The Decipherment of “detritus” from a Context
Charlotte Devensky

May 1, 2003

CSE 740 Contextual Vocabulary Acquisition Seminar

Abstract:

The Contextual Vocabulary Acquisition (CVA) project has the goal of learning unknown words from context. It is an attempt to develop vocabulary acquisition techniques for a computational agent, with the ultimate goal of teaching these strategies to human subjects to improve their ability to incidentally learn new words. In this paper, I present a passage containing the word “detritus” to a computational agent (fondly called Cassie), with the goal of having her decipher the meaning of “detritus”. Based on work from a previous student (see Galko, 2002), I have given Cassie inference rules and background knowledge on the subject. The background knowledge was obtained from a human protocol who was given the same passage, and told to define “detritus” based only on contextual clues. When Cassie applies the background knowledge and inference rules to the passage, she comes to a similar conclusion reached by the human subject. Future work to be done on this project would be to analyze other contexts containing the word detritus so that Cassie could incrementally build her understanding of the word by seeing it in other contexts.

1 The Contextual Vocabulary Acquisition Project

The Contextual Vocabulary Acquisition Project (CVA) is an interdisciplinary

study of ways to improve learning new words from context. Using computers, the goal is to develop algorithms that can be used to determine the meaning of an unknown word in a passage. Once these algorithms are developed, they will be turned into strategies and techniques for humans to use in improving their vocabulary acquisition from context. Additionally, human protocols are used in order to obtain information on how humans reason when given a context containing one unknown word. The information gleaned from the protocols can then be implemented into Cassie so that the algorithm parallels more closely human reasoning.
On the computational end, the CVA project follows in the footsteps of other vocabulary acquisition programs such as FOUL-UP (Granger, 1977) and POLITICS (Carbonell, 1979). Cassie, runs on the SNePS system, a knowledge representation program created by Stuart Shapiro (Shapiro, 1979). SNePS includes SNip, SNePS inference package which is used by Cassie in making inferences.
This paper shows an example of the way that Cassie can figure out an unknown word’s meaning from context. This is a continuation of the project started in Fall 2002 by Jeffrey Galko. He worked with the human protocols and developed background knowledge and inference rules (Galko, 2002). I took over from there with the goal of actually implementing it in SNePS using SNePSUL (SNePS User Language). After ascertaining that Cassie made the correct inferences, I ran this program through the Noun Definition Algorithm. The Noun Definition Algorithm, originally written by Karen Eurlich (1995), runs through the program to make a definition of a word based on the case frames used and inferences. She is given adequate background knowledge and inference rules which can be used to determine a vague meaning of the word. The goal is not to have her understand every nuance of a word. This is unreasonable, as a human would not be able to learn everything about the word from just one passage. The goal is to have her understand the role of “detritus” in the sentence, and to glean enough information to understand the passage as a whole.

2 The Passage

A passage, with the target word “detritus,” was selected for this project.

(1)

And now his path was blocked by a final obstruction, not the most

daunting he’d faced but nonetheless serious: this blackwater sump, a

zone of intermittently flooded forest converted to finger lake by the

seasonal rains. Soaked leaf litter and other detritus had yielded the

usual tannin-rich tea, and the water’s sleek surface was dark as buffed

ebony, punctuated sparsely by large trees, their roots and buttresses

submerged.

(Quamman, D. (2001). End of the line: Megatransect part 3

National Geographic. August 2001, p. 75-97.)

Galko determined that the entire passage was not needed to figure out the meaning of “detritus” so he shortened it to (2).

(2) Soaked leaf litter and other detritus had yielded tannin-rich tea

However, in order to have the rules proposed work, the representation had to be simplified to match the syntax of the rules or else Cassie would not be able to make any inferences. Therefore, I needed to simplify the context even more by determining the crucial meaning. Since there were agents in the sentence, both acting on the same object, I split the sentence into two separate sentences: “Soaked leaf litter yielded tannin-rich tea.” and “Other detritus yielded tannin-rich tea.”

(3) SNePSUL Code

(define agent act action object build lex mod head)

This line is needed to initialize the terms that are used in the following caseframes.

(describe (add agent (build lex "soaked\ leaf\ litter") act (build

action (build lex "yield") object (build lex "tannin\ rich\ tea"))))

“Soaked leaf litter yielded tannin rich tea.”

