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iintegers are those sets of integers first order definable over (U,c). Then
(¥, c), but not its complete diagram, is Aj. Now axioms ix and x, which are
Finitely axiomatizable, can be verified in (V,c¢), using recursive saturation.
Hence Y, + ¢ is consistent.

Lemma 5. Every arithmetic sentence provable in Y, is provable in Y,.

"Theorem. Every arithmetic sentence prouvable in ALPO is provable in PA.

In fact, we have given a proof of the Theorem within PA. Further
considerations show that it is provable in primitive recursive arithmetic.

If induction for sets is added to ALPO, then we obtain a theory whose
arithmetic theorems are the same as PA augmented with transfinite induc-
tion on all ordinals below the €o-th critical number (or R( <¢y) of FRIED-
MAN (1977)). If induction for all formulas (or induction for all formulas
together with relativized dependent choice for all formulas) is added to
ALPO, then we obtain a theory whose arithmetic theorems are the same as
PA augmented with transfinite induction on all ordinals below the k(ey)-th
critical number, where «(e,) is the e-th critical number (or R(<«k(¢€))).
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Church’s Thesis and Principles for Mechanisms
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For Stephen Kleene

Beware! Beware!

His flashing eyes, his floating hair!

Weave a circle round him thrice,

o And close your eyes in holy dread,
For he on honeydew hath fed,

And drunk the milk of paradise.

Abstract: After a brief review of Church’s thesis and Godel’s objection to it, it is
argued that Turing's analysis of computation by a human being does not apply
directly to mechanical devices. A set-theoretic form of description for discrete de-
terministic machines is elaborated and four principles (or constraints) are enunciated,
which, it is argued, any such machine must satisfy. The most important of these, called
“the principle of local causality” rejects the possibility of instantaneous action at a
distance. Although the principles are justified by an appeal to the geometry of
space-time, the formulation is quite abstract, and can be applied to all kinds of
automata and to algebraic systems. It is proved that if a device satisfies the principles
then its successive states form a computable sequence. Counter-examples are con-
structed which show that if the principles be weakened in almost any way, then there
will be devices which satisfy the weakened principles and which can calculate any
number-theoretic function.

1. Introduction

Throughout this paper we shall use “calculable” to refer to some
intuitively given notion and *“computable” to mean “computable by a
Turing machine™; of course mapny equivalent definitions of “computable”
are now available.

Church’s Thesis. What is effectively calculable is computable.

TURING, by this analysis of the process of calculation in his paper (1936)
on computable numbers, gave cogent arguments in support of this thesis.
Both Church and Turing had in mind caiculation by an abstract human

being using some mechanical aids (such as paper and pencil). The word
f
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“abstract” indicates that the argument makes no appeal to the existence of
practical limits on time and space. The word “effective” in the thesis serves
to emphasize that the process of calculation is deterministic-— not depen-
dent on guesswork—and that it must terminate after a finite time.

Gddel has objected, against Turing’s arguments, that the human mind
may, by its grasp of abstract objects, be able to transcend mechanism.
(This objection is stated briefly in footnote** on p. 72 of “The Undecid-
able” and at greater length on pp. 325-326 of WANG’s “From Mathematics
to Philosophy”’; also in a typescript “Footnote*** to be added at the word
‘mathematics’ on p. 73, line 3 of: The Undecidable...”). Examples where
We appear to use our insight and imaginative grasp to arrive at decisions in
advance of any process of mechanical verification are well-known: we
recognize that certain formal systems are consistent by imagining models
for them; when we have gained a little familiarity with a system of ordinal
notions we perceive that it is pre-well-ordered. The question is whether
these examples are inspired guesswork or lucky accidents, or whether, as
Gddel believed, they are the result of the workings of a non-mechanical
intelligence. Gédel’s objection can only be properly justified by a theory of
intelligence. As he admits, our present understanding of the human mind is
far from being penetrating enough for the construction of such a theory.
For this purpose the knowledge provided by introspection, the history of
ideas, experimental psychology, neurophysiology and artificial intelligence
seems meagre indeed. One can only keep an open mind.

What we can say is that Turing outlined a proof of the following:

Theorem T. What can be calculated by an abstract human being working in
a routine way is computable.
We shall return to Turing’s proof and Godel's objection at the end of

this paper. Our chief purpose is to analyze mechanical processes and so to
provide arguments for the following:

Thesis M. What can be calculated by a machine is computable.!

Although some of Turing’s arguments can be applied indifferently to
men or machines, there are crucial steps in Turing’s analysis where he
appeals to the fact that the calculation is being carried out by a human
being. One such appeal is used to justify the assumption that the calcula-
tion proceeds as a sequence of elementary steps. A human being can only
write one symbol at a time. But, if we abstract from pract‘igal limitations,

' have been interested in the problem of how to justify this thesis for a long time. My

earlier attempts were unsatisfactory. I owe to a conversation with Harvey Friedman the
renewal of interest which led to the writing of this paper.
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we can conceive of a machine which prints an arbitrary number of
symbols simultaneously. (I owe to conversations with J. C. Shepherdson a
realization that proofs of Thesis M must take parallel working into
account. See SHEPHERDSON (1975) for a discussion of some of the problems
this raises.) Turing’s arguments do not suffice, nor do I think he would
have claimed that they suffice, to justify Thesis M. The reader may (like
several of those with whom I have talked) feel that, once Turing’s ideas
have been grasped, Thesis M is so unproblematic as to make arguments for
it uninteresting or even unnecessary. This feeling has I think two sources.
Firstly, actual machines which calculate fall under a narrow range of
stereotypes to each of which Turing’s arguments may rather easily be
adapted. And the design of the most successful calculating machines—
digital computers—was, at least in the early stages of their development,
significantly influenced by Turfhg’s ideas. But a slight effort of imagination
will suggest devices which differ radically from the practical stereotypes.
Conway’s construction of a universal machine from his game of life is a
good example.? There can be no guarantee that a further effort of imagina-
tion may not result in a device to which Turing’s analysis is inapplicable.

The second source for a lack of interest in Thesis M is the belief that it
can only function as a definition: if some imagined device can calculate
what is not computable it is no machine. But I shall propose criteria for
“being a machine” which, on the face of it, differ significantly from the
criterion “works in a computable manner”. At the very least, then, | hope
to explain to the reader who 'ttelieves that Thesis M is unproblematic the
grounds for his belief. '

For vividness I have so far used the fairly nebulous term “machine”.
Before going into details I must be rather more precise. Roughly speaking 1
am using the term with its nineteenth century meaning; the reader may
like to imagine some glorious contraption of gleaming brass and polished
mahogany, or he may choose to inspect the parts of Babbage’s “Analytical
Engine” which are preserved in the Science Museum at South Kensington.

