Supercomputing and Visualization

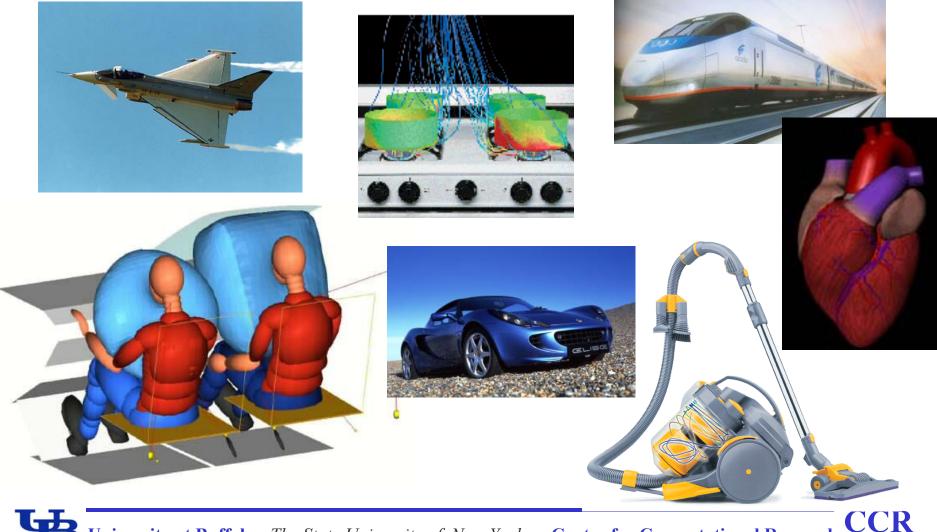
Russ Miller, Director Center for Computational Research

"Top 10 Worldwide Supercomputing Center"

- www.gapcon.com

The State University of New York

Outline


- Pervasive Computing
- **Computer Trends**
- **Definition of Supercomputer**
- **Overview of Center for Computational Research**
- Sample CCR Projects
- Center of Excellence in BioinformaticsH.S. Workshop

Computers play an important role in your life
 Currently ~10 processors per person
 Working with computers can be fun and exciting

Computers Touch Every Aspect of Our Life....

.... including entertainment

University at Buffalo The State University of New York Center for Computational Research

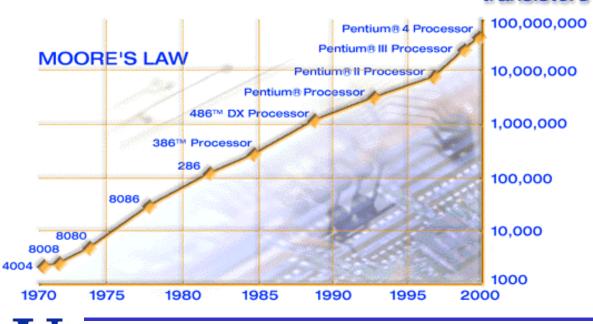
CCR

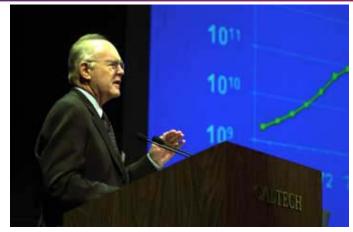
Computers are used in Many Professions

Science and Engineering **Physics, Chemistry, Biology** Aerospace, Mechanical, **Civil**, **Environmental** Architecture **Building and Bridge Design** Computer Animation **Cartoons**, Movies, **Advertising Games** (Playstation, Nintendo, PC games, etc) **Graphic Arts/Design Computer programmers**

University at Buffalo The State University of New York

Center for Computational Research


What is a CPU?


It's the computer's brain it's the main *processor*

CPU stands for Central Processing Unit

Gordon E. Moore

- **Co-Founder of Intel**
- Predicted (1965/75) that transistor density would double every 12/18 months
- Processing speed doubling every 18 mos.
- Disk storage doubling every 12 mos.
- Aggregate bandwidth doubling every 9 mos. transistors

Gordon E. Moore

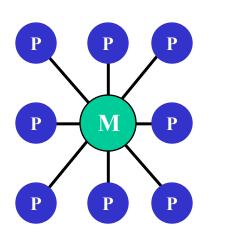
- A computation that took 1 year to run on a PC in 1985 would only take 5 mins to run on a PC today!
 - A computation that runs in 2 hours on a PC today would have taken 24 years to run on a PC in 1985!