(describe (add agent (build head (build lex "detritus") mod (build lex

"other")) act (build action (build lex "yield") object (build lex

"tannin\ rich\ tea"))))

“Other detritus yielded tannin rich tea.”

In English, what (3) is saying is that Cassie should add to her representation that there is an agent performing the act “yield” on object tannin rich tea. The describe command simply tells Cassie to print to the screen what networks she is building so that the programmer can visualize her thought process. The add command is telling Cassie to add this new information to her knowledge base. The case frame used in (3) is Agent-Act-Action-Object. Typically, this is the case frame used in transitive sentences, where the agent is the syntactic subject of the sentence, the action is the verb and the object is the syntactic direct object. (4) shows the network created by Cassie when the code in (3) is run.
(4) Network when code in (3) is run alone.

[image: image1]
3.0 Background Knowledge

Background knowledge is the information given to Cassie that she may use in

making inferences on the passage. Background knowledge is crucial in determining the meaning of unknown words for humans as well as shown by research by Margaret McKeown (1985). She determined that in a pool of children, the ones who were more successful in determining the meaning of these unknown words were the ones who in addition to developing advanced strategies, also applied background knowledge. Other vocabulary acquisition programs, such as Foul-Up (Granger, 1977) use scripts as their background knowledge, however, scripts are not implemented in Cassie.

3.1 Human Protocols

The background knowledge was determined by Galko based on the results of a

human protocol. The protocol involved a subject, M.B., who was instructed to read the passage given in (1) and determine the meaning of the word detritus. His first assumption was a vague guess, “miscellaneous stuff.” However, when he made that inference, he did not know the meaning of “tannin,” thus violating the basis of the CVA project. In order for this to work properly, it is required that every word in the passage, but the target word, is known. After the proctor gave M.B. the definition of tannin as “It's a color; it's what makes the water brown and black,” M.B. guessed that it detritus was dirt or foliage. Galko proposed a hierarchy in which “soaked leaf litter” was a subclass of “dirt or foliage” which was a subclass of “miscellaneous stuff.”
(5)

(6)
(describe (add subclass (build lex "soaked\ leaf\ litter") superclass

(build lex "dirt\ or\ foliage")))

“Soaked leaf litter is a subclass of dirt or foliage”

(describe (add subclass (build lex "dirt\ or\ foliage") superclass (build

lex "miscellaneous\ stuff")))

 “Dirt or foliage is a subclass of miscellaneous stuff”

The case frame selected here was subclass-superclass in order to create an ordered hierarchy. Rather than explicitly code node m12! in (5), I allowed Cassie to make the inferences on her own using path based reasoning. By defining a path for subclass and superclass, Cassie can do hypothetical syllogism and infer m12! on her own. She will then assert it herself.

(7) (define-path superclass (compose superclass (kstar (compose subclass-!

superclass))))

Path for superclass

(define-path subclass (compose subclass (kstar (compose superclass-! subclass))))

Path for subclass

3.2 Inference Rule 1

This rule is taken exactly from Galko, without any alteration. See Appendix A for

the SNePS representation. It reads :
 (7) (describe (add forall ($x $y $w $z)

 &ant ((build agent *x act (build action *z object *w))

 (build agent (build head *y mod (build lex "other"))

 act(build action *z object *w)))

 cq (build subclass *x superclass *y)))

“If x and other y does z on w, then x is a subclass of y”

In this rule, “forall” is acting as a universal quantifier over the bound variables w, x, y, and z. The antecedents are marked with “&ant” while the consequent is marked with “cq.” In addition to the case frames explained above, this rule also uses the head-mod case frame. This case frame is used when a noun (head) is modified by another word (mod), possibly, but not necessarily, an adjective. Essentially, it should be used when a noun is adjacent to a function word which has an affect on the sentence’s interpretation.

When the values from this passage are substituted in it appears that x is “soaked leaf litter,” y is “detritus,” z is “yield” and w is “tannin-rich tea.” This gives the sentence “If soaked leaf litter and other detritus yields tannin rich tea, then soaked leaf litter is a subclass of y.”

