Deciphering the Meaning of “Foist”

By John White
CSE727

May 7, 2007

Abstract

The purpose of this project was to develop the meaning of a word, in this case “foist,” in the form of a semantic network, and then analyze it as a human would to obtain facts relevant to its meaning.  We are attempting to derive this from the passage: “You can research and learn the truenames of fiends, as well as complex rituals needed to foist your will upon them.”  In this exercise in Contextual Vocabulary Acquisition (CVA), the SNePS (Semantic Networking Processing System) is used to set up the relationships behind the action being performed by the above verb.  Through a combination of beliefs derived from our semantic network for the word and information provided to us by humans going through the same process, the system attempts to first compare, then establish a link between the unknown verb and a known verb.  This method of defining it is a direct result of information provided by the protocol.  The protocol responses suggest that the most important aspects for determining the meaning of the unknown word, “foist,” are the usages of the words “your will” directly after it, and the fact that truenames give an agent some measure of power over something that they have the truename of.  Once this information is established, we allow CASSIE, our SNePS Agent, to construct a meaning based on the information given and an algorithm that extracts it.  Although some of her inferences may be a bit strange, CASSIE can obtain the relationship in overall meaning from the known and unknown actions.  This is not the ideal representation, but neither is what most people derive when dealing with new words.  The next goal would be to refine the meaning obtained by the algorithm, perhaps through expanding the definition of the known word.  Eventually, some relations to other known verbs should be established as well since there are several similar verbs to this which could fit just as well (if not better) than impose (which was the most common protocol response for the unknown action in this case, but not the only one). 


This project is an exercise in CVA (Contextual Vocabulary Acquisition) utilizing the SNePS (Semantic Networking Processing System).  In CVA, we attempt to analyze and reproduce the process by which human beings break down contexts (preferably natural contexts that are not specifically constructed for this purpose) to derive the meaning of an unknown word within that context.  We then use this information and represent it in the form of semantic relationships between different aspects of the contextual information as well as given information and common knowledge.  These relationships are defined in a SNePS knowledge base and form a Semantic Network which is intended to be utilized by the verb algorithm constructed for this purpose.  This algorithm is intended to break down and extract information from the semantic network constructed by the representation.  It is through this manipulation of the information within the network that CASSIE, our SNePS agent who assumes the role of the learner of the new word, will be able to derive a useful definition of the unknown word.  

The main goal of this project was to duplicate the vocabulary acquisition process from context in a manner similar to that in which a human does it for a particular word.  In this case, the word which is having its meaning derived is “foist” from the passage “You can research and learn the truenames of fiends, as well as complex rituals needed to foist your will upon them.”  The initial assumption was that the word “foist” was common enough that some people might easily be able to figure out the exact word solely because of the entire phrase “foist your will.”  It is for this reason that two versions of the sentence with a nonsense word, “gwat,” were used:  

1.) You can research and learn the truenames of fiends, as well as complex rituals needed to gwat upon them.  

2.) You can research and learn the truenames of fiends, as well as complex rituals needed to gwat your will upon them.  

Subjects responded with varied responses as follows:  

1a.) Gwat means call because that is usually why people figure out what the fiend's name is so they can call it by name.

2a.) Gwat means exercise or force because you can learn the truename of a fiend and then give it commands based on name.  

1b.) Capitalize, because  "research, learn, and complex rituals” lead me to think this word would best fit there. 

2b.) Enforce/impose, because "your will upon them" is usually goes along with enforce/impose. 

1c.) I have no idea.

2c.) Submit, because in many different views of pagan religions and stereotypes given to pagan religions, something along the lines of submitting your will or "selling your soul" almost go hand-in-hand.

1d.) The sentence does not make any sense. 

2d.) Force, because it was the first thing that came to mind that would fit in the sentence.
1e.) Cast because it’s the best guess I can think of, grammatically seems off.

2e.) Impose, because I have been speaking English for 23 years, and it makes sense based on the context. Note: Having the complete sentence with your will included makes it easier to determine. 

1f.) I think gwat is a verb phrase because there is no action word that would fit into this sentence acceptably in English.

