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Abstract

The authors present TWIG, a visually grounded word-
learning system that uses its existing knowledge of vocabu-
lary, grammar, and action schemas to help it learn the mean-
ings of new words from its environment. Most systems built
to learn word meanings from sensory data focus on the “base
case” of learning words when the robot knows nothing, and
do not incorporate grammatical knowledge to aid the process
of inferring meaning. The present study shows how using ex-
isting language knowledge can aid the word-learning process
in three ways. First, partial parses of sentences can focus the
robot’s attention on the correct item or relation in the environ-
ment. Second, grammatical inference can suggest whether
a new word refers to a unary or binary relation. Third, the
robot’s existing predicate schemas can suggest possibilities
for a new predicate. The authors demonstrate that TWIG can
use its understanding of the phrase “got the ball” while watch-
ing a game of catch to learn that “I” refers to the speaker,
“you” refers to the addressee, and the names refer to particu-
lar people. The robot then uses these new words to learn that
“am” and “are” refer to the identity relation.

Introduction
Anyone who has ever attempted to watch an untranslated
foreign film knows that trying to learn a language from
scratch is hard. Even when a speaker is pointing and look-
ing at something, the meaning can be ambiguous; adapting
an example from (Quine 1960), a speaker pointing at a rab-
bit could be saying, “That belongs to my friend,” or, “Those
things keep eating my flowers,” or even, “I wonder if having
four rabbit’s feet is luckier than having just one.”

Watching a film in a language with which one has some
acquaintance is a different matter, because one can leverage
existing knowledge of grammar and vocabulary to learn new
words. This is particularly true when no more than one word
in a sentence is new to the learner. Using the previous ex-
ample, if a young child heard our rabbit-pointer say, “That
belongs to mycompatriot,” the child could remember the
word and match it to the speaker’s friend when he came to
collect the pet. Hearing the speaker say, “Those keep eating
my hyacinths,” a child could infer that a hyacinth is some
kind of plant.
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So far, much of the research in robotic word-learning has
concentrated on the case in which the robot knows nothing
about the language except its raw sounds, or phonemes. The
most notable recent examples were the Roy’s CELL sys-
tem (Roy & Pentland 2002), and Yu’s eyetracking langu-
gage system (Yu & Ballard 2004). Impressively, these sys-
tems did produce reliable associations between phoneme se-
quences and visual stimuli, despite the complexities of learn-
ing with real audio and visual data. However, neither of
these included a way to leverage this new vocabulary in or-
der to learn new words, nor could they produce grammatical
utterances from what they had learned. The Neural The-
ory of Language Project at Berkeley also produced notable
word learning projects (Regier 1996; Bailey 1997), but em-
phasized how particular words could be learned in isolation,
rather than in a linguistic context. By comparison, text-
based natural language processing has long used approaches
that integrate semantics and syntax, but there has been a sur-
prising dearth of research that applies formal semantics to
the situation of a robot with noisy sensors attempting to learn
words through observation.

This paper describes TWIG, a word-learning system that
can use its knowledge of meaning and grammar to help it
learn new words. TWIG parses each sentence to the best
of its ability in Prolog, grounding all of the terms it under-
stands in predicates generated by the robot’s sensory mod-
ules. When TWIG encounters a sentence that cannot be
parsed or grounded using its current vocabulary, it attempts
to infer who or what the speaker is talking about. Over time,
it uses the weight of statistical evidence to hypothesize a
more general word meaning. The system is not meant to oc-
cupy the same niche as systems that learn first words, but
instead builds on such systems by adding more linguistic
structure.

Below, we present the details of the system and the re-
sults of two experiments using the vision system of our lab’s
robot, Nico. In the first experiment, Nico uses TWIG to
learn the meanings of “I,” “you,” and some proper names
from watching two people pass a ball back and forth, saying
“I got the ball” or “you got the ball.” In the second experi-
ment, Nico uses the words it learned in the first experiment
to learn the meanings of “am” and “are” from the sentences
“I am (name)” and “You are (name).” These experiments
demonstrate that the system excels at learning words that
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Figure 1: The robot Nico, on which the model was imple-
mented.

could not be learned using previous techniques, such as de-
ictic pronouns and linking verbs, and that the system does
in fact make use of its acquired knowledge to learn more
words. By the end of the second experiment, the system can
parse sentences composed completely of words it did not
know before the experiments were performed.

