictive runtime estimates. MySQL provides the speed and reliability required for this task and it is currently being used as the ACDC-Grid Web Portal								
Data Grid Education/Outreach Staff Only CCR HOME Printer Friendly	functionality that are requ	s of many well-defined scientific and engineering applications have very similar general requirements and core uire for execution in the ACDC-Grid environment. We have identified that sequentially defining milestones for the uitively guides them through the application workflow.	9						
	Software Application:	Grid user chooses a grid-enabled software application.							
	Template:	Grid user selects the required and/or optional data files from the ACDC Data Grid. User defined computational requirements are input or a template defined computational requirement runtime estimate is selected.							
	Job Definition:	Grid user defines application specific runtime parameters or accepts default template parameter definitions.							
	Review:	Grid user accepts the template complete job definition workflow or corrects any part of job definition.							
	Execution Scenario:	The grid user has the ability to input an execution scenario or select a ACDC-Grid determined template defined execution scenario.							
	Grid Job Status:	The grid user can view specific grid job completion status, grid job current state (COMPLETE, RUNNING, QUEVED, BLOCKED, FAILED, ETC.), detailed information on all running or queued grid jobs and grid-enabled application specific intermediate and post processing grid job graphics, plots and tables.							
	previously created workfle hundreds of similar workfle template for the grid-ena	nition workflow is then stored in the ACDC-Grid Web Portal database so the grid user may use/modify any ow in creating new job definitions. The job definitions can also be accessed via batch script files for executing ows in an automated fashion. For example, a grid user would first define/save a relatively generic job workflow bled application and then use the batch script capabilities to change the job definition workflow data files or nd execute a series of new grid jobs.	-						
		· · · · · ·							