2f.) Unleash.  Because mythological, having the true name of a fiend allows you to gain some measure of control over them.  The word "will" is the most obvious indicator to this meaning.  Additionally, the word "ritual" evokes mental images of books and libraries, and "rituals" of magical workings.  These three visualizations lead one to thoughts of the arcane

1g.) N/A

2g.) Impress, "because it fits" and because will can be impressed upon something by making use of this kind of research. 


Interpretation of these results suggests that the word was particularly difficult to determine when “gwat” replaced the entire verb phrase rather than just “foist.”  The second form of the sentence that includes “your will” yielded much more useful results that were a lot closer to the actual meaning.  These suggest that the word has the same meaning as force or impose, which is rather close to the actual meaning in this context.  Although the first version of the sentence did not yield much information on its own, the fact the protocols point out that the “your will” was of great significance to interpreting the meaning was helpful in setting up the representation of “foist.”  


The other thing that was pointed out by most protocols, both within their responses and as unofficial asides after they were questioned, was the importance of the word “truenames” in the sentence.  A “truename” is a concept typically present in many fantasy adventure games and novels.  It is the name given to a being/place/etc which encompasses all that they are and will be.  It is very difficult to pronounce and takes much practice to get right, however if someone knows the truename of something, they can, to a limited degree depending on the power and nature of the thing being addressed, be commanded to do what the knower of the truename wills.    

This concept was quite familiar to the human protocols used for this representation, and was tied into the words “fiends” and “complex rituals.”  “Fiends” in this case refers to demons (known to some within this context as Evil Outsiders).  The complex rituals usually involve some sort of arcane magic with the purpose of summoning and/or binding said creatures.  As with “truenames,” the human protocols were already rather familiar with these concepts, with the only real unknown in the sentence being the word “foist.”  

Once this information was determined, it was represented in the SNePS language in order to establish the necessary relationships.  First, we rewrite the passage to be interpreted as follows:  

If p is a player, f is a fiend, t is a truename, c is a ritual, c is complex, t is the truename of f, p researches and learns t, and p researches and learns c, then p foists its will on f.

This puts the passage in the form of a universal statement and the entire meaning of the verb phrase is being preserved as the action, namely, “foist your will.”  This statement as are others are written in a form SNePS understands in appendix A.   Immediately after this, we want CASSIE to know that “foist” is the unknown word for ease of interpretation.  

Once this information gained from the passage is established, the background knowledge used by the protocols needs to be represented.  Not all of the statements were openly mentioned as being used by the protocols, but it can be surmised from their responses that such information was used.  The background knowledge that was represented was as follows:  

a.) If someone learns something, and that something is truenames of something else, then someone has power over that something else.

b.) If some agent performs some act consisting of some action and some object, and the same agent performs some other act consisting of some other action (which is considered "unknown") on the same object, then we can consider the unknown action as the subclass of the known superclass action.

c.) If some agent performs some act consisting of some action on some object, and that same agent is considered to have power over that object, then it can be said that the agent imposes its will on the above object.

d.) If "impose your will" is a superclass of "foist your will" then it is also the case that "impose" is the superclass of "foist."  

e.) There is something referred to as a player.

f.) There is something referred to as fiends.

g.) There is something referred to as truenames.

h.) There is something referred to as rituals.

i.) The rituals are considered to be complex.

j.) The truenames are the truenames of the fiends.

k.) The player researches the truenames.

l.) The player learns the truenames.

m.) The player researches the rituals.

n.) The player learns the rituals.

Statement a. establishes the effect of having a truename of something as described previously.  Statement b. defines a super and subclass relationship between two actions if they are performed by the same agent on the same object and one is unknown (with the unknown action being the subclass).  The reasoning behind this is that if the agent is doing something to some object that is known and something to the same object that isn’t then there it may be the case that the unknown action is similar to the known one.  Statement c. gives us the idea that performing an action on an object while having power over that object then the agent doing said action with said power could be said to “impose (its)your will” on that object.  This is based on the protocol information as well and was how the truenames significance to the interpretation was represented in the code.  Statement d. describes the common sense idea that if “foist your will” and “impose your will” share the super/subclass relationship, then the verbs themselves share that same relationship.  The remaining background rules simply give CASSIE the information that there does indeed exist at least one case of player, fiends, truenames, and rituals that are related in the way she is looking for in translated passage.  


