GT’04 Panel: Storage Considerations for Grid Computing Environments

Russ Miller & Mark Green
Center for Computational Research & Computer Science & Engineering
SUNY-Buffalo
Hauptman-Woodward Medical Inst

NSF, NIH, DOE, NYS
Major CCR Resources
(12TF & 290TB)

- Dell Linux Cluster: #22 → #25 → #38
 - 600 P4 Processors (2.4 GHz)
 - 600 GB RAM; 40 TB Disk; Myrinet

- Dell Linux Cluster: #187 → #368 → off
 - 4036 Processors (PIII 1.2 GHz)
 - 2TB RAM; 160TB Disk; 16TB SAN

- IBM BladeCenter Cluster
 - 532 P4 Processors (2.8 GHz)
 - 5TB SAN

- SGI Origin3700 (Altix)
 - 64 Processors (1.3GHz ITF2)
 - 256 GB RAM
 - 2.5 TB Disk

- SGI Origin3800
 - 64 Processors (400 MHz)
 - 32 GB RAM; 400 GB Disk

- Apex Bioinformatics System
 - Sun V880 (3), Sun 6800
 - Sun 280R (2)
 - Intel PIIXs
 - Sun 3960: 7 TB Disk Storage

- HP/Compaq SAN
 - 75 TB Disk
 - 190 TB Tape
 - 64 Alpha Processors (400 MHz)
 - 32 GB RAM; 400 GB Disk

- IBM RS/6000 SP: 78 Processors

- Sun Cluster: 80 Processors

- SGI Intel Linux Cluster
 - 150 PIII Processors (1 GHz)
 - Myrinet
Advanced CCR Data Center (ACDC)
Computational Grid Overview

Joplin: Compute Cluster
- 300 Dual Processor
- 2.4 GHz Intel Xeon
- RedHat Linux 7.3
- 38.7 TB Scratch Space

Nash: Compute Cluster
- 75 Dual Processor
- 1 GHz Pentium III
- RedHat Linux 7.3
- 1.8 TB Scratch Space

Mama: Compute Cluster
- 9 Dual Processor
- 1 GHz Pentium III
- RedHat Linux 7.3
- 315 GB Scratch Space

ACDC: Grid Portal
- 4 Processor Dell 6650
- 1.6 GHz Intel Xeon
- RedHat Linux 9.0
- 66 GB Scratch Space

Young: Compute Cluster
- 16 Dual Sun Blades
- 47 Sun Ultra5
- Solaris 8
- 770 GB Scratch Space

Fogerty: Condor Flock Master
- 1 Dual Processor
- 250 MHz IP30
- IRIX 6.5

Crosby: Compute Cluster
- SGI Origin 3800
- 64 - 400 MHz IP35
- IRIX 6.5.14m
- 360 GB Scratch Space

Expanding
- RedHat, IRIX, Solaris, WINNT, etc

Computer Science & Engineering
- 25 Single Processor Sun Ultra5s

School of Dental Medicine
- 9 Single Processor Dell P4 Desktops

Hauptman-Woodward Institute
- 13 Various SGI IRIX Processors

Note: Network connections are 100 Mbps unless otherwise noted.
Network Connections

- FDDI
 - 100 Mbps
- BCOEB
 - 1.54 Mbps (T1) - RPCI
 - 44.7 Mbps (T3) - BCOEB
 - 1.54 Mbps (T1) - HWI
- Abilene
 - 622 Mbps (OC-12)
- NYSERNet
 - 100 Mbps
 - Medical/Dental
 - 155 Mbps (OC-3) I2
 - 350 Main St
 - Commercial
- UB
 - 1000 Mbps
 - cse@buffalo
ACDC Data Grid Overview
(Grid-Available Data Repositories)

Joplin: Compute Cluster
300 Dual Processor
2.4 GHz Intel Xeon
RedHat Linux 7.3
38.7 TB Scratch Space

Nash: Compute Cluster
75 Dual Processor
1 GHz Pentium III
RedHat Linux 7.3
1.8 TB Scratch Space

Mama: Compute Cluster
9 Dual Processor
1 GHz Pentium III
RedHat Linux 7.3
315 GB Scratch Space

Joplin: Compute Cluster
300 Dual Processor
2.4 GHz Intel Xeon
RedHat Linux 7.3
38.7 TB Scratch Space

Nash: Compute Cluster
75 Dual Processor
1 GHz Pentium III
RedHat Linux 7.3
1.8 TB Scratch Space

Mama: Compute Cluster
9 Dual Processor
1 GHz Pentium III
RedHat Linux 7.3
315 GB Scratch Space

ACDC: Grid Portal
4 Processor Dell 6650
1.6 GHz Intel Xeon
RedHat Linux 9.0
66 GB Scratch Space

CSE Multi-Store
2 TB

Storage Area Network
75 TB

ACDC: Grid Portal
4 Processor Dell 6650
1.6 GHz Intel Xeon
RedHat Linux 9.0
66 GB Scratch Space

CSE Multi-Store
2 TB

Storage Area Network
75 TB

Crosby: Compute Cluster
9 Dual Processor
1 GHz Pentium III
RedHat Linux 7.3
315 GB Scratch Space

Mama: Compute Cluster
9 Dual Processor
1 GHz Pentium III
RedHat Linux 7.3
315 GB Scratch Space

Rattlesnake: Compute Cluster
36 Dual Processor
1.6 GHz Intel Xeon
RedHat Linux 7.3
288 GB Scratch Space

Note: Network connections are 100 Mbps unless otherwise noted.
ACDC-Grid

Browser view of “miller” group files published by user
Grid-enabling Application Templates

- Structural Biology
- Earthquake Engineering
- Pollution Abatement
- Geographic Information Systems & BioHazards
ACDC-Grid Collaborations

- Advanced Computational Data Center – Grid (ACDC-Grid)
- Innovative Laboratory Prototype
- Grid3+ Collaboration
- High-Performance Networking Infrastructure
- HP Labs Collaboration
- IBM (under discussion)
- Open Science Grid (Future)
Predictive Scheduler
- Define quality of service estimates of job completion, by better estimating job runtimes by profiling users.

Data Grid
- Automated Data File Migration based on profiling users.

High-performance Grid-enabled Data Repositories
- Develop automated procedures for dynamic data repository creation and deletion.

Dynamic Resource Allocation
- Develop automated procedures for dynamic computational resource allocation.
Middleware

- Globus Toolkit 2.2.4 → direct upgrade WSRF
- Condor 6.6.0
- Network Weather Service 2.6
- Apache2 HTTP Server
- PHP 4.3.0
- MySQL 3.23
- phpMyAdmin 2.5.1