Instructions and Description for Running a Job on ACDC-Grid

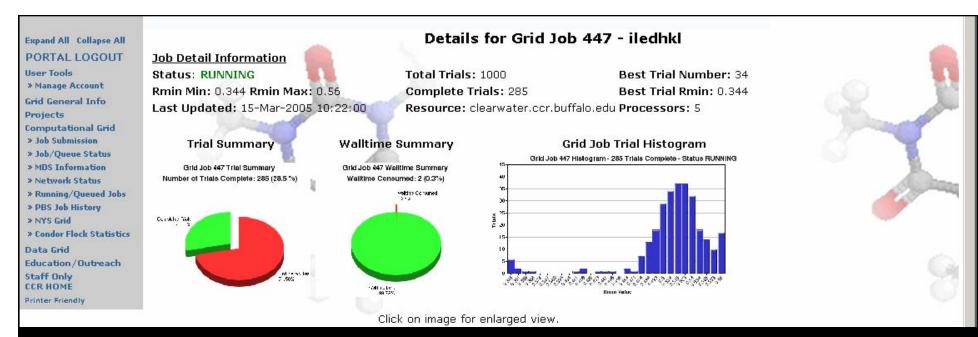

Cancel

Reset Current Stage

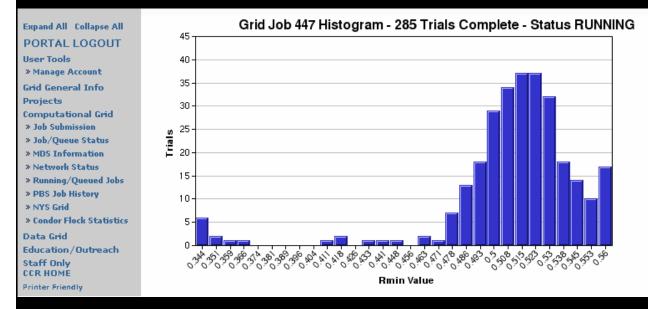
Reset Sequence

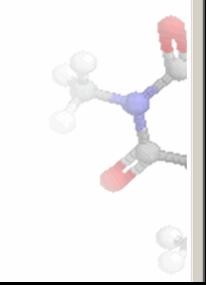
Continue

•

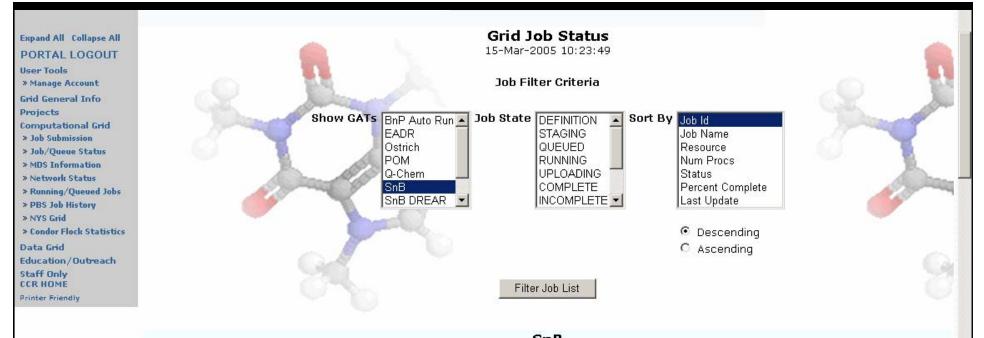

Full Structure / Substructure Template Selection

» Manage Account Grid General Info	<u>6</u>	General Information								
Projects Computational Grid » Job Submission	Structure Informatio	n								
 » Job Submission » Job/Queue Status » MDS Information 	Title: 🔍 🐧	lled State								
» Network Status	Structure ID :	iled								
» Running/Queued Jobs » PBS Job History » NYS Grid	Space Group :	19 Select								
» Condor Flock Statistics Data Grid Education / Outreach	Cell Constants and Cell Errors (Cell Errors optional)									
Staff Only CCR HOME	A:	11.516 +/-								
Printer Friendly	в:	15.705 +/-								
	C:	39.310 +/- 0.004								
	Alpha:	90.0 +/-								
	Beta:	90.0 +/-								
	Gamma:	90.0 +/-								
	Native Asymmetric Unit Contents									
	No Residues (Optional):									
	ASU Contents :	C60H102N6O18 (examples: C6H12O6 OR C6 H12 O6)								
	Initial Data Sets									
	Add Dataset Dele	te Dataset								
	Select dataset to delete	<u>с</u>								
	Datasets	Dataset 1								
	Name (8 chars max):	iledhkl								
	<u> </u>									

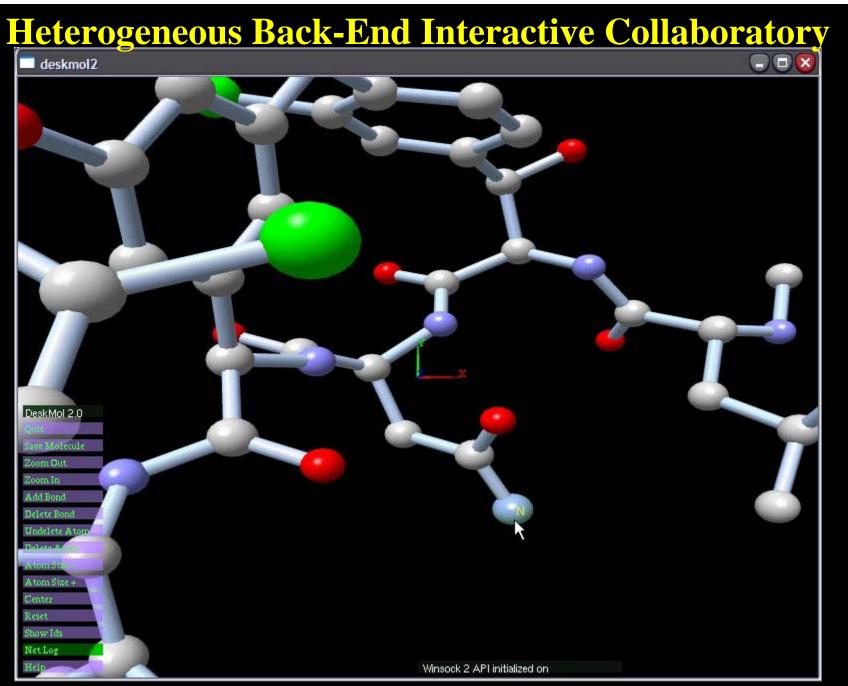

Default Parameters Based on Template


User Tools » Manage Account Grid General Info Projects		SnB Job Review
Computational Grid	Grid Job ID:	447
» Job Submission » Job/Queue Status	Selected resource:	clearwater.ccr.buffalo.edu
» MDS Information	Number of processors:	5
» Network Status	Wallclock time requested:	720
» Running/Queued Jobs	Number of triplet invariant to use:	8400
» PBS Job History » NYS Grid	Start Phases From:	Random Atoms
» Condor Flock Statistics	Random seed (prime):	11909
Data Grid	Number of trials:	1000
Education/Outreach	Starting Trial:	1
Staff Only CCR HOME	Input Phase File:	Unused
Printer Friendly	Input Atom File:	Unused
	Keep complete (every trial) peak file? :	Yes
	Number of Shake-and-bake cycles:	20
	Keep complete (every cycle) trace file? :	No
	Terminate trials failing the R-Ratio test? :	No
	R-Ratio cutoff:	Unused
	Phase Refinement Method:	Parameter Shift(Fast)
	Number of passes through phase set:	3
	Phase shift:	90.0
	Number of shifts:	2
	Number of peaks to select:	84
	Minimum interpeak distance:	3
	Minimum distance between symmetry-related peaks	:3.0
	Number of special position peaks to keep:	0
	Fourier grid size:	0.31
	Perform extra cycles with more peaks? :	No
	Number of extra cycles:	Unused
	Number of peaks:	Unused
	Trials for E-Fourier filtering (fourier refinement)? :	None
	Number of cycles:	Unused
	Number of peaks:	Unused
	Minimum E :	Unused