After writing this out in SNePS, the verb algorithm was run on the word foist.  The results, as shown in appendix B, show that the superclass/subclass relationship between foist and impose are the only things picked up from this representation by CASSIE.  This is partially because most of the code refers to “foist your will” rather than just “foist.”  Note that although analyzing “foist your will” yields a relationship to “impose your will” in addition to some other pieces of information, that other information does not, in large, make any sense nor contribute in a useful way to the definition.  


This representation is not ideal, though neither is that which a human creates when formulating the meaning of a new word.  Originally, the “your will” aspect of the verb phrase was being allocated to the optional indobj (indirect object) portion of the agent/act case frame.  Although I favored this representation over the current one, the indobj version was conflicting with the verb algorithm being used.  An immediate next step to be taken in this project would be to alter the code to be better analyzed by the algorithm, though in my opinion I would prefer the algorithm be altered to obtain information a bit better.  This can be done by both finding a better way, if it exists, of representing the relationship between “your will” and “foist,” and by expanding the definition given as background knowledge of “impose.”   Hopefully, expanding the definition of impose with its relationship to foist will transfer some of the information along to the unknown word.  


 Another possible way to expand the definition may be in giving CASSIE more to work with.  As a long-term goal, some other words and similar concepts could be added and related to “foist” in some way to give the verb algorithm more information to extract.  Perhaps a better way to relate “foist” to these known words exists that would yield more results as well.  Finding such would likely require a more indepth look at the verb algorithm to determine just how it extracts information.  

Appendix A: The Code

; 

=======================================================================

; FILENAME:
foist.demo

; DATE:

04/09/07

; PROGRAMMER:
John White

;; this template version:
snepsul-template.demo-20061005.txt

; Lines beginning with a semi-colon are comments.

; Lines beginning with "^" are Lisp commands.

; All other lines are SNePSUL commands.

;

; To use this file: run SNePS; at the SNePS prompt (*), type:

;

;
(demo "WORD.demo" :av)

;


; Make sure all necessary files are in the current working directory

; or else use full path names.

; 

=======================================================================

; Turn off inference tracing.

; This is optional; if tracing is desired, then delete this.

;^(setq snip:*infertrace* nil)

; Load the appropriate definition algorithm:

^(load "/projects/rapaport/CVA/STN2/defun_verb.cl")

; Clear the SNePS network:

(resetnet)

; OPTIONAL:

; UNCOMMENT THE FOLLOWING CODE TO TURN FULL FORWARD INFERENCING ON:

;

; ;enter the "snip" package:

; ^(in-package snip)

;

; ;turn on full forward inferencing:

; ^(defun broadcast-one-report (represent)

;    (let (anysent)

;      (do.chset (ch *OUTGOING-CHANNELS* anysent)

;       
 (when (isopen.ch ch)

;
         (setq anysent

;

       (or (try-to-send-report represent ch)

;

           anysent)))))

;    nil)

;

; ;re-enter the "sneps" package:

; ^(in-package sneps)

; load all pre-defined relations:

(intext "/projects/rapaport/CVA/STN2/demos/rels")

; load all pre-defined path definitions:

(intext "/projects/rapaport/CVA/mkb3.CVA/paths/paths")

; BACKGROUND KNOWLEDGE:

; =====================

; (put annotated SNePSUL code of your background knowledge here)

;If someone learns something, and that something is truenames of 

something 

;else, then someone has power over that something else.  

(describe (assert forall ($p $t $f) 


&ant
(build agent *p act (build action (build lex "learn") object *t))


&ant
(build object *t rel (build lex "truenames") possessor *f)


cq 
(build object1 *p rel (build lex "has power over") object2 *f)))

;If some agent performs some act consisting of some action

;and some object, and the same agent performs some other act

;consisting of some other action (which is considered "unknown")

;on the same object, then we can consider the unknown action as 

;the subclass of the known superclass action.  

