IDF: Multi-Core Processing for HPC March 2005

Russ Miller

Center for Computational Research

Computer Science & Engineering SUNY-Buffalo

Hauptman-Woodward Medical Inst

21st Century University

- **Embrace digital data-driven society**
- **Empower students to compete in knowledge-based economy**
- Support research, scholarship, education, and community outreach
- Deliver *high-end cyberinfrastructure* to enable efficient
 - □ Collection of data
 - **■** Management/Organization of data
 - Analysis of data
 - **□** Visualization of data

Center for Computational Research 1999-2005 Snapshot

High-End Computing, Storage, Networking, and Visualization

□ ~100 Research Groups in 37 Depts

- **OPhysical Sciences**
- **OLife Sciences**
- **OEngineering**

- □ 10 Local Institutions
- **External Funding: \$300M**+
- Total Leveraged WNY: \$0.5B
- Deliverables
 - □ 1100+ Publications
 - ☐ Software, Media, Algorithms, Consulting, Training, CPU Cycles...

Major Compute/Storage Resources

- Dell Linux Cluster (2.9TF)
 - **□** 600 P4 Processors (2.4 GHz)
 - ☐ 600 GB RAM; 40 TB Disk; Myrinet
- Dell Linux Cluster (6TF)
 - ☐ 4036 Processors (PIII 1.2 GHz)
 - **□** 2TB RAM; 160TB Disk; 16TB SAN
- IBM BladeCenter Cluster (3TF)
 - **■** 532 P4 Processors (2.8 GHz)
 - **□** 5TB SAN
- SGI Intel Linux Cluster (0.1TF)
 - ☐ 150 PIII Processors (1 GHz)
 - **■** Myrinet
- RFP (10-15TF)
 - **☐** Pentium-Based
 - **☐** Fast Interconnect
 - **☐** Efficient Storage Management

- SGI Altix3700 (0.4TF)
 - ☐ 64 Processors (1.3GHz ITF2)
 - **□** 256 GB RAM
 - **□** 2.5 TB Disk
- Apex Bioinformatics System
 - □ Sun V880 (3), Sun 6800
 - **□** Sun 280R (2)
 - ☐ Intel PIIIs
 - ☐ Sun 3960: 7 TB Disk Storage
- **HP/Compaq SAN**
 - **□** 75 TB Disk; 190 TB Tape
 - ☐ 64 Alpha Processors (400 MHz)
 - **□** 32 GB RAM; 400 GB Disk

CCR Visualization Resources

- Fakespace ImmersaDesk R2
 - ☐ Portable 3D Device
 - ☐ Onyx2: 6 R10000 @ 250MHz
 - ☐ 2 IR2 Pipes; 3 64MB texture memory
- **Tiled-Display Wall**
 - **□** 20 NEC projectors: 15.7M pixels
 - **☐** Screen is 11''7'
 - □ Dell PCs with Myrinet2000
- Access Grid Nodes (2)
 - ☐ Group-to-Group Communication
 - ☐ Commodity components
- **SGI Reality Center 3300W**
 - □ Dual Barco's on 8' '4' screen
 - ☐ Onyx300: 10 R14000 @ 500MHz
 - □ 2 IR4 Pipes; 1 GB texture mem per pipe

Multi-Core Applications

- **Application Performance is Key**
 - ☐ "Moore's Law of Applications"
- **Processor (Socket/Core) Performance Irrelevant**
- **■** Balanced System is Critical
 - **■** Memory and Cache Access including SMP
 - **□** System I/O
 - □ No Choke Point
- Multiprocessing is Critical
 - ☐ Human Ingenuity Required/Available to Decompose Algorithms
 - **☐** Rededication to the Shared Memory Programming Problem
- **■** Multithreading is Important
 - ☐ Difficult Problem in Scientific Computing
 - ☐ Tools Required for Multi-Core/Multithreading Environment

Intel Multi-Core Systems

- Pentium Dual Core 2005
 - ☐ Desktop Environment; Serves as Development Platform
- **Itanium Dual Core (Montecito) 2005**
 - **■** Multithreading **▶** Dual Socket System = 8 Processors to OS
 - □ 12MB L3 Cache
 - **☐** Healthy Thermals
- Xeon Dual Core (Dempsey) 2006
 - ☐ Blackford/Greenfield Chipset Balanced System
 - **ODual Independent FSB**
 - **OFB-DIMMs More Efficient for Large Memory Configurations**
- **■** Tukwila 2007/8
 - **■** More than 2 cores
 - ☐ Common Chipset and Commodity Components (Memory, Power Supplies, etc) Aimed at Consolidating Xeon and IPF

Benefits of Intel Multi-Core Systems

- **Application-Based Moore's Law requires**
 - □Parallel (Distributed and/or Shared Memory) and
 - **■Multithreaded Implementations of Algorithms**
- **Tools for Multithreading are Critical**
 - **□**Hand-Coded Libraries (BLAS, SHMEM, FFT)
 - **□Posix Threads**
 - **□** Compiler Directives (OpenMP)
 - ☐ Hybrid MPI-OpenMP
- Balanced Systems are Critical
- Well-funded applications will reap the benefit

Multi-Core Application Development

- More Emphasis on Computational Science & Engineering at all Levels
- **■** Black Box Approach is Counter Productive
- **Programming Skills Must be Improved**
- Training Required at all Levels
 - ☐ High School
 - **☐** Undergraduate
 - **□** Graduate
 - **□** Post-Doctoral
- **Better & More Affordable Tools are Required**
 - ☐ Intel Provides Compilers and Libraries Free of Charge (Academic Use/No Support)
 - ☐ Intel is Major Player in Development Software (Costly)