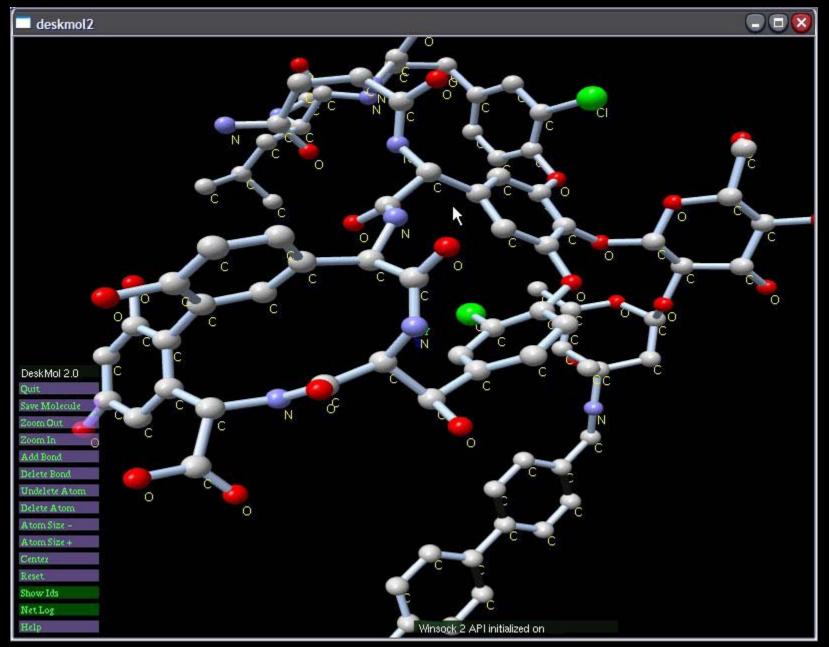
SnB Review (Grid job ID: 447)



Graphical Representation of Intermediate Job Status



Histogram of Completed Trial Structures



				SnB					
Job Id	Job Name	Resource	Num Procs	Status	Percent Complete	Last Update	Cancel Job	Drilldown	
447	iledhkl	clearwater.ccr.buffalo.edu	5	RUNNING	28.5	15-Mar-2005 10:22:00		~	
446	trilys	clearwater.ccr.buffalo.edu	10	RUNNING	1	15-Mar-2005 10:22:00		~	
444	64chkl	nash.ccr.buffalo.edu	З	COMPLETE	100	14-Mar-2005 22:00:01		~	
443	trilys	clearwater.ccr.buffalo.edu	10	COMPLETE	100	10-Mar-2005 22:48:00		~	
442	pr435hkl	nash.ccr.buffalo.edu	5	COMPLETE	100	10-Mar-2005 17:26:01		~	
441	vancohkl	clearwater.ccr.buffalo.edu	10	COMPLETE	100	10-Mar-2005 18:08:01		~	
434	16chkl	clearwater.ccr.buffalo.edu	5	COMPLETE	100	10-Mar-2005 14:42:01		~	
433	16chkl	clearwater.ccr.buffalo.edu	5	COMPLETE	100	10-Mar-2005 14:38:01		~	

Status of Jobs

User starts up – default image of structure.

Molecule scaled, rotated, and labeled.

Acknowledgments

- Mark Green
- **Cathy Ruby**
- Amin Ghadersohi
- Naimesh Shah
- Steve Gallo
- Jason Rappleye
- Jon Bednasz
- Sam Guercio
- Martins Innus
- Cynthia Cornelius
- George DeTitta
- Herb Hauptman
- Charles Weeks
- Steve Potter

- Alan Rabideau
- Igor Janckovic
- Michael Sheridan

CI Lab

- Abani Patra
- Matt Jones
- NSF ITRNSF CRINSF MRI
- NYS
- **CCR**