(describe (assert forall ($u $v $x $y $z)


&ant
(build agent *x act (build action *u object *z))


&ant
(build agent *x act (build action *v object *z))


&ant
(build object *u property (build lex "unknown"))


cq
(build superclass *v subclass *u)))

;If some agent performs some act consisting of some action

;on some object, and that same agent is considered

;to have power over that object, then it can be said that 

;that agent imposes its will on the above object.  

(describe (assert forall ($p $u $w $f)


&ant
(build agent *p act (build action *u object *f))


&ant
(build object1 *p rel (build lex "has power over") object2 *f)


cq
(build agent *p act (build action (build lex "impose your will") 

object *f))))

;If "impose your will" is a superclass of "foist your will"

;then it is also the case that "impose" is the superclass of "foist"

(describe (assert


&ant (build superclass (build lex "impose your will") subclass (build 

lex "foist your will"))


cq   (build superclass (build lex "impose") subclass (build lex 

"foist"))))

;There is something refered to as a player.  

(describe (assert member #player class (build lex "player")))

;There is something refered to as fiends.  

(describe (assert member #fiends class (build lex "fiends")))

;There is something refered to as truenames.  

(describe (assert member #truenames class (build lex "truenames")))

;There is something refered to as rituals.  

(describe (assert member #rituals class (build lex "rituals")))

;The rituals are considered to be complex.  

(describe (assert object *rituals property (build lex "complex")))

;The truenames are the truenames of the fiends.  

(describe (assert object *truenames rel (build lex "truenames") 

possessor *fiends))

;The player researches the truenames.  

(describe (assert agent *player act (build action (build lex 

"research") object *truenames)))

;The player learns the truenames.  

(describe (assert agent *player act (build action (build lex "learn") 

object *truenames)))

;The player researches the rituals.  

(describe (assert agent *player act (build action (build lex 

"research") object *rituals)))

;The player learns the rituals.  

(describe (assert agent *player act (build action (build lex "learn") 

object *rituals)))

; CASSIE READS THE PASSAGE:

; ==============================================

;If p is a player, f is a fiend, t is a truename, c is a ritual, c is 

complex, 

;t is the truename of f, p researches and learns t, and p researches 

and 

;learns c, then p foists its will on f.  

(describe (add forall ($f $t $c $p)

&ant 
(build  member *p 



class (build lex "player"))

&ant  
(build  member *f 



class (build lex "fiends"))

&ant  
(build  member *t 



class (build lex "truenames"))

&ant  
(build  member *c 



class (build lex "rituals"))

&ant  
(build 
object *c 



property (build lex "complex"))

&ant  
(build  object *t 



rel (build lex "truenames") 



possessor *f)

&ant  
(build  agent *p 



act (build action (build lex "research") 




   object *t))

&ant  
(build  agent *p 



act (build action (build lex "learn")




   object *t))

&ant  
(build  agent *p



act (build action (build lex "research")




   object *c))

&ant  
(build  agent *p 



act (build action (build lex "learn") 




   object *c))

cq
(build  agent *p 



act (build action (build lex "foist your will") 




   object *f))))

;Foist your will is unknown

(describe (add object (build lex "foist your will") property (build lex 

"unknown")))

; Ask Cassie what "foist" means:

^(defineVerb "foist")

Appendix B: The Results
* ; =======================================================================

; FILENAME:     foist.demo

; DATE:         04/09/07

; PROGRAMMER:   John White

;; this template version:       snepsul-template.demo-20061005.txt

; Lines beginning with a semi-colon are comments.

; Lines beginning with "^" are Lisp commands.

; All other lines are SNePSUL commands.

;

; To use this file: run SNePS; at the SNePS prompt (*), type:

;

;       (demo "WORD.demo" :av)

;

; Make sure all necessary files are in the current working directory

; or else use full path names.

; =======================================================================

; Turn off inference tracing.

; This is optional; if tracing is desired, then delete this.