(1) In the first place I exclude from consideration devices which are
essentially analogue machines. In his paper “A notion of mechanistic
theory” (1974) KReiseL. discusses the ways in which physical theories
(including even Newtonian theory) might give rise to non-computable
functions. A more extreme possibility than those considered by Kreisel is
the following: could some physical theory lead to a linear operator which
has an infinite discrete spectrum and which is such that the multiplicity of

2An account of “the game of life” will be found in GARDNER (1970 and 1971). J. H,
Conway, who invented the game, described how, with an appropriate initial configuration, it
could be made to mimic the action of any Turing machine at the Logic Summer School held
in Cambridge (U.K.) in 1971.
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an eigenvalue is not a computable function of its place in the spectrum? So
I shall distinguish between “mechanical devices” and “physical devices”
and consider only the former.3 The only physical presuppositions made
about mechanical devices (Cf. Principle IV below) are that there is a lower
bound on the linear dimensions of every atomic part of the device and that
there is an upper bound (the velocity of light) on the speed of propagation
of changes.

(2) Secondly we suppose that the progress of calculation by a mechani-
cal device may be described in discrete terms, so that the devices consid-
ered are, in a loose sense, digital computers.

(3) Lastly we suppose that the device is deterministic; that is, the
subsequent behaviour of the device is uniquely determined
plete description of its initial state is given.

After these clarifications we can summarize our argument for a more
definite version of Thesis M in the following way.

once a com-

Thesis P. 4 discrete deterministic mechanical device satisfies principles 11V
below.

Theorem. What can be calculated by a device satisfying principles I1-1V is
computable.

The principles were arrived at by considering, schematicaily, examples
that might at least in principle be realized by mechanical or electrical
means. But (not too surprisingly in view of the generality aimed at) there
are many abstract structures for which they also hold. Hence the principles
and the theorem may be of interest even to those who are not concerned
with Thesis M. Some. examples are given in the concluding discussion.

Note on terminology. In the above statement we used “discrete determin-
istic mechanical device” to emphasize the somewhat restricted significance
we are giving to the term “machine”. Now that the point has been made
we shall, for brevity, revert to the word “machine”; for the sake of variety,
and for their flavor, we shall also sometimes use the words “device” and
“mechanism” (for an object, not for a tenet).

2. The form of description

Since we are considering discretely acting machines, we may without
loss of generality suppose that the action of a machine is described by

3Pour-EL (1974) investigates the computing power of a particular class of analog machines.
But, in principle, any physical phenomenon might be used for analog computation.
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describing the sequence S, S,,..., of its states; the input or initlal.argu-

ments are encoded in S,. It is of little importance whether we de51gnatc

certain states as “halt” states encoding the output, or whether we consider,

as Turing did, an infinite sequence which er;ur}rller;tes a (possibly empty)

re encoded by certain of the S,.

SetOvrl}rloflesemglfnl:fl? atlerm “discrete):’ presupposes that each state of the

machine can be adequately described in finite terms. ln.order that we c};;n

apply any insights which we may have about mechanisms we }’vant .t is
description to reflect the actual, concrete, structure Qf .the device in a ngin
state. On the other hand, we want the form of descpptlon to be suff1c1§nt y
abstract to apply uniformly to mechanical, eleg:t.ncal or merely notional
devices. We have chosen to use hereditarily finite sets; other forms of
description might be equally acceptable. We suppose that labels are ch;)sen
for the various parts of the machine—e.g., for the Iteeth of cog wheels, for a
transistor and its electrodes, for the beads and wires of an abacus. Lab;:ls
may also be used for positions in space (e.g., for squares of the lt)apil otha
Turing machine) and for physical attributes (e.g., th.e color of a bea ) l]e
state of a transistor, the symbol on a square). Starting from a potentially
infinite set L of labels we form sets, sets of s;ls.and so on; but we do npt
use the empty set in this construction, since it is an abstract object thll'e
our descriptions by sets may be of completely concrete structures. (We do,
however, allow the empty structure.)

2.1 Definition.
Po(X)=pi{Y:YCXAY#DAY is finite}.
HF =,
HF,, =pP(LUHF,).
HF =, U {HF,:n€w}u {Q)}.

The variables a,b,c,d (perhaps decorated with subscripts e'tc.) will always
range over L, while s,7,u,v,w,x,y,z range over HF or designated subsets
of HF. Note that S&HF , ag HF, and HF,CHF, ,.

2.2 It is convenient at this point to introduce various definitioqs and
notations which will be used later. Since € is a wgll—founded relation on
HF, we can use €-recursion as a method of definition.

)] Supx=p,{a:a€x\/Iy Ex.a€Supy}.

Sup x, the support of x is the set of labels which occur in the construction
of x.

) {x| = py Card(Sup x).
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[x|, the size of x is the number of labels occuring in x. It is to be
distinguished from x(= Card(x))
Let 4 C L; we define the restriction x[A4 of x to 4 by

(3) fo=D,(an)u{yfA:yEx/\SupynAséQ}.

It is the structure whose construction follows that of x omitting all labels
not in A. The condition Supy N A4+ J is necessary to ensure that x}4 €
HF. If Supxn A=, then X} 4 =0,

The transitive closure of x, TC(x) is defined by

4 TC(x)=p U {TC()’)Z)’EX}U(XOL).

23 As our terminology suggests, labels, like co-ordinates, are necessary for
the description of concrete devices but do not by themselves have direct
physical reference. A particular state of a machine corresponds not (o a
particular x €HF, but rather to the €-isomorphism-type (which we shall
call the stereotype) of x. All the information about that state which is
relevant to the operation of the machine must be encoded in any structure
x which is used to describe it. Relations and functions over HF which have
concrete reference must be invariant under isomorphisms.

However, it is natural to suppose that if a label refers to a particular
element of a mechanism in the state described by x, then it will refer to the
same element in the next state; most things preserve their identity as time
passes. In general the next state will also contain some new elements; for
example, when a Turing machine moves left from the leftmost square so
far used a new square must be created. A transition function F which
determines the description Fx of the next state must specify new labels for
the new elements, but no physical significance attaches to that specifica-
tion. We now incorporate these ideas in a series of definitions.

(1) The variable 7 ranges over permutations of L. The effect of such a
permutation on a structure x is defined in the obvious way:

a'ﬂ=7r(a); xwz{yvr:yex}u{an:aex}.

(2) Two structures x.y are isomorphic over a set A of labels, written
“x==_,y” just in case there is a permutation 7 which is the identity on A
(i.e., Va€ A.m(a)=a) and which carries x into y (ie., x"=y). They are
isomorphic (“x=~y™) if they are isomorphic over the empty set. We shall
write “x==_y” for “X2gu,.»". Note that if x>y, then xlA=ylA.