It is here that it becomes clear why I had to change the syntax of the passage in the preceding section. In order for Cassie to make inferences using this rule, the passage needed to parallel the syntax of this rule.
Note however, even though the syntax of (3) matches the syntax of Inference Rule 1, this rule will not allow Cassie to make any inferences on the passage. It does not fulfill all the antecedents because Cassie has no information about detritus being unknown. In order to make this inference rule, another line needs to be added into the passage explicitly stating that detritus was unknown. This needed the object-property case frame. This is used to assign a property (often a physical property, but not always) to an element.
(8) (describe (add object (build lex "detritus") property (build lex "unknown")))

“Detritus is unknown”

(9)

[image: image2]

Initially, it appears counterintuitive to tell Cassie that detritus is unknown. Presumably, she should be able to infer for herself that she does not have any knowledge about detritus. Unfortunately, the way the program is currently set up, she cannot infer on her own that detritus has the property unknown. This discussion is continued under section 5.2.

Galko created this rule because evidence from the way M.B. reasoned in the protocol, it suggested that M.B. was making his definitions based on the presence of the word “other.” He proposes that M.B. was interpreting “soaked leaf litter” as a type of “detritus” because of the syntactic influence of “other.” With this intuition, Galko suggests that when two agents are performing the same act on the same object, and the agents are conjoined by “and other,” it can be inferred that the agent that is modified by “other “is a superclass of the unmodified agent. Linguistically, this proposition appears to be true in English. For instance, it is correct to say (10), but (11), although being syntactically fine, is semantically curious (marked by the # sign).

(10) Sheep and other animals lived on the farm.

(11) #Animals and other sheep lived on the farm.

When sentences (10) and (11) are interpreted without any surrounding context, the presence of the word “other” had a formal semantic explanation. When an English sentence contains the noun phrase “x and other y,” in order for it to be semantically correct, x must be included in y. In other words, y must be higher on a taxonomic level than x. x can be defined extensionally, while y is defined intensionally Y must summarize the preceding noun phrase. Since in (11), “animals” (y) is at a higher taxonomic level than “sheep” (x), so it makes the sentence ungrammatical.
(12) Venn Diagram: x
 y

This appears to be the rule that Galko used to create Inference rule (1)

3.3 Inference Rule 2

This rule is based on Galko’s Inference Rule 2, but is expanded. Galko’s original rule in SNePSUL appears in (13). Although using this rule predicted all of the correct output, it needed to be revised because when run through the noun algorithm, it gave the definition of detritus as nil. Essentially, Galko’s rule said was that if soaked leaf litter (x) is a subclass of “miscellaneous stuff” or “dirt or foliage” (y) and detritus (z), and detritus is unknown, then presumably, detritus is a subclass of “miscellaneous stuff” or “dirt or foliage.”
(13) (describe (add forall ($x $y $z)

 &ant ((build subclass *x superclass *z)

 (build subclass *x superclass *y)

 (build object *z property (build lex "unknown")))

cq (build mode (build lex "presumably")

 object (build subclass *z superclass *y)))

“If x is a subclass of y and z, and z is unknown, then presumably, z is a subclass of y”

In order to create a rule that not only made the inferences, but would also give a satisfactory definition when run through the noun algorithm, I added another variable to the rule. Galko’s rule only has three variables, but four items that needed to be sorted into a hierarchy. The “y” variable stood for “dirt or foliage” as well as “miscellaneous stuff.” This said, the way his rule makes inferences is to repeat for as many times as the antecedents are met. His antecedents are met at least two times, the first time y is “dirt or foliage” the second time y is “miscellaneous stuff.” This produces the results where detritus is a subclass of both “dirt or foliage” and “miscellaneous stuff.” Cassie also makes another inference, that soaked leaf litter is a subclass of miscellaneous stuff, which is something that she already asserted through path based reasoning (see node M12! on page 6). This is something that is not necessary to predict here, and nor it is beneficial, because the presence of “presumably” gives the interpretation that this is the anticipated result, but it may not necessarily be the correct one.