;^(setq snip:*infertrace* nil)

; Load the appropriate definition algorithm:

^(

--- pause ---

--> load "/projects/rapaport/CVA/STN2/defun_verb.cl")

--- pause ---

; Loading /projects/rapaport/CVA/STN2/defun_verb.cl

t

 CPU time : 0.18

*

; Clear the SNePS network:

(resetnet)

--- pause ---

Net reset - Relations and paths are still defined

 CPU time : 0.00

*

; OPTIONAL:

; UNCOMMENT THE FOLLOWING CODE TO TURN FULL FORWARD INFERENCING ON:

;

; ;enter the "snip" package:

; ^(in-package snip)

;

; ;turn on full forward inferencing:

; ^(defun broadcast-one-report (represent)

;    (let (anysent)

;      (do.chset (ch *OUTGOING-CHANNELS* anysent)

;                (when (isopen.ch ch)

;                (setq anysent

;                      (or (try-to-send-report represent ch)

;                          anysent)))))

;    nil)

;

; ;re-enter the "sneps" package:

; ^(in-package sneps)

; load all pre-defined relations:

(intext "/projects/rapaport/CVA/STN2/demos/rels")

--- pause ---

Loading file /projects/rapaport/CVA/STN2/demos/rels.

; Fast loading /util/acl80/code/streamc.001

;;; Installing foreign patch, version 1

;   Fast loading from bundle code/efft-euc-base.fasl.

;   Fast loading from bundle code/efft-utf8-base.fasl.

;   Fast loading from bundle code/efft-void.fasl.

;   Fast loading from bundle code/efft-latin1-base.fasl.

 CPU time : 0.72

*

; load all pre-defined path definitions:

(intext "/projects/rapaport/CVA/mkb3.CVA/paths/paths")

--- pause ---

Loading file /projects/rapaport/CVA/mkb3.CVA/paths/paths.

before implied by the path (compose before

                            (kstar (compose after- ! before)))

before- implied by the path (compose (kstar (compose before- ! after))

                             before-)

after implied by the path (compose after

                           (kstar (compose before- ! after)))

after- implied by the path (compose (kstar (compose after- ! before))

                            after-)

sub1 implied by the path (compose object1- superclass- ! subclass

                          superclass- ! subclass)

sub1- implied by the path (compose subclass- ! superclass subclass- !

                           superclass object1)

super1 implied by the path (compose superclass subclass- ! superclass

                            object1- ! object2)

super1- implied by the path (compose object2- ! object1 superclass- !

                             subclass superclass-)

superclass implied by the path (or superclass super1)

superclass- implied by the path (or superclass- super1-)

 CPU time : 0.02

*

; BACKGROUND KNOWLEDGE:

; =====================

; (put annotated SNePSUL code of your background knowledge here)

;If someone learns something, and that something is truenames of something

;else, then someone has power over that something else.

(describe (assert forall ($p $t $f)

        &ant    (build agent *p act (build action (build lex "learn") object *t))

        &ant    (build object *t rel (build lex "truenames") possessor *f)

        cq      (build object1 *p rel (build lex "has power over") object2 *f)))

--- pause ---

(m4! (forall v3 v2 v1)

 (&ant (p3 (object v2) (possessor v3) (rel (m2 (lex truenames))))

  (p2 (act (p1 (action (m1 (lex learn))) (object v2))) (agent v1)))

 (cq (p4 (object1 v1) (object2 v3) (rel (m3 (lex has power over))))))

(m4!)

 CPU time : 0.00

*

;If some agent performs some act consisting of some action

;and some object, and the same agent performs some other act

;consisting of some other action (which is considered "unknown")

;on the same object, then we can consider the unknown action as

;the subclass of the known superclass action.

(describe (assert forall ($u $v $x $y $z)

        &ant    (build agent *x act (build action *u object *z))

        &ant    (build agent *x act (build action *v object *z))

        &ant    (build object *u property (build lex "unknown"))

        cq      (build superclass *v subclass *u)))

--- pause ---

(m6! (forall v8 v7 v6 v5 v4)

 (&ant (p9 (object v4) (property (m5 (lex unknown))))

  (p8 (act (p7 (action v5) (object v8))) (agent v6))

  (p6 (act (p5 (action v4) (object v8))) (agent v6)))

 (cq (p10 (subclass v4) (superclass v5))))

(m6!)