(3) A property P of structures and the corresponding class P’ (=
{x: P(x)}) are structural iff they are closed under isomorphism; i.e., if

P(XINx~p. - P(y).
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(4 XCHF is a stereoiype iff
Ix.X={y:y=x}.
(5) A function F:HF—HF is structural iff for all =
(Fx)" =~ .Fx".
This is stronger than the condition x~~y— Fx=~Fy, but .not as strong. as
requiring invariance (i.e., (Fx)"= Fx7). It expresses precisely the. require-
ment that F describes the transition between physical states with some
persistent elements.

2.4. We can now state:
Principle 1 The form of description

Any machine M can be described by giving a structural set S,,CHF of
state-descriptions together with a structural function F:Sy,,—S,,. If x,€S,,
describes an initial state, then Fx,, F(Fx,),..., describe the subsequent states
of M.

2.5. Examples. (1) The state of a Turing machine can be described by a
structure of the form
<X,y,Z,a,-,(:,->

where x is the graph of the relation “a’ is the label for tgle square standing
immediately to the right of the square with label a”, y 1s the'graph of ’Ehe
relation “b is the label for the symbol printed on the square with label a”, 2
codes the programme for the machine, g, i§ the la_bel for Fhe scanned
square and ¢; is the label for the current instruction. Notice that the
persistence of symbols (even those which do not occur on t.he tape'at a
given instant) is guaranteed by the occurrence of their labels in the (fixed)
structure z. .

(2) In describing an abacus one cannot treat the beads on a wire as an
unstructured set, since, if one did, the label for a bead to be removed could
not be structurally determined and the transition function would not be
structural. .

(3) An example which played an important part in our development of
the theory is “The game of life” (GARDNER, 1970, 1971) or, more generally,
the crystalline automata of VON NEUMANN (1?66). Such an automat.on
consists of a (finite portion of a) rectangular lattlcg of cells, each of which
may be in one of a fixed number of states (or, equ:valgnlly, may bear one
of a fixed list of symbols). The next state of each cell is d.etermmed.‘ by a
fixed table, from its own state and that of its immediate neighbors. Initially
only finitely many cells are in non-quiescent states, so that the state can
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always be adequately specified by giving the states of the finitely many
cells which have so far been brought into play. This example is important
both because it involves parallel action (the symbols on all cells in play
may change simultaneously) and because it raises problems about identifi-
cations between new labels (see 4.8).

Of course, one can also consider three-dimensional crystalline automata.
In principle the state of any concrete device can be adequately described
by specifying, to a certain degree of approximation, the relevant physical
parameters (chemical composition, pressure, current flow and so on) of
sufficiently small regions of space. (By using the words “concrete”,
“mechanical” and the like, we intend that these regions will always be very
much larger than the size of an atom). This would not be a good way of
describing most devices, but we shall appeal to the possibility of so doing
when we come to justify Principle 1V.

(4) For a given machine one can always arrange that each label in a
fixed finite list is structurally distinguished from all others; for example in
x'={x,a,b,c)> the labels a,b,c are distinguished,. We shall use such dis-
tinguished labels in our examples without explicitly giving the (additional)
structure which distinguishes them.

3. Conditions on S

The remaining three principles place. certain restrictions on the set § of
state-descriptions and on the transition function F. We shall show that if
any of the principles be significantly weakened in (almost) any way then
every function becomes calculable. More precisely, let « be an arbitrary
predicate of natural numbers; we shall exhibit a machine (S, F) which
satisfies the weakened condition and all the other conditions and which
calculates a in some obvious sense. We put this picturesquely by saying
that the machine displays free will. (Actually it is the class of machines
satisfying the weakened conditions which displays free will.)

Each of the principles involves certain finiteness or boundedness condi-
tions. We say that a quantity is bounded if there is a number & which may
depend on the machine considered, but which does not depend on the

state for which the quantity is being evaluated, such that in all states the
value of the quantity is less than k.

Principle II The Principle of Limitation of Hierarchy

The set-theoretic rank of the states is bounded. |.e.
Jk.S CHF,.
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It may well be natural or convenient to describe a rr.1a<':hin‘e or a method
of storing information in hierarchical terms. The .multlpher ina compute.r,
or a series of parallel processors may be subordinate to the control }u’}ﬂ:
some kinds of data are treated as lists of lists. It is naturgl when dt.fscnbmg
such a hierarchical structure by a member of HF ‘to .thmk of a high level
part as having its subordinates as members. The prm.cnple asserts that for a
given machine the maximum height of its hierarchical structure must be
bounded.

In describing real or imagined devices one tends to kt?ep the overall rank
low. I think that this corresponds to a real limitation of the human
intellect. Anyone who has worked with the theory of types knows that
above about type 4 one can only work formally, not conceptually; whereas
there is no such difficulty in handling functions .of. large numbf:rs of
arguments. One gets over the conceptual block by thln]gng of a function of
high type as operating on names for its ar_gumc?nts; in just the same way, a
bibliography of bibliographies lists their titles in prefer.ence to tr'fmscnbl.ng
their contents. But because of the block it is hard to think of devices which
would make good use of objects of high rank. o

Of course it is always possible to give a first-order descnpt{on of HF:
one treats the sets as objects rather than as structures. .Bul it does not
follow, as Counterexample 3.1 shows, that Principle 11 is vacuous..'nlle
first-order description requires the introduction of extra lab.els, and this, in
conjunction with the other principles reduces the computational power.

3.1. Counterexample. Let S={i"(a):a€ L, 1 <n} (where (x)={x}), and
let F be defined by
,, w  if a(n),
Futla)= { Ja  otherwise.
It is trivial to verify that (S, F) satisfies the remaining principles; plainly
this machine displays free will.

3.2. The next principle says, roughly, that any device can be assembled
from parts of bounded size, and that these parts can be so ]abellgd th.at
there is a unique way of putting them together.‘ M'odel constructxon-k'lts
aim, not always successfully, to satisfy this principle. However, unlike
construction-kits, we shall consider parts which overlap. Thus thg tape of a
Turing machine can be uniquely reassembled from the collgctlon of all
pairs of consecutive squares with their symbols; two such pairs are glued
together with overlap if they both contain the same label for‘ some square.

The proper formulation of this idea in terms of HF requires care. The
simplest way (which I at one time thought was the correct way) would be
to take as the parts of a structure x the restrictions xt 4 of x to subsets of
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the support of x of bounded size. However, these parts are insufficiently
structured to insure unique assembly,

3.3. Counterexample. Let
x={<a,bl>,<a,b2>,...,<a,b,,>}.

Lgt {ay={a,b>}{a)}; for any reasonable definition of ordered pair this
will be indepegdent of b, Let y=xuU{<ay)}. It is easily seen that if
ACSupx and A <n, then xfA=ylA4. Thus x cannot be uniquely assem-
bled from parts of the form x4 with 4 of bounded size.

What has gone wrong here is that, since

{a.byt{ab}={<ad} foriwj,

xMa,b;} contains not only the intended {a.b> but also the “floating”
part {a). To put matters right we need to know the restrictions of x to
Structured parts (such as <a,b,>) not merely its restrictions to lists of labels.

3.4. Definition. Let P C LU HF,
(1) The set Part(x, P) of parts of x from the list P is defined by

Part(x,P)={{X} ifxep,
U{Part(y,P):yEx}u(xﬂPﬂL) otherwise,

(ii) The restriction X[ P of x to the list of parts P is defined by

er={x if xe P,
{)’.FPI.VEX/\PRN()’,P)#@} U(xNPN L) otherwise.

(iii) The list P covers x iff X[ P=x; if in addition P CTC({x}), then P is
a set of parts for x.

3.5. Remarks. (1) If P C L, then Part(x, P)=Supxn P.

(2) P covers x iff every €-chain a€x, € -+ €x,Ex contains a mem-
ber of P.

(3) If PCQ, then xXMP=(x[ Q) P. But this equation is not a con-
sequence of P CTC(Q).

4) x}PUQ is not, in general, determined by x} P and x[Q (see 3.7)

(5) The sets {x},x, Supx are all sets of parts for x. o

(6) The word “part” is used ambiguously to denote the stereotype, a
paxttlc'ulz.ir set z belonging to this stereotype, and the located part xr{;'}
This is illustrated by: “I need a new sparking plug since the ones in lhe:
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garage are all duds and something is wrong with the plug in the first
cylinder”.

3.6. Let P be a set of parts for x of bounded size; it is not to be expected
that x will be uniquely determined by all the x}{z}(z€ P). But many
structures can be uniquely reassembled from lists of bounded size of parts
of bounded size (see Theorem 3.8). We shall refer to such lists (located or
unlocated) as sub-assemblies.

Definition. Let Q CP(TC(x)). The structure x can be uniquely reassem-
bled from the set Q of sub-assemblies iff x is the unique object y satisfying
(i) y€HF;
(i) U Q covers y;
(i) VsEQ. xts=yp|s.

Principle 111 The Principle of Unique Reassembly

There is a bound q and for each x € S a set Q CP{TC(x)) from which x can
be uniquely reassembled such that |s|<q for each s € Q.

Remarks. (1) If S satisfies 11, then ¢ determines a bound for the number
of members of each s & Q as well as for its size. If 1] is not satisfied, then
the cardinality of s might be unbounded.

(2) Observe that if x can be uniquely reassembled from Q, then | Q
covers x.

3.7. A good idea of what S must be like if it is to satisfy III can be gained
from the following

Example. Let S, ={x:xCP(L)AX=n}. Then n<q is a necessary and
sufficient condition for S, to satisfy II1 with the bound g.

Proof. Since the members of x&S, may be arbitrarily large, the only
sub-assemblies we need consider are subsets of L of size ¢. Suppose g <n.
Let x={{a,b,}): 1<i<n}, where a,b,,---,b, are distinct labels. Then for
any sC L with §<gq,

xts=(xu{{a}})s,

and unique reassembly fails. To show the sufficiency of the condition,
suppose that xE€S,, x#y, v€y—x and x={u,...,u,}.! For 1<i<n
pick g,€1,/v (the symmetric difference of u, and v) and let bep. Set

!See ‘Notes added in proof” on p. 147.
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s={a,...,a,,b}. Then v}s%#P and for each 1<i<n, u}s#o}s. Thus
xfs#yls
and the result follows by contraposition.
The proof of sufficiency may readily be generalized to other situations.

One can replace L by some other list of parts, and one can consider

structurgs which have sets like S, in their transitive closures. In particular
one readily proves:

3.8. Theorem. Let o be a
S be the set of sets which
whose similarity pe is 0 a
satisfies 111.

finite similarity type of a first-order structure. Let
code, in some natural way, first order-structures
nd whose domain is a Jinite subset of L. Then S

Thus almost any kind of autom

aton can be described in h
INI is satisfied. Huch & way that

3.9. Counterexample. Let A4,={a,.

--»a,} be a set of n distinct label d
e, 0 be distinguished labels. Let e

y"~'={v;vg,4"/\z=;=n—r} for 0<r<n;

zM:{y"" if r=0, or if 70 and a(n),
* yruy™l if0<r<n and na(n);

Kava) Caypas),... ca,_e>yuzrr ifo<r<n,
X '=1 {e) if r>n and a(n),
{0} if r>nand — a(n).
LS;+S|"= U {{y‘:yzx:"}: npEw}, and let F, be defined by F x7 =
Xxe* 7" It is obvious that this is a machine displaying free will and which

sa'tisfies I and I1. We shall verify (see Example 4.4) that it satisfies IV, II]
fails because, for example, if sC A, and §<n, then

yn,lrs=(yn,luyn.0)rs'

Further, if we weaken 111 by substituting “y €8 for “y€EHF” in the

definition of unique reassembl isfi inci

! y, then S satisfies the weakened rinciple.

Forif ye S, and Supy =Supx™* and for each | <i<n P P
yHea}=xr"1{ea},

then y=x"" One might say that the weakened principle is satisfied
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because S, is freely determined. It is therefore worth remarking that the
principles do not require that S be computable. For example

S= {y:ygL/\a(f)}

satisfies I-I1I for any a.

4. Local causation

We now come to the most important of our principles. In Turing’s
analysis the requirement that the action depend only on a bounded portion
of the record was based on a human limitation. We replace this by a
physical limitation which we call the principle of local causation. Its
Justification lies in the finite velocity of propagation of effects and signals:

contemporary physics rejects the possibility of instantaneous action at a
distance.

Principle IV (Preliminary version). The next state, Fx. of a machine can be
reassembled from its restrictions to overlapping “regions” s and these restric-
tions are locally caused. That is, for each region s of Fx there is a “causal

neighborhood” t CTC(x) of bounded size such that Fx|s depends only on
x[1.

4.1. Complications in formulating this principle precisely arise from three
sources.

(1) Since we wish our analysis to apply to abstract as well as to concrete
devices, we do not wish to distinguish spatial structure from other struc-
ture.

(2) We have to be able to determine the causal neighborhoods of x
without knowing in advance what are the regions s of Fx,

(3) I Fx has new labels these cannot be determined by x{1 (see 2.3).