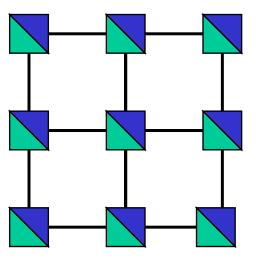
CCR

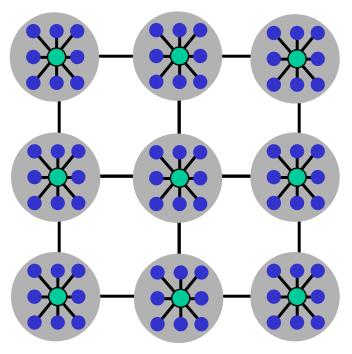
University at Buffalo The State University of New York **(**

Center for Computational Research

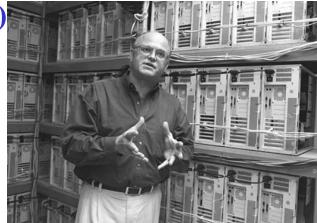
What is a Parallel Computer?


A computer that contains more than 1 processor (CPU)


Why are they used?


To solve problems faster than they could be solved using only 1 processor

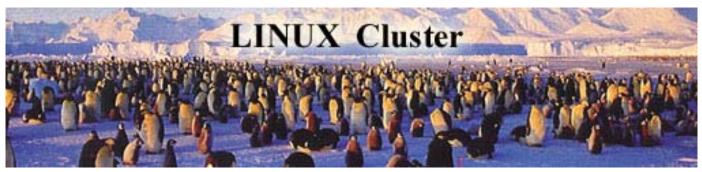
Parallel Computing Architectures


Shared Memory Distributed Memory

Distributed-Shared Memory

CCR

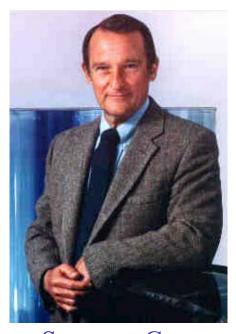
What is a (Beowulf) Cluster?


- Industry Standard Hardware and Software
 - **PC-Based Components (Intel or AMD)**
 - **Ethernet or Myrinet**
 - Linux, PBS, MPI
 - **Commodity Off-The-Shelf**" (COTS)
- Operates as a Single System

Thomas Sterling

Caltech

- Rivals Performance of Traditional Supercomputer
 - at a Fraction of the Price


What is a Supercomputer?

- **Fastest computers at any point in time**
- Used to solve large and complex problems
- Machines 1000 times faster than a PC
- Machines 10 times slower than what you need to solve the most challenging

problems

Cray1 - 1976

"Seymour Cray is the Thomas Edison of the supercomputing industry" Seymour Cray - Larry L. Smarr 1925-1996

Example

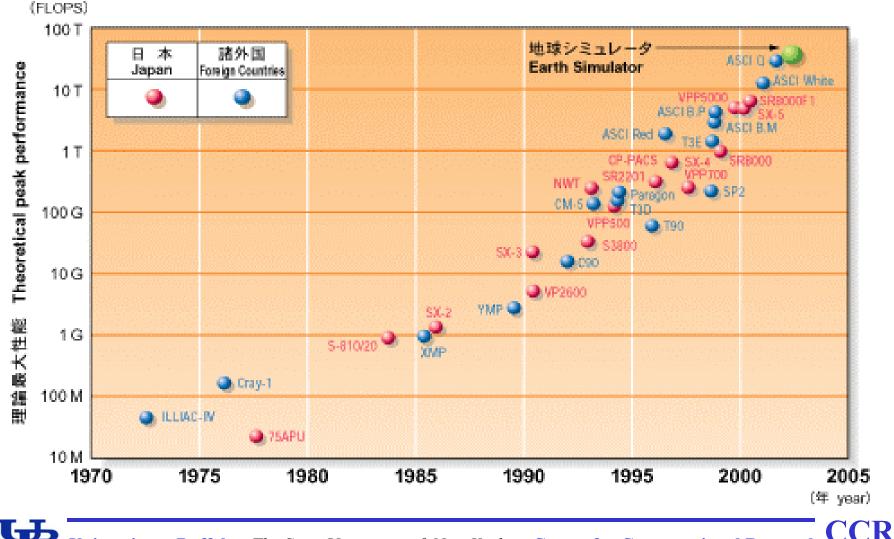
If you wanted to know what the weather will be like tomorrow, you could ...

Solve the problem at home on your PC and wait one month to get the answer

0ľ

Solve the problem on a supercomputer and have the answer in one hour!

Fastest Computers


Year	Mach	Procs	GFlops
1976	Cray 1	1	0.1
1982	Cray X-MP	4	0.9
1986	Cray 2	4	2
1989	Cray Y-MP	8	2.7
1989	TMC CM-2	8192	28
1992	TMC CM-5	1024	131
·	r calc in 19 90 HPC =		•

ЧВ

Year	Mach	Procs	GFlops
1993	Cray T3D	1024	152
1994	Fujitsu VPP	140	236
1996	Hitachi SR2	2048	368
1997	Intel ASCI-R	9152	1830
1999	SGI ASCI-BM	6144	3072
2000	IBM ASCI-W	8192	12,288
2002	NEC E.S.	5120	40,960

CCR

Earth Simulator in Japan (NEC Vector Supercomputer)

Earth Simulator

- 40TFlops Peak
- Homogeneous, Centralized, Proprietary, Vector
- Expensive!
- CFD-Weather, Climate, Earthquake
- 640 NEC SX/6 Nodes (5120 CPUs)
- Footprint = 4 tennis courts
- **\$6M/year in power**

Center for Computational Research

- **High-Performance Computing and High-End Visualization**
 - **70 (40+ active) Research Groups in 27 Depts**
 - **13** Local Companies
 - 10 Local Institutions
 - **External Funds: \$108M**
 - **Vendor Contributions: \$41M**
- Deliverables
 - **350** Publications and Presentations
 - □ Hardware, Software, Algorithms, etc
- Training
 - **Workshops**
 - **Courses**
 - **Degree Programs**

Computational Resources

Dell Linux Cluster - #22 in World 600 P4 Processors (2.4 GHz) 600 GB RAM; 40 TB Disk

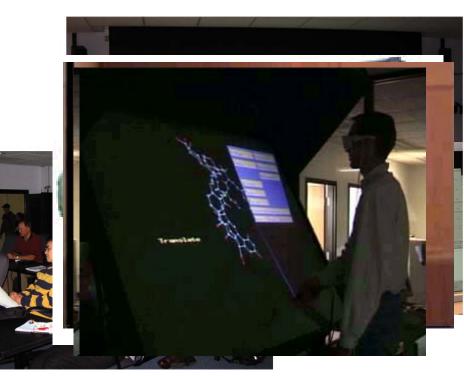
Dell Linux Cluster - #187 in World
4036 Processors (PIII 1.2 GHz)
2TB RAM; 160TB Disk; 16TB RD

Private Use

64 Processors (400 MHz) 32 GB RAM; 400 GB Disk IBM RS/6000 SP **78 Processors 26 GB RAM; 640 GB Disk** Sun Microsystems Cluster **48** Sun Ultra 5s (333MHz) **16 Dual Sunblades (750MHz) 30 GB RAM, Myrinet SGI Intel Linux Cluster 150 PIII Processors (1 G 75 GB RAM, 2.5 TB Disl Apex Bioinformatics System** Sun V880 (3), 6800, 280R (2), PIIIs

SGI Origin3800

- Sun 3960: 7 TB Disk Storage HP/Compaq SAN (3/2003)
 - **25 TB Disk; 250 TB Tape**

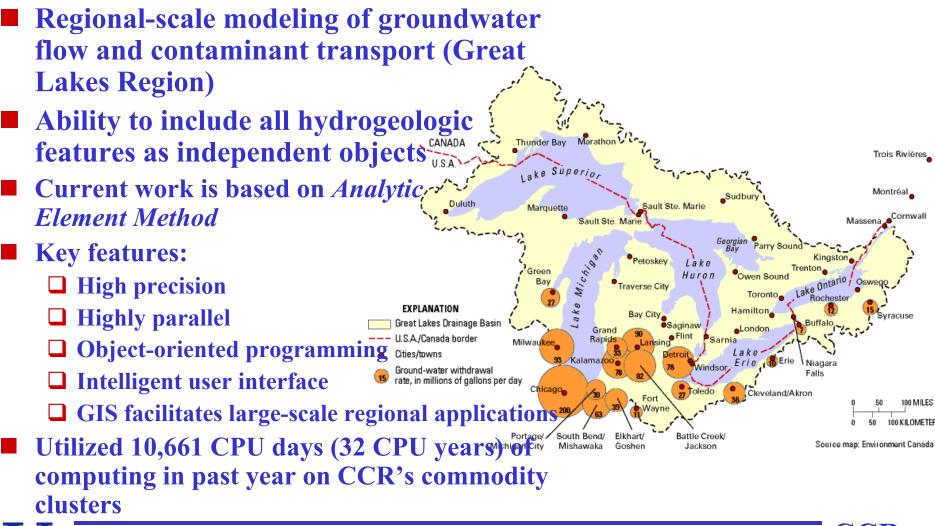

Sample Computational Research

- **Computational Chemistry** (King, Kofke, Coppens, Furlani, Tilson, Lund, Swihart, Ruckenstein, Garvey)
 - □ Algorithm development & simulations
- Groundwater Flow Modeling (Rabideau, Jankovic, Becker, Flewelling)
 Predict contaminant flow in groundwater & possible migration into streams and lakes
- Geophysical Mass Flows (Patra, Sheridan, Pitman, Bursik, Jones, Winer)
 Study of geophysical mass flows for risk assessment of lava flows and mudslides
- **Bioinformatics** (Zhou, Miller, Hu, Szyperski NIH Consortium, HWI)
 - **Protein Folding: computer simulations to understand the 3D structure of proteins**
 - **Structural Biology; Pharmacology**
- **Computational Fluid Dynamics** (Madnia, DesJardin, Lordi, Taulbee)
 - Modeling turbulent flows and combustion to improve design of chemical reactors, turbine engines, and airplanes
- Physics (Jones, Sen)
 - □ Many-body phenomena in condensed matter physics
- **Chemical Reactions** (Mountziaris)
 - Molecular Simulation (Errington)

Visualization Resources

- Fakespace ImmersaDesk R2
 Portable 3D Device
- Tiled-Display Wall
 - **20 NEC projectors: 15.7M pixels**
 - □ Screen is 11'×7'
 - **Dell PCs with Myrinet2000**
- Access Grid Node
 - Group-to-Group Communication
 - **Commodity components**
- **SGI Reality Center 3300W**
 - **Dual Barco's on 8'×4' screen**
- VREX VR-4200 Stereo Imaging Projector
 - **Portable projector works with PC**

University at Buffalo The State University of New York Center for Computational Research

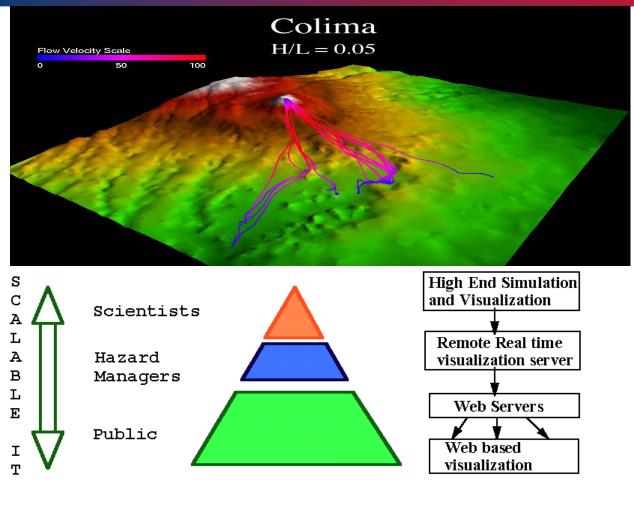


CCR

Sample Visualization Areas

- Computational Science (Patra, Sheridan, Becker, Flewelling, Baker, Miller, Pitman)
 - Simulation and modeling
- Urban Visualization and Simulation (CCR)
 Public projects involving urban planning
- Medical Imaging (Hoffmann, Bakshi, Glick, Miletich, Baker)
 Tools for pre-operative planning; predictive disease analysis
- Geographic Information Systems (CCR, Bisantz, Llinas, Kesavadas, Green)
 - **Parallel data sourcing software**
- Historical Reenactments (Paley, Kesavadas, More)
 Faithful representations of previously existing scenarios
- Multimedia Presentations (Anstey, Pape)
 - □ Networked, interactive, 3D activities

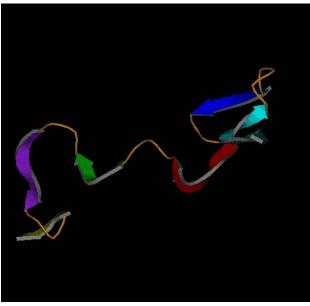
Groundwater Flow Modeling



University at Buffalo The State University of New York Center for Computational Research

CCR

Risk Mitigation

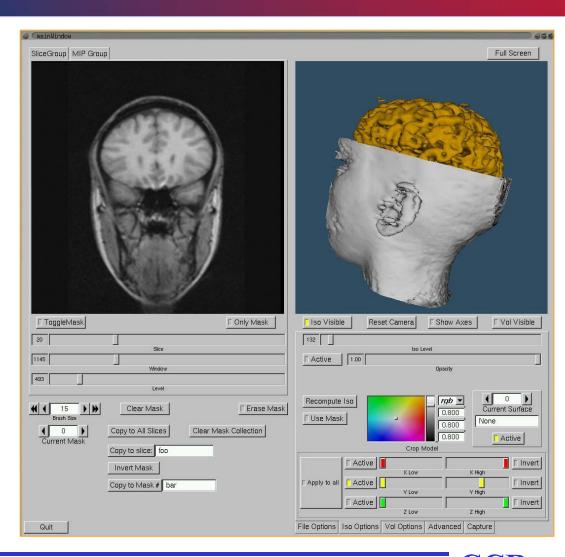

- Integrate information from several sources
 - Simulation results
 - Remote sensingGIS data
- Develop realistic 3D models of geophysical mass flows
- Present information at user appropriate resolutions

CCR

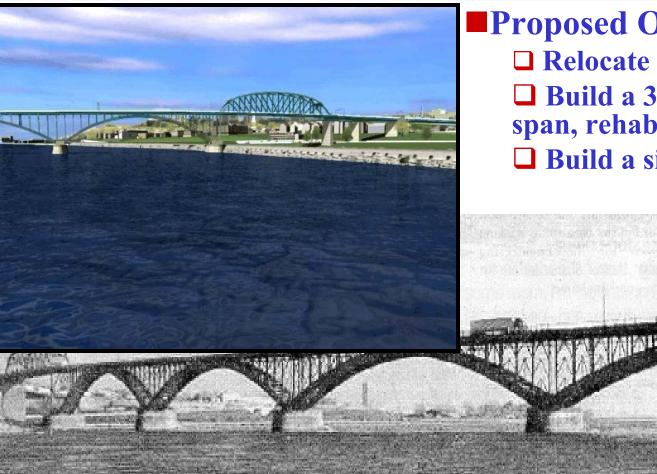
Protein Folding

- Ability of proteins to perform biological function is attributed to their 3-D structure.
- Protein folding problem refers to the challenge of predicting 3-D structure from amino-acid sequence.
- Solving the protein folding problem will impact drug design.