In order to keep Cassie from cycling through rules multiple times and making incorrect inferences, I chose to make one rule, with four variables that will only be executed once, because the antecedents will only be fulfilled once in the entire program. This rule starts off just like Galko’s stating that if soaked leaf litter (x) is a subclass of detritus (z) which is unknown, and a subclass of “dirt or foliage” (y) and “dirt or foliage” is a subclass of “miscellaneous stuff,” then presumably, detritus is a subclass of dirt or foliage and miscellaneous stuff. Essentially, the purpose of such a rule is to insert a new relation into an existing hierarchy. It uses the mode-object case frame which is used to show that there is a modal concept being applied to the object. See Appendix B for the SNePS network.
(14) (describe (add forall ($x $y $z $w)

 &ant ((build subclass *x superclass *z)

 (build subclass *x superclass *y)

 (build object *z property (build lex "unknown"))

 (build subclass *y superclass *w))

cq ((build mode (build lex "presumably")

 object (build subclass *z superclass *y))

 (build subclass *z superclass *w))))

“If x is a subclass of both y and z, where z has the property unknown, and

y is a subclass of w, then presumably, z is a subclass of both y and w.

This rule is not without flaw though. It creates a hierarchy in which detritus is a subclass of both “dirt or foliage” and “miscellaneous stuff.” Clearly, detritus is a subclass of “miscellaneous stuff,” however; it is not so clear whether it is a subclass of “dirt or foliage” or if it is actually a superclass of it. Detritus should probably be a superclass of “dirt or foliage” because that is a type of detritus. Other contexts show that detritus can be made up of torn papers, broken pieces of coral and carnage left over from a killing. Ideally, the hierarchy should read (from the bottom) soaked leaf litter, dirt or foliage, detritus, miscellaneous stuff. However, creating a general rule that will be able to determine which element ranks higher on the taxonomy based on its relationship to another node is only feasible task if more background knowledge is added.
4.0 Results

The program was organized with the two inference rules first, then followed by the background knowledge and finally the passage. Appendix C is the end result of this program.

The noun definition algorithm came up with the results in (15).

(15)Definition of detritus:

 Class Inclusions: miscellaneous stuff,

 Possibly Similar Items: soaked leaf litter

These were the results that I was aiming for. “Soaked leaf litter” is possibly similar because it performs the same actions as “detritus.” The class inclusion is “miscellaneous stuff” because that is a superclass of “detritus.”

The reason why Galko’s rule did not get a definition above was because of the way that the noun algorithm looks for class inclusion. Since Galko included a "mode presumably" but only included the one consequent, the algorithm overlooked this information. Currently, the algorithm looks for "presumable" information by trying to find a rule that specifically involves the target word and some "presumable" information. The problem with Galko’s rule is that it is too general of rule even though it will result in "presumable" information involving the target word.
5.0 Further work
5.1 Immediate Further Work

For the immediate next step, I return to the discussion on ordering issues of the

hierarchy in section 3.3. As mentioned before, the hierarchy (from the bottom) “soaked leaf litter” – “detritus” – “dirt or foliage” – “miscellaneous stuff” seemed to be incorrect. I feel that more background knowledge could resolve this issue however. Based on the semantic definition of “other” and the Venn diagram in 3.3, it appears that the noun modified by “other” is some sort of superclass. So I suggest creating a rule that says that if a noun is modified by “other,” then it is a superclass. I suggest using the object-property case frame to denote that being a superclass is the property of being a superclass. Using the subclass-superclass case frame would be incorrect here because it’s actual subclass is not important, I only want to stress that it has one or more subclasses.

(16) (describe (forall $x

ant (build head *x mod (build lex “other”)

cq (build object *x property (build lex “superclass”))))

“If x is modified by “other” then it has the property of being a superclass.”

With this background knowledge, another rule could be proposed which would prevent “dirt or foliage” from becoming a superclass of “detritus”. This rule could say that forall x (detritus) and y (dirt or foliage), if x has the property of being a “superclass,” (again, not to be confused with the case frame subclass-superclass), and y does not have the property “superclass,” then y is a subclass of x. Negation is shown through “min 0 max 0.”