We cannot require that for every s CTC(Fx) of bounded size there be a
causal neighborhood. For example, if s={a) where a is a particular
cell-state of a crystalline automaton then whether or not Fx|{a} is empty
depends globally, not locally, on x. Because of this and because of )
above it turns out to be easiest first to decide what are causal neighbor-
hoods.

4.2. In his analysis Turing writes “The new observed squares must be
immediately recognizable by the computer”. For us the natural analogue
of this requirement is that the causal neighborhoods be structurally de-
termined. Thus there must be a list T of stereotypes of bounded size: ¢ is a
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causal neighborhood of x if tCTC(x) and te |J T It is, however, very
convenient to introduce a slight complication. We permit some of the
stereotypes in 7 to be parts of others, and then we take as causal
neighborhoods only those tCTC(x) which are included in no larger
stereotype. For example for a Turing machine we need not specifically
indicate which is the leftmost square of the tape; if a causal neighborhood
contains {a;,a,, >, then g, cannot be the leftmost square and we do not get
another causal neighborhood by willfully omitting {a,a;,,>. For further
examples see Example 4.4 below.

4.2.1. Definition. (i) We say that ¢ subsumes t, and write =<t iff rC
TC(r).

(ii) The set CN(x,T) of causal neighborhoods of x determined by the
set T of stereotypes is defined by

CN\(x, T)=p {t: 1 CTC(OAtEU T
AVUCTC(x). e U TAIStU—>i<r}.

Since T is fixed for a given device we shall usually omit references to it.

43. We first consider the case Sup Fx CSupx, that is, no new labels are
introduced. The effect of the located causal neighborhood x|r will be
given by G(x1¢) for some structural function G; this effect, which we call a
determined region, is Fx!s for some s G TC(Fx). Because we are supposing
Sup Fx CSupx we must require

) SupG(xr)CSupr for all reCN,(x);

that is a causal neighborhood must include the region it affects. Typically
£xt's will describe the state of some bounded region ¥ space, and x|t will
describe the state at the previous instant of the region consisting of all
points (or cells) within a distance ¢t of V, where ¢ is the velocity of light
and ¢ is the time between instants. At this point it is convenient to
Lntroduce a bit of notation:

uC*yorpn s CTC(y). u=yls.

(If one considers y as a tree of its &-chains, then u C*y implies that u is a
subtree with the same vertex as »). Now let

D= {u:vg*Fx/\EtECN,(x). v=G(xl1)};

this is the set of determined regions. It might happen that not every causal
n eighborhood determined a region in D. But if that were allowed, we could
construct a machine displaying free will by deciding arbitrarily which of
two causal neighborhoods was to take effect (see Counterexample 4.9.1).
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Hence we require
2) ViECN|(x). 3vED. v=G(x|1).

This can be expressed picturesquely as “every cause has an ef.fect“.

Finally we require that Fx can be reassembled .(perhaps uniquely) from
D: every region of Fx must have a cause. D consists of.located subass.em-
blies, and s is not uniquely determined by Fx}s. We might have required
that G determines s as well as Fx{s, but that is not necessary. Instead we
modify Definitions 3.4(iii) and 3.6.

4.3.1. Definition. (i) A set C of located subassemblies covers x if
30.U Q covers x AC={x}sis€Q}.
(i) Let CC{v:vC*x); then x can be uniquely reassembled from C iff
Vy. [ C coversy AVveEC. vC*y]oy=ax.
Then our last requirement for the case Sup Fx CSupx is
3) D covers Fx, and if 111 is satisfied, then Fx

can be uniquely reassembled from D.

4.4. Example. We show that the transition function of Counterexample 39
satisfies 4.3(1)—(3). First we give the stereotypes for the causal neighbor-
hoods

’:={a;}~ t£={<ai*ai+l>}' ’;={<ai’ai+l>‘<ai+l’e>}‘
u={<a,e>}.  15/={<aze).{a}.{a.a}}, 1,={0)},
t;={e},
where a/={0,4,} and in the definition of y™" 4, is to be replaced by
{a/:1<i<n). But 4=<0,,<1/,(i<t},1,<05,6, <t} ;<1 (i< 1,4} <
t, 0 <t 1, <18/, From these we compute:
CNy(x)={r:1<i<n}u{n:1 <i<n—r—=1}u{g—""}
\ i o) ifr<n—1;
! i a{n),
CNI(X:'H‘I)={ %123: 1<j<n} otherwise:
{Ié} if a(n) and r 2 n,

CN‘(X:J)=[ {17} if =a(n)andr>n.

Then define G(xt13)={<{a,.e> ), G(x]t})= (0}, G(x[tg").= {e} and G(.x'[t,:)
=x!t} in all other cases. It is straightforward to verify that conditions
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(1)-(3) of 4.3 are satisfied. Note that in the case of 5 a number of different
causal neighborhoods all have the same effect.

4.5. We now turn to the case Sup Fx ZSup x. The ground was prepared in
2.3. We cannot require Fx[s=G(x|t) but only Fxts>~_G(x|t); and even
this is too strong since the new labels (&Sup?)in G(x|1) might by accident
belong to Supx. And we want the new labels in G(x}¢) to correspond to
new labels in Fx; that is we require SupsSupx CSupr. This condition
includes 4.3(1) as a special case. We are thus led to the following definition
of the determined regions of Fx (cf. the definition of D in 4.3).

:.5.1. Definition. The set DR, (Fx,x) of determined regions of Fx is given
Y

DR,(Fx,x)=p{v:0C* Fx AIr €CN, (). v>,G (xI1)
ASupvNSupx CSupt).

Corresponding to 4.3(2) we give the following formulation of “every cause
has an effect”.

45.2. V1ECN,(x). JvEDR,(Fx,x). v==, G\(x[1). Notice that, in view of
the last clause of the definition of DR,, 452 implies the apparently
stronger version obtained by replacing “>" by “~ ” provided the func-

ti(?n G, satisfies Sup G,(x} #)n Sup x CSup!. In the future we shall suppose,
without explicit mention, that G, satisfies this proviso.

4'.6. Example. A simple meitotic machine. For any x let #{x] be a permuta-
tion of L satisfying SupxnSupx™=, Let Dx, the duplicate of x be
defined by

Dx=xy x™*],

Fix some y,; set

S={x:3n.x2D"({y,})}, T={r1={y)}}.
Gu= Du.

Then if we take F=D, F satisfies 4.5.2. For if x€S§, then x=
{¥172--..pn} where each y, is a distinct isomorph of y, and CN(x,T)=
{{yi}:yi€x), and xI{y,})={y,) and GOy D ={y:,y'} where y' is a
distinct isomorph of y,.