3D Medical Visualization App


- Collaboration with Children's Hospital
 Leading miniature access surgery center
- Application reads data output from a CT Scan
- Visualize multiple surfaces and volumes
- Export images, movies or CAD representation of model

Center for Computational Research


Multiple Sclerosis Project

- Collaboration with Buffalo Neuroimaging Analysis Center (BNAC)
 - Developers of Avonex, drug of choice for treatment of MS
- MS Project examines patients and compares scans to healthy volunteers

Center for Computational Research

Peace Bridge Visualization

University at Buffalo The State University of New York

Proposed Options
 Relocate US plaza
 Build a 3-lane companion span, rehab existing bridge
 Build a six lane signature span

HOTO AND STORY BY BRUCE JACKSON

Center for Computational Research CC

Select WNY Synergies

IBC Digital

- Gov. Pataki Visit
- **Peace Bridge (Early & Current)**
- Buffalo-Niagara Medical Campus
- **Compute Cycles for Animation**

Bergmann Associates

- **Peace Bridge (Current)**
- **NYS Thruway Toll Plaza**

Azar & More

- Reenactment of 1901 Pan Am Exhibition
- **PHSCologram & Courses**
- **Avid Digital Editing**

Niagara College

- **Start up**
- **Peace Bridge (Current)**
- Hauptman-Woodward Medical Research Institute
 - **Computing**
 - **Collaboratory**
- The Children's Hospital of Buffalo
 - Medical Visualization

Veridian

Battlespace Management

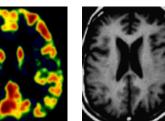
CCR

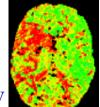
Bioinformatics in Buffalo

"This Center [of Excellence in Bioinformatics] will, through the University of Buffalo's Center for Computational Research, create academic and industrial partnerships"

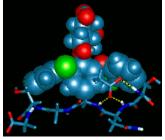
- NYS Gov. George S. Pataki, January 2001

Congressman Reynolds


Senator Clinton


Gov. Pataki

WNY Biomedical Advances


- **PSA Test (screen for Prostate Cancer)**
- Avonex: Interferon Treatment for Multiple Sclerosis
- Artificial Blood
- Nicorette Gum
- Fetal Viability Test
- Implantable Pacemaker
- Edible Vaccine for Hepatitis C
- **Timed-Release Insulin Therapy**
- Anti-Arrythmia Therapy
 - **Tarantula venom**

- Direct Methods Structure Determination
 - Listed on "Top Ten Algorithms of the 20th
 - Century"
 - **Vancomycin**
 - **Gramacidin** A

High Throughput

Crystallization Method: Patented

- NIH National Genomics Center: Northeast Consortium
- Howard Hughes Medical Institute: Center for Genomics & Proteomics

CCR

Bioinformatics in Buffalo

n1

(sity at

niversit

- UB Center for Advanced Bioengineering & Biomedical Technologies
 - **\$1M/yr NYS**
 - □ Med Tech for Product Dev & Commer.
- Center Disease Modeling & Therapy Discovery
 - UB, HWI, RPCI, Kaleida
 - **\$15.3M NYS**
 - Software, device development, and drug therapies
- **Buffalo Center of Excellence in Bioinformatics**
 - **UB, HWI, RPCI**
 - **\$61M NYS**
 - **\$10.6M Federal Government**
 - **\$151** Sorporate Funding
 - Significant Local Foundation Support

Buffalo Center of Excellence in Bioinformatics

- Act as a *research*, *development*, *education*, and *economic resource* for industries based on bioinformatics, including information technology, biotech, and pharmaceuticals.
- Combine state-of-the-art *computational facilities* with *high-throughput experimental facilities* to enable the development of new medical treatments.
- Develop and exploit new algorithms for data acquisition, storage, management, and transmission.

Academic Programs

- **Bachelor's & Master's Program in Bioinformatics**
- Related Disciplines
 - Chemical Biology
 - **Computational Chemistry**
 - **Environmental Analysis (Sloan Support)**
 - Medical Informatics (Sloan Support)
- Advanced Degrees under Development
 Pharmacometrics, Biophotonics
- **UB-HWI Department of Structural Biology**
- **Complementary Degrees**
 - **Canisius College**
 - **Niagara University**

CCR

sity t B ni

2003 H.S. Summer Workshop Bioinformatics

June 30 – July 11
Perl Scripts
Public Databases
Filtering Results
Graphics & Visualization

Contact Dr. Bruce Pitman (pitman@buffalo.edu)

CCR

miller@buffalo.edu www.ccr.buffalo.edu

H.S. Program pitman@buffalo.edu