Though Gold and Scassellati previously presented work
on using chi-square tests to learn “I” and “you” (Gold &
Scassellati 2006), that work was not built around a frame-
work of predicate logic, did not make use of grammatical
information, and was not truly scalable. A framework of
formal semantics allows TWIG to learn transitive and even
linking verbs, allows the system to seamlessly use its new
semantic knowledge for learning more words, and opens up
the possibility of integration with larger knowledge bases
and traditional natural language processing methods.

Robotic Implementation
We here describe the vision and auditory systems of the
robot Nico (Figure 1), so as to make the operations of the
TWIG back end more concrete. Nico is an upper-torso hu-
manoid robot with the head and arm kinematics of a one-
year-old child.

Visual Processing
The experiments performed here used one of Nico’s two
wide-angle CCD cameras, which produced320 × 240 pixel
images at 30 frames per second. Subsequent vision pro-
cessing was performed by three modules running on three
separate Pentium 4 processors running the QNX Neutrino
real-time operating system.

Two of the modules were devoted to face detection and
head pose classification. These ran the face-detection al-
gorithm of (Viola & Jones 2004) at 10 fps, using the Intel
OpenCV implementation. One module used the OpenCV
module trained to find profile faces, while the other used the
classifier for faces oriented toward the camera.

Using some empirically measured conditional probabili-
ties, we constructed a Hidden Markov Model in which the
hidden state was the subject’s actual facing direction, andthe
evidence at each time step was the detection/non-detection
output of the two face detectors. Different face detections
over time or from different detectors were incorporated into

Figure 2: The visual processing step finds faces, their ori-
entation (indicated by the small vertical or horizontal lines),
and the ball (center-right).

the same HMM estimation if their areas overlapped; other-
wise, a new HMM was created. The hidden state of actual
facing direction for each HMM was calculated in real-time.

The yellow ball of Legos mentioned in the experiments
was found using a simple filter for its color. Figure 2 shows
an image from Nico’s cameras that has been annotated with
the results of the visual processing modules. Despite the
smoothing performed by the HMM, the facing results were
still somewhat noisy, as we shall describe in the results.

Auditory processing
Audio was collected using two microphones placed roughly
25 cm apart on a tray 75 cm away from the robot’s camera.
The robot judged speech to come from the left or right by
comparing the volume of input to the two microphones over
time.

The system used the Sphinx-4 speech recognition system
to parse audio into words. A simple context-free grammar
incorporating all of the words used in our experiments was
used to create the system’s language model. Though recog-
nition was fairly accurate for our small CFG, the fact that
Sphinx did not accurately report when utterances began and
ended resulted in many errors of synchronization between
speech and visual processing.

Predicates
The input from the robot’s sensory systems was converted
into the following symbols and logical predicates before be-
ing passed to the TWIG system.

Symbols were created for each face, and also for the ball;
below, we shall refer to these symbols asl andr for the per-
son on the left and right, respectively, andb for the ball. The
system also used the symboln for itself. Each face and the
ball received a predicate that uniquely identified it; we shall
refer to these aslprop(X), rprop(X), andball(X). If the
ball was within a threshold distance of a face, the predicate
has(P, b) is true, whereP was the symbol for that person.

On detecting speech, the audio system produced the pred-
icatetells(X, Y, Z), whereX was the speaker,Y was the
person being addressed, andZ was the word segmentation
produced by Sphinx. The person being addressed was in-
ferred to be either the other face, if the speaker was viewed
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in profile, or the robot itself if the speaker was looking to-
ward the camera.

The system also had access to the identity predicate;
ident(X, X) was true for all objectsX .

The TWIG system
The two halves of the TWIG system correspond to the two
kinds of meaning that are dealt with in formal semantics:
extension andintension. Theextension of a word is the thing
in the world that it “points” to; it is sometimes also called
the “referent.” The extension of a word is its meaning in a
specific context. Theintension of a word, on the other hand,
is its more general meaning: the conditions under which the
word can correctly be applied. This distinction can be traced
back to the philosopher Frege, and was greatly expanded
upon in the work of Richard Montague (1974).