A comparison of this extremely simple self-reproducing device with von
Neumann’s complex 29-state crystalline self-reproducing automaton shows
both the power and the limitation of our abstract approach. Unlike, say,
the action of a Turing machine, the copying process is done in one stroke.
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But the mechanism gives no guidance for the construction of a concrete
self-reproductive machine situated in space.

4.7. The example also illustrates an inadequacy of our formulation thus
far. If we took, for example, F to be D2, then the same S,7,G as above
could still be used; 4.5.2 would still be satisfied, and DR, (Fx, x) would still
provide an assembly for x. The definition of DR, does not put any bounds
on the number of distinct regions which arise from a given causal neigh-
borhood. This lack of determination allows free will to be displayed (see
Counterexample 4.9.2). To prevent this we require, roughly speaking, that
every cause have a unique effect. More precisely:

4.7.1.
VoeDR,(Fx,x). Vs CTC(Fx). Fx}s~ v—Fxls=v.

This requirement could be met, for example, by a meitotic machine if
instead of building the daughters of x from new labels, we built them from,
say, pairs {a,x) so that each daughter cell showed, so to speak, its
ancestry within itself. For concrete devices the requirement is met natur-
ally. New labels refer to new regions of space or to new states and these
have a distinctive geometrical or structural connection to parts of the
causal neighborhood which gave rise to them. All that is required is that
this connection be encoded in the description Fx.

4.8. We now come to the last, and most complex, condition. In general
new determined regions may overlap. For example, a crystalline automa-
ton may introduce unboundedly many new cells at a given instant. The
geometric relations (in particular the neighborhood relation) between these
new cells must be causally determined; since the determined regions will
be of bounded size, there must be overlaps between them. It is obvious (see
Counterexample 4.9.3) that such overlaps must be determined, or else free
will will be displayed. Further this determination must be local. It would, 1
suppose, be possible to specify exactly which new labels of the regions
corresponding, say, to G,(x|1,),G,(x}1,) should be identified. But it seems
easier to determine, to within isomorphism over x, Fx|s for a region s
which includes s,,...,s, where Fx|s,,..., Fx|s, are overlapping determined
regions. Fx|s is to be determined by an appropriate causal neighborhood.
Thus there must be a list T, of stereotypes from which the set CN,(x)=
CN(x,T;) is got by Definition 4.2.1, and a new structural function G, such
that for suitable r the following condition is satisfied.

481,
VYV CDR,(Fx,x). [ V<rAN {(Supvive V) gSupx}

—-JvEDR(Fx,x). Vv, EV. ¢, C*o.
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Remarks. (1) Here DR, is got from CN,(x) and G,asin 4.5.1, ie.
DR,(Fx,x)=pe{v: v C*Fx A3t ECN,(x). v==, G,(x[ 1)
ASupvSuprCSupt}.

(2) Counterexample 4.9.4 shows that it will not suffice to take r=2. In
Lemma 5.1 we shall show that an appropriate value for » is one greater
than the maximum number of new labels in any determined region.

(3) By substituting {v,} for ¥ in the condition we see that T, and G,
must in effect include 7', and G,. However, since we need to determine the
overlaps between members of DR, but not between those of DR,, and
since moreover we do not require the uniqueness condition 4.7.1 for DR,,
we still need to single out 7, and G,.

(4) A weaker form of 4.8.1, could be got by requiring V' to range only
over subsets of a subset of DR, from which Fx could be (uniquely)
reassembled. In the absence of III this is too weak. I do not know if the
weaker form would suffice to avoid free will in the case of unique
reassembly.

Exactly as in 4.5 we need to insist that every cause has an effect; we
simply take 4.5.2 with subscript 1 replaced by 2.

The problems of identifying labels in new regions correspond to real
problems in real life. Embryologists investigate what causes sheets of tissue
to join up, and how migrating groups of cells recognize that they have
reached their destination: the problem is to discover local causes (e.g., a
gradient of concentration of some substance) for these phenomena. For
crystalline automata 4.8.1 is not automatically satisfied. Consider, for
example, two adjacent perpendicular blocks of cells already in play form-
ing, as it were, two sides of a rectangular courtyard. Suppose the extremi-
ties of the blocks start to “grow” new cells so as to make the other two

sides of the courtyard. When these sides meet identifications will have to
be made, but these cannot be locally determined. Free will could be
displayed; if one chose not to make the identification, the automaton
would be growing on a Riemann surface rather than on the plane. One
way of ensuring local determination would be to supplement the automa-
ton with a computer which kept track of the coordinates of all cells in
play; at each step the computer would output instructions (part of the
bounded reCN,) about identifications to be made. This technique was
used by FEupalinus in the sixth century B.C. so as to ensure that the
excavations of a tunnel from both sides of Mount Castro on Samos should
meet in the middle (see VAN DER WAERDEN (1954)).

Another way around the difficulty is to arrange that the cells in play of a
crystalline automaton always form a convex set. Suppose two cells O, R in
play both require the bringing in to play of a new cell at P. The distances
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PQ and PR, and hence also QR are bounded. And since the cells already
in play form a convex set, the description x will include a neighborhood of
bounded size which determines the spatial relations between Q and R, and
hence can be used to prescribe the necessary identification at P. Applying
this idea in three dimensions we see that 4.8.1 can be justified for concrete
machines (see 2.5(3)).

4.9. We sum up all the requirements we have made:
Principle 1V The Principle of Local Causality
There are sets T\, T, of stereotypes of bounded size and structural functions

G\, G, such that the conditions below are satisfied. CN,=CN(x,T,) and
DR, =DR,(Fx,x) are given, for k=1,2, by definitions 4.2.1 and 4.5.1.

(1) VieCN,. 3vEDR,. v=~,G,(x|t) fork=1,2.
(2) VYoEDR, Vo' C*Fx. v/~ v-v'=0v.

For each r

(3), VV CDR,.(V<rAN{Supvive V) gSupx)

—>3vEDR,. Vv, EV.v,C*0.

4) DR, covers Fx, and if principle II1 is satisfied, then Fx

can be uniquely reassembled from DR,.

Counterexamples. We hope that by now the interested reader will be able
to flesh out our rather schematic treatment. In particular we shall not
specify S nor T; and T), but rather give x, Fx, CN,(x) etc. explicitly; it
should be obvious that they correspond to structural properties and func-
tions. We use n* to stand for some structure which encodes the number #,
and 0, 1,2 for distinguished labels.

4.9.1. (Necessity of 1V(1) for k=1).
Let x={n*0,1},

_ ({0} ifa(n),
Fx-{{l} otherwise.

Take CN (x)={(0},{1}} and G, the identity function. Evidently II, il
and IV(2), (4) are satisfied.
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4.9.2. (Necessity of 1V(2)).
Let xo={n*,0,1}. If a(n), let
Fxo={0,1,{a)}} (=y,say) and F(Fxy)={0};
while, if —a(n),

Fxo={0,1,{a},{b}} (=2 say) and F(Fxg)={1}.
Let 1,={0,1},5,=p,,=2z: so L=<1,=<1. Let G({0,1})={0,1 =
) s 3 s TR, ] = > ,C},G(y)—
{0}.G(2)={1}. Thep 11, 111, IV(1), (4) are satisfied. The conditions on CN,
and G, are not required as there is no overlapping. The second application
of F, and t,,1, were used only to reduce the two non-isomorphic values of

Fxy to some standard output. In the remaining counterexamples we omit
this step.

4.9.3. (Necessity of IV(1) for k =2).
Let xy={n*0,1}; let

Fx0=( {{0.a}.{1.a}} (=y say) ifa(n),
{{0.a}.{1.6}}) (=zsay) if —a(n).

Let CN,(xo)={{0}, {1}}, G\({0))={{0.c}}, G({1})={((1,d}}.

Let CNy(xo)={{0}} and Gz({O})={{0,C},{1,CI}}- .

The overlap causal neighborhood takes effect only when a(n) is true. II
HIL, 1V(1) (for k=1), (2), (3) and (4) are satisfied.

’

4.9.4, (Necessity of IV(3), with r>2).
Let x4={n*,0, 1,2}, po={a,.a,}, p,= {ag.a,}
a,,a if s
py= [{ »a1) a(n)

{4545} otherwise.

*

Let
Fxy= {0, 1»11’@‘%»‘%2}-

(Fx, describes a triangle with vertices aga,,
center a, otherwise).

Take CNy(xo)={{0}, {1},{2}} and CNy(xy)={{0,1},{1,2}.{2,0}}. Let
G ({k})={k.*{b,c}} (k<3),

a, if a(n) and a star with

and

Go{ k) ={sk.(bc}, *{c,d}) (k. jk <3).
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One can compute that
DR, ={{k.*p,}:k <3},
DR, = { {j,k,zfpj,z"pk} ok <3,j?ﬁk}.
All the principles are satisfied if in IV(3) r is given the value 2.

5. The Main Theorem
First we prove a key lemma which is a consequence of IV alone.

5.1. The Key Lemma. Let S,T,,T,,G,,G, be given and let G, satisfy
Vu. Card(Sup G,u — Supu) <r.
Suppose that F, F’-satisfy IV (1), (2), 3), ., (4); then
DR,(Fx,x)=~, DR (F'x,x).
We first prove several subsidiary lemmas. Throughout the proofs, the
placing of a prime on any expression indicates the result of replacing Fx

by F’x and priming all other introduced constants. In particular DR} =
DR (F’x,x).

5.2. Lemma. Let DR, = {v;: i <m}; then DR} = {v]: i <m} where v] is the
unique v' C* F'x which is isomorphic over x 1o v;.

Proof. By the definition of DR, given v, there is some ¢, CN, such that
v, Gi(x]t). By IV(1) (k=1) and (2) there is a unique v’ C * F’'x such that
v'€DR] and v’ v,. This argument is symmetrical between DR, and DR;
so the result follows.

S.3. Lem_ma. Let r and m be as in Lemmas 5.1 and 5.2. If KC{0,1,...,
m—1), K<r+1 and

() {Supv,;: i€EK}ZSupx,

then there is a permutation 7, which is the identity on x, such that v;=v for

iEK.

Proof. By IV(3) there is a v€EDR, with v,C*v (i€ K). By 1V(l) (with
k=2) thereis a v~ v. Let v"=v". Then ¢;” C*v’, since C* is a structural
relation. But then, by Lemma 5.2, v] =v].
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We define p(a)={i: a&Sup v} and call it the signature of a. We write A
for Sup Fx — Sup x.

S4. Lemma. For any a,€ A, byE A’,
(1) Card{a € 4: p(ay)C p(a)) <Card{b€ A" n(ay) Cp'(b));
(i) Card{be 4" u' (b)) Cp'(b)} < Card{a € A4: w(bg) C u(a)).

Proof. The slight tiresomeness of this lemma and its proof arises from the
fact that DR, does not tell us which v;’s do not overlap. By symmetry it is
sufficient to prove (i).
Since, by IV(4), DR, covers Fx,(ag) #3; for simplicity, suppose a, € v,
so that 0 € u(a,). For each bESupvyn A’ such that wlag) Z ' (b) let i, be
the least number such that iy € plag) — p'(b), and let 1= {ip: bESupvin
A’}. Now the condition on r implies that Card(Supvyn 4" <r and so 1 <r.
Hence by Lemma 5.3, (taking K=/ ( {0} and observing that a,€ Sup v, for
{ € K) there is a m, the identity on Supx, with v =4/ for i€ K.
. We claim that if a€8upvyN A and p(ay) C p(a), then wapg) CT'(a™). For
if not, since @~ €Supu]=Supuy, there is an i € K such that 1€ p'(a™) and
i€ u(ay). Thus a” &Supe/=Supy”, and so a € Supv; which contradicts
i€ u(ay) C w(a). Thus

{a€4: p(a)cu(a)})" c{bea 1(a) Cp'(b)}.

5.5. Lemma. For all KC{0,1,...,m~ 1}
Card{a€e 4: ma)=K)}=Card{be A" w(b)=K}.

Proof. Let vy, v stand for the LHS and RHS of the equation. Then
vg=Card{a€A4: KCpu(a)} - {vg: KCK'}).
The result follows readily from Lemma 5.4 by downward induction on X,

Pfoof of S.1. p partitions 4 into disjoint sets {a EA: u(A4)= K} for those K
with », #0. By Lemma 5.5 there is an exactly corresponding partition of
A’. Hence we can define a permutation = which is the identity on x, such

that
w(a™)=p(a) forallac 4.

But then a €Supv,<>a” €Sup v}, for all i <m. So v/=v and 'laence DR7 =
DR;.

5.6. Corollary. If S satisfies LI, then the conclusion of Lemma 5.1 can be
strengthened 10: Fx=~ F'x.

et e

e~
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5.7. The Main Theorem. If S and F satisfy 1-1V, then, to within isomor-
phism, F is computable.