 CPU time : 0.10

*

;If some agent performs some act consisting of some action

;on some object, and that same agent is considered

;to have power over that object, then it can be said that

;that agent imposes its will on the above object.

(describe (assert forall ($p $u $w $f)

        &ant    (build agent *p act (build action *u object *f))

        &ant    (build object1 *p rel (build lex "has power over") object2 *f)

        cq      (build agent *p act (build action (build lex "impose your will") object *f))))

--- pause ---

(m8! (forall v12 v11 v10 v9)

 (&ant (p13 (object1 v9) (object2 v12) (rel (m3 (lex has power over))))

  (p12 (act (p11 (action v10) (object v12))) (agent v9)))

 (cq

  (p15 (act (p14 (action (m7 (lex impose your will))) (object v12)))

   (agent v9))))

(m8!)

 CPU time : 0.00

*

;If "impose your will" is a superclass of "foist your will"

;then it is also the case that "impose" is the superclass of "foist"

(describe (assert

        &ant (build superclass (build lex "impose your will") subclass (build lex "foist your will"))

        cq   (build superclass (build lex "impose") subclass (build lex "foist"))))

--- pause ---

(m14!

 (ant

  (m10 (subclass (m9 (lex foist your will)))

   (superclass (m7 (lex impose your will)))))

 (cq

  (m13 (subclass (m12 (lex foist))) (superclass (m11 (lex impose))))))

(m14!)

 CPU time : 0.01

*

;There is something refered to as a player.

(describe (assert member #player class (build lex "player")))

--- pause ---

(m16! (class (m15 (lex player))) (member b1))

(m16!)

 CPU time : 0.01

*

;There is something refered to as fiends.

(describe (assert member #fiends class (build lex "fiends")))

--- pause ---

(m18! (class (m17 (lex fiends))) (member b2))

(m18!)

 CPU time : 0.01

*

;There is something refered to as truenames.

(describe (assert member #truenames class (build lex "truenames")))

--- pause ---

(m19! (class (m2 (lex truenames))) (member b3))

(m19!)

 CPU time : 0.00

*

;There is something refered to as rituals.

(describe (assert member #rituals class (build lex "rituals")))

--- pause ---

(m21! (class (m20 (lex rituals))) (member b4))

(m21!)

 CPU time : 0.00

*

;The rituals are considered to be complex.

(describe (assert object *rituals property (build lex "complex")))

--- pause ---

(m23! (object b4) (property (m22 (lex complex))))

(m23!)

 CPU time : 0.00

*

;The truenames are the truenames of the fiends.

(describe (assert object *truenames rel (build lex "truenames") possessor *fiends))

--- pause ---

(m24! (object b3) (possessor b2) (rel (m2 (lex truenames))))

(m24!)

 CPU time : 0.00

*

;The player researches the truenames.

(describe (assert agent *player act (build action (build lex "research") object *truenames)))

--- pause ---

(m27! (act (m26 (action (m25 (lex research))) (object b3))) (agent b1))

(m27!)

 CPU time : 0.00

*

;The player learns the truenames.

(describe (assert agent *player act (build action (build lex "learn") object *truenames)))

--- pause ---

(m29! (act (m28 (action (m1 (lex learn))) (object b3))) (agent b1))

(m29!)

 CPU time : 0.01

*

;The player researches the rituals.

(describe (assert agent *player act (build action (build lex "research") object *rituals)))

--- pause ---

(m31! (act (m30 (action (m25 (lex research))) (object b4))) (agent b1))

(m31!)

 CPU time : 0.00

*

;The player learns the rituals.

(describe (assert agent *player act (build action (build lex "learn") object *rituals)))

--- pause ---

(m33! (act (m32 (action (m1 (lex learn))) (object b4))) (agent b1))

(m33!)

 CPU time : 0.00

*

; CASSIE READS THE PASSAGE:

; ==============================================

;If p is a player, f is a fiend, t is a truename, c is a ritual, c is complex,

;t is the truename of f, p researches and learns t, and p researches and

;learns c, then p foists its will on f.