TWIG stands for “Transportable Word Intension Gener-
ator,” because its final output is a hypothesis for the inten-
sion of a word. It istransportable because it rests on logical
predicates as a layer of abstraction above a robot’s particular
sensory system, but its statistical approach makes it resilient
to the noise and variability that robotic sensors inevitably
produce.

The system finds the extension of a word through logical
reasoning, but finds the intension through statistical reason-
ing. These two steps shall now be described in greater detail.

Parsing and Finding the Extension
The TWIG system adapts the following discrete-clause
grammar from (Pereira & Shieber 1987):

s(S, W) --> np(VPˆS, W), vp(VP, W).
np((EˆS)ˆS, W) --> pn(E, W).
np(NP, W) --> det(NˆNP, W), n(N).
vp(XˆS, W) --> tv(XˆIV), np(IVˆS, W).
vp(IV, _W) --> iv(IV).

The abbreviations on phrase types are typical:np for “noun
phrase,”iv for “intransitive verb,” and so on.pn covers both
proper nouns and pronouns.W is a pointer to a list of predi-
cates indicating the state of the world, which must be passed
as an argument so that words and phrases can be grounded
in the world state as they are parsed.

A term in the formXˆ Φ is shorthand for the lambda ex-
pressionλX.Φ, the notation for a functionΦ with an ar-
gumentX . In Montague’s semantics, sometimes now sim-
ply called “formal semantics” (Saeed 2003), the meanings
of words and phrases could be expressed using lambda no-
tation over logical expressions: the verb “has,” for instance,
could be expressed asλX.λY.possesses(X, Y ), indicating
that “has” refers to a functionpossesses(X, Y ) that takes
two arguments, a possessor and possessed. In the Prolog
language, these terms can be used inline in discrete-clause
grammars, and the arguments of the functions are substi-
tuted as the parse provides them (see Figure 3).

In the case of verbs and nouns, words at the lowest level
are associated with their lambda calculus definitions:

tv(Word, XˆYˆpred([Word, X, Y])).
iv(Word, Xˆpred([Word, X])).
n(Word, Xˆpred([Word, X])).

Figure 3: Parsing a sentence with an undefined word, ”I.”
The parse partially succeeds on the right, and the system
finds that the whole sentence can be grounded if “I” refers
to personP1, who has the ball. The missing definition, that
“I” refers to whoever is speaking, can only be learned over
time.

During parsing, these expressions simply create logical
forms with the same names as the corresponding words,
and the correct number of arguments: one for intransitive
verbs and nouns, two for transitive verbs. The predicate
pred([P, ...]) represents the predicateP (...) in the
robot’s sensory representation; we shall see below that it is
useful to treat the predicateP as a variable.

Proper nouns, pronouns, and noun phrases beginning with
“the” are immediately grounded in the robot’s environment.
In Prolog, this is expressed as follows:

det(the,W,(XˆS)ˆS) :- contains(W,S).
pn(PN,W,X) :- contains(W,pred([PN,X])).

The predicatecontains(W, X) is true if the worldW
entails the factX . If an object to which the word or phrase
applies is found, its symbol takes the place of the corre-
sponding predicate. For instance, on parsing “the ball,” the
system searches the worldW for a symbolX such that
ball(X). If ball(b) is found inW , Xˆ ball(X) is replaced
with b.

If there is no object inW that matches a word that must
be grounded, the parse fails. Then the system is allowed to
guess one word extension that it does not actually know. An
unconstrained variableA is appended to the worldW before
passing it into the parser, and the parser solves forA. This
effectively allows the robot to hypothesize a fact of the form
Word(Object), whereWord is a predicate named after the
new word andObject is the object to which it refers.

For example, suppose the robot hears the statement “Al-
ice got the ball.” It does not know who Alice is, but it sees
girl a holding a ballb and girle holding nothing. The parse
fails the first time because the robot does not know Alice’s
name. It does, however, know that “got the ball” parses to
λX.has(X, b). On retrying with the free variable, the robot
finds that hypothesizingAlice(a) allows it to match the sen-
tence tohas(a, b), a fact it already knows. Thus, “Alice” is
assumed to refer toa: the system has successfully inferred
the extension.
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But the system does not assume that the word “Alice” can
only refer toa – it could be some kind of pronoun, or re-
fer to some other property that Alice has. In the next step,
the system begins to accumulate statistical evidence for the
intension of the new word.