(17) (describe (forall ($x $y)

&ant ((build object *x property (build lex “superclass”)

(build min 0 max 0

object *y property (build lex “superclass”)))

cq (build subclass *y superclass *x)))

“If x is a “superclass” and y is not, then y is a subclass of x”

The reason why I propose such a plan is because intuitively, this seems like it’s a plausible way to reason. If we know that “dirt or foliage” is not composed of anything other than itself, then how can it be a superclass of something that is composed of other items? It appears that this hierarchy gives higher precedence to categories that are a composition of many objects. The uppermost node is “miscellaneous stuff” which is simply a collection of assorted items. Likewise, “detritus” is a collection of assorted items, so it should be given higher precedence than “dirt or foliage” which is not a collection of assorted items. Of course this does not work at all when run through the program, because it is overridden by the current background knowledge and inference rules. Still, the next step for this project should be to resolve this issue.

5.2 Long Term Plans

For future work, I return the discussion on page 8 concerning “unknown.”
Although the program executed successfully when “detritus” was explicitly assigned the property unknown, it would be ideal for Cassie to figure out for herself that she did not know the meaning of detritus. One solution would be for Cassie to search her knowledge base upon encountering a new node. If she does not have that node already established, she should return nil. A rule can then be implemented that says that if Cassie returns nil for such a search, that node should have the property unknown. Dr. William Rapaport proposed a solution to this problem involving an inference rule and deixis. He proposes building a network which would attach onto the existing network which states, “I do not understand detritus.” Ultimately, this rule could be applied to many other programs that also utilize the property unknown feature, such as the Hackney demo on the CVA website. He proposes to use the I pointer as the agent of the assertion, so Cassie sees herself as the agent of the proposition. Cassie might produce a network such as (17) if added onto the network (3)

(17)

[image: image3]
Additionally, research from Sternberg, Powell and Kaye (1983) suggests that word definitions only can be learned by seeing the same word in multiple contexts. As applied to Cassie, this suggests that more passages with the word “detritus” need to be represented in SNePS. Since Cassie learns incrementally, the more contexts she encounters with the word “detritus” the more concise her definition of it will be. The other passages to be coded into SNePS will need their own inference rules based on the syntax and semantics of those passages. Additionally, verbal protocols are available for the other passages, and they should be incorporated into the background knowledge.
Bibliography
1) Carbonell, Jaime G. (1979), "Towards a Self-Extending Parser", Proceedings of the 17th Annual Meeting of the Association for Computational Linguistics (University of California at San Diego) (Morristown, NJ: Association for Computational Linguistics): 3-7.

2) Galko, Jeffrey (2002), “"Other Things Detritus: Progress Report on Detritus Passage
Number 1" http://www.cse.buffalo.edu/~rapaport/CVA/detritus.html
3) Granger, Richard H. (1977), "Foul-Up: a Program that Figures Out Meanings of Words from Context", Proceedings of the 5th International Joint Conference on Artificial Intelligence (IJCAI-77, MIT) (Los Altos, CA: William Kaufmann): 67-68.

4) McKeown, Margaret G. (1985), "The Acquisition of Word Meaning from Context by Children of High and Low Ability", Reading Research Quarterly 20(4): 482-496.

5) Rapaport, William (2003), “Computational Contextual Vocabulary Acquisition” [http://www.cse.buffalo.edu/~rapaport/CVA/cva.html]

6) Shapiro, Stuart C. (1979), "The SNePS Semantic Network Processing System", in Nicholas V. Findler (ed.), Associative Networks: The Representation and Use of Knowledge by Computers (New York: Academic Press): 179-203.
7) Sternberg, Robert J.; Powell, Janet S.; & Kaye, Daniel B. (1983), "Teaching Vocabulary-Building Skills: A Contextual Approach", in Alex Cherry Wilkinson (ed.), Classroom Computers and Cognitive Science (New York: Academic Press): 121-143.

M9!

M5!

M1

M4

Soaked leaf litter

lex

M2

M3

yield

Tannin rich tea

lex

lex

action

object

agent

act

M8

M6

detritus

lex

head

agent

mod

M1

lex

other

act

m12!

m11!

m10!

superclass

subclass

superclass

subclass

subclass

superclass

Miscellane-ous stuff

soaked leaf litter

Miscellane-ous stuff

dirt or foliage

dirt or foliage

soaked leaf litter

lex

unknown

lex

M6

M13

y

x

lex

M16

lex

Understand

object

detritus

action

M24

act

agent

M25

I- Pointer

B1

max

min

M26!

detritus

object

property

M14!

Universe of discourse

� This symbol means {x}is included in {y}.

PAGE
2