(describe (add forall ($f $t $c $p)

&ant    (build  member *p

                class (build lex "player"))

&ant    (build  member *f

                class (build lex "fiends"))

&ant    (build  member *t

                class (build lex "truenames"))

&ant    (build  member *c

                class (build lex "rituals"))

&ant    (build  object *c

                property (build lex "complex"))

&ant    (build  object *t

                rel (build lex "truenames")

                possessor *f)

&ant    (build  agent *p

                act (build action (build lex "research")

                           object *t))

&ant    (build  agent *p

                act (build action (build lex "learn")

                           object *t))

&ant    (build  agent *p

                act (build action (build lex "research")

                           object *c))

&ant    (build  agent *p

                act (build action (build lex "learn")

                           object *c))

cq      (build  agent *p

                act (build action (build lex "foist your will")

                           object *f))))

--- pause ---

(m47! (object1 b1) (object2 b2) (rel (m3 (lex has power over))))

(m42! (act (m41 (action (m7 (lex impose your will))) (object b2)))

 (agent b1))

(m36! (act (m35 (action (m9 (lex foist your will))) (object b2)))

 (agent b1))

(m34! (forall v16 v15 v14 v13)

 (&ant

  (p29 (act (p28 (action (m1 (lex learn))) (object v15))) (agent v16))

  (p27 (act (p26 (action (m25 (lex research))) (object v15)))

   (agent v16))

  (p25 (act (p24 (action (m1)) (object v14))) (agent v16))

  (p23 (act (p22 (action (m25)) (object v14))) (agent v16))

  (p21 (object v14) (possessor v13) (rel (m2 (lex truenames))))

  (p20 (object v15) (property (m22 (lex complex))))

  (p19 (class (m20 (lex rituals))) (member v15))

  (p18 (class (m2)) (member v14))

  (p17 (class (m17 (lex fiends))) (member v13))

  (p16 (class (m15 (lex player))) (member v16)))

 (cq (p31 (act (p30 (action (m9)) (object v13))) (agent v16))))

(m33! (act (m32 (action (m1)) (object b4))) (agent b1))

(m31! (act (m30 (action (m25)) (object b4))) (agent b1))

(m29! (act (m28 (action (m1)) (object b3))) (agent b1))

(m27! (act (m26 (action (m25)) (object b3))) (agent b1))

(m24! (object b3) (possessor b2) (rel (m2)))

(m23! (object b4) (property (m22)))

(m21! (class (m20)) (member b4))

(m19! (class (m2)) (member b3))

(m18! (class (m17)) (member b2))

(m16! (class (m15)) (member b1))

(m47! m42! m36! m34! m33! m31! m29! m27! m24! m23! m21! m19! m18! m16!)

 CPU time : 0.40

*

;Foist your will is unknown

(describe (add object (build lex "foist your will") property (build lex

"unknown")))

--- pause ---

(m37! (object (m9 (lex foist your will))) (property (m5 (lex unknown))))

(m13! (subclass (m12 (lex foist))) (superclass (m11 (lex impose))))

(m10! (subclass (m9)) (superclass (m7 (lex impose your will))))

(m37! m13! m10!)

 CPU time : 0.13

*

; Ask Cassie what "foist" means:

^(

--- pause ---

--> defineVerb "foist")

--- pause ---

"You want me to define the verb 'foist'.

I'll start by looking at the predicate structure of the sentences I know that use 'foist'.  Here is what I know:

The most common type of sentences I know of that use 'foist' are of the form:

     'A something can foist.'

     'A something can foist something.'

     'A something can foist something to something.'

The verbs superclasses are: impose :

 Sorting from the most common predicate case to the least common here is what I know.  I will first attempt to unify the components of the sentences that use the verb giving a generalizaiton based on my background knowledge:

Now, looking from the bottom up I want to get a sense of the categories that most of the agents, objects and indirect objects belong to.  This is different from looking for the most unified case.  Instead I am looking for the classes that contain approximately half of the agents, objects and indirect objects.  This is an attempt at generalization but from another approach.

"

CPU time : 0.03

*

End of /home/unmdue/jcwhite2/foist.demo demonstration.

 CPU time : 1.69