Proof. There are only a finite number of stereotypes of a given rank and
given size. Hence the lists 7} and 7, may be taken as finite, and there are
also only finitely many stereotypes for {x|t: x€S, 1€ T,u T3}. Thus, to
within isomorphism, the domains of G, and G, are finite and these
functions can be given by enumeration. This also gives a bound r to Card
(Sup Gu—Supu). By I11 and Corollary 5.6 the stereotype of Fx (over x) is
uniquely determined by the conditions of IV (with (3),, ,). Hence it can be
computed by a search procedure; for all the conditions of IV involve
quantification only over finite lists.
1,

6. Discussion

(1) 1t is perhaps worth emphasizing how unrestrictive the principles are.
Unlike most automata and algorithms which have been proposed, our
treatment does not depend on singling out any set of “elementary”
operations. The concept of an algorithm introduced by KoLMoGorov and
UspPENsKY (1953) shares this feature; but at each step only a bounded
portion of the whole state is changed. The “elementary” operations of most
procedures can be carried out in a single step by a device satisfying 1-1V.
For example it is not too hard to construct a machine which will carry out
all the outermost reductions in a formula of the A-calculus in a single step.
One exception (pointed out to me by William Boone) is a Markov
algorithm. The process of deciding whether a particular substitution is
applicable to a given word is essentially global.

(2) 1 am sorry that Principle IV does not apply to machines obeying
Newtonian mechanics. In these there may be rigid rods of arbitrary lengths
and messengers travelling with arbitrary large velocities, so that the dis-
tance they can travel in a single step is unbounded. I tried to construct a
Newtonian device which should calculate some non-computable function
without displaying free will, but was quite unsuccessful. Perhaps some
elliptic equation—e.g. Laplace’s equation—would permit the construction
of such a device.

Problem. Find an alternative to 1V which would be satisfied by Newtonian
machines, but which would not allow free will to be displayed.

(3) I think it fair to say that the main theorem provides a better proof of
Turing’s Theorem T (see the Introduction) than any given so far. Turing’s
own analysis makes clear that calculation by a human being will satisfy I;
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It and HT can always be satisfied by using a suitable form of description
for the record and the program of the calculation; and Turing’s arguments
almost forces one to accept 1V (local causation) without any further
investigation of particulars of the record and its description.

(4) Since abandoning any of II-1V allows free will, Godel’s objection
might be met by abandoning any of them. And GODEL himself (1958)
showed how the use of functionals of unbounded type could be used to
transcend finitistic reasoning (though not computability). But I think it
plain that a theory of non-mechanical human intelligence would in fact
need only to conflict with IV. The non-mechanical intelligence would, so
to speak, see the state x as a Gestalt, and by abstract thought make global
determinations which could not be got at by local methods.

(5) Despite the liberality advertised in (1) above there is a limit to what
a machine can do in a single step. The number of stereotypes in HF | of
size not greater than ¢ can be computed from n and ¢ by a function in
Grzegorczek’s class &, (in which the number of iterations of exponentia-
tion allowed is bounded). Hence, as in the proof of the main theorem, one
can compute in &, a bound for the number of possible stereotypes of
values of Fx from the size of x. In particular, if every number can be
uniquely coded by some member of S, then any numerical function which
can be calculated in a single step must be bounded by a function in &,.

Problem. Find a weakening of 1I which does not permit free will to be
displayed.

(6) Because our analysis is not tied to any particular choice of elemen-
lary operations it serves to emphasize the familiar view that recursive
procedures can be characterized without reference to any kind of recursion
or inductive process other than iteration. What is essential is the total
exclusion of the infinite. PosT ( 1936) entitled his paper “Finite combina-
tory processes” and TURING wrote (in (1936)) *“The computable numbers
may be briefly described as the real numbers whose expressions as a
decimal are calculable by finite means”. Such characterizations may ex-
orcise intimations of the supernatural from theorems (such as those of
BoONE and HiGMAN (1974) and HigmaN (1961)) which define recursive or
recursively enumerable structures in a purely algebraic way. In passing we
may note an easily proved, trivial, generalization of Higman’s theorem.

Theorem. Ler L, L’ be two disjoint sets of labels. Let X CHF,(L) be Z, over
HF(L). Then we can find a machine (S, F) with S CHF(LU L) satisfying
H-1V and an x,€ S such that

X={x:3m x=F"xoASupxCL}.
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(7) The heavy use made of restrictions, and the complications involved
in fitting them together (for unique reassembly and the proof of Lemma
5.1) suggest that a treatment using concepts analogous to those of sheaf
theory or topos theory might be worth developing. However, it seems to
me that the concepts from category theory which would be necessary
would be too abstract to allow one to use them (as we have used the more
concrete notions of set theory) as a justification for the main thesis of this
paper.

Notes added in proof

To 3.7: In the proof of sufficiency we must also consider the case y C x.
Suppose v=u, and v&y. Let s={a,,...,a,, b} where g,€ v/ u, for 2<i<n.
Then x{s##y!s.

To 4.2.1: Observe that if x CTC(f)—t and ¢'=tU x, then r=<¢' and '<t.

To 43.1: It is not clear whether the condition given for unique re-
assembly from located sub-assemblies is equivalent to that given in 3.6 for
unique reassembly from (unlocated) sub-assemblies. Our counter-examples
do in fact satisfy the principle in either sense. But I would now favour
adopting the suggestion made in the last paragraph of 4.3.

To 4.8: The statement that if unboundedly many new labels are added,
then there must be overlaps is false. It is sufficient for our purpose that
there may be overlaps.
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Abstract: An outline is given of certain aspects of the current theory of higher level
projective sets, especially concentrating on the structure theory of I} sets, from

determinacy hypotheses. Some of the key open problems in this area are also
discussed.

1. Introduction

Many decades of work in descriptive set theory, from the beginning of
this century until the early sixties, resulted in an extensive theory of the
projective sets of the first two levels of the projective hierarchy and its
effective analog, the analytical hierarchy of Kleene. As it is by now
well-known, this work was done in two almost consecutive and originally
independent stages. The first one, which today we call classical descriptive
set theory, lasted until the late 1930’s. The second one, which we call today
effective descriptive set theory, originated, independently of the classical
work, in Kleene’s pioneering researches in recursion and definability
theory during an almost 20 year period starting in the mid-1930s, but it
was not before the work of Mostowski and mainly Addison in the early
1950, that it was recognized as providing an effective refinement and
strengthening, and as a consequence an extension, of the classical theory.

Despite these considerable achievements in comprehending the nature of
sets of the first two levels of the projective hierarchy, those of level higher
than two remained totally inaccessible. Why this was the case was ex-
plained by the work in the metamathematics of set theory, originated by
Godel and Cohen. As it turned out, most of the important questions that

*Preparation of this paper was partially supported by NSF Grant MCS76-17254 A01. The
author is an A. P. Sloan Foundation Fellow.
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