Finding the Intension
Once an extension for a word has been found, the system
next forms hypotheses about the intension of the word. The
system searches its knowledge about the worldW for all
facts about the extension. This includes single-argument
predicates as well as relations: for example, the facts re-
trieved if the ballb were the extension might include both
ball(b) andgot(a, b).

A new definition, or intension, for a word in the TWIG
system consists of two parts: a predicateP and an argu-
ment numberi. We define the following semantics for the
define operator:

define(w, P, i)⇐⇒P ( . . .
︸︷︷︸

i−1

, o, . . .) |= w(o) (1)

We sometimes use the shorthand[[w]] = P@i, which
is equivalent to define(w, P, i). (The bracket notation is
adapted from (Dowty, Wall, & Peters 1981).) In the case
of single-place predicates, this intuitively allows a wordto
be defined by an already existing single-place predicate: for
example,[[ball]] = ball@1. In the case of predicates of
higher arity, this allows us to define words in terms of an
object or person’s relation to something else. For example,
given a predicatetells(X, Y, Z) that holds ifX is speak-
ing to Y and sayingZ, we can define[[I]] = tells@1 and
[[you]] = tells@2, corresponding to the notion that “I” is
the speaker and “you” is the person being addressed.

The TWIG system generates a list of such possible defini-
tions every time a new word is associated with an extension,
based on all facts that hold about the object. Many of these
predicates will be fairly uninformative – for instance, the
identity will always hold for every object with itself. The
system thus can’t simply count the number of times a defini-
tion has held for a word; it needs a way to find the predicates
about which the word is the most informative.

For this reason, the TWIG system uses chi-square tests
to find the most statistically significant associations between
words and definitions. Pairwise chi-square tests have been
used in the past to find words that appear together in text
more often than one would expect due to chance (Manning
& Schütze 1999); here, we use them to find word-definition
pairs that have held more often than chance would dictate.

For each possible definitionΦip, corresponding to predi-
cate argumenti and predicatep, the system counts the num-
ber of timesφip that any word’s extension has fit the defini-
tion. For each wordWj , the system counts the number of
timeswj the word has been used, and the number of times
it has been used for each predicate-place pair,wijp. In ad-
dition, the system tracks the total number of wordsσ that
have referred to extensions so far. Using these quantities,
it is straightforward to show that the system can compute
chi-square values for each word-definition pair.
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Figure 4: Sample chi-square values over time for one sub-
ject (M.D.) in experiment 1, for the word “I.” The correct
definition is tells@1, corresponding to the speaker.

Chi-square values may be high for word-definition pairs
for which the word appearsless often than expected, which
is not generally helpful for a word definition. Thus, we ex-
clude the cases wherewijp < E[wijp] = wjφip/σ. Other-
wise, the system estimates the best intension for a word to
be the definition with the highest chi-square value of all that
word’s definition pairs.

Assuming that the arity of the largest predicate is a con-
stant, the memory required for the system isO(PV ), where
P is the number of different predicates in the knowledge
base andV is the size of the vocabulary to be learned. In
practice, the storage requirements can be much smaller, be-
cause word-definition pairs that are never observed do not
need to be stored.

If the program is halted, the chi-square values themselves
are not sufficient to resume learning at a later time, but the
counts are. On starting again, TWIG reads a data file to
obtain all the information it learned previously, and asserts
define (w, p, i) for any word-definition pair that is higher
than all other chi-square values for the same word, and also
exceeds a threshold of significance ofp < 0.05 (χ2 > 3.84).
This definition can then be used for parsing sentences nor-
mally or making inferences about other words.

Learning transitive verbs
The explanations above focused on the case of words that are
interpretable as single-place predicates, such as nouns, pro-
nouns, and intransitive verbs. Transitive verbs are learned in
almost the same way. On encountering a new transitive verb
v, the system’s parse fails the first time, and the free variable
A is appended to the world descriptionW . On the second
pass, if the subject and object noun phrases are understood
to refer to entitiess ando, A will bind with pred([v, s, o)]
to satisfy the parse. The hypothesized definitions are then of
the formdefine (v, p, i, j), wherei andj are both places
of a predicate that relatess to o. Counts and chi-square tests
proceed as normal for each such definition found.

Experiment 1: “I” and “You”
For our first experiment, we used the experimental setup
of (Gold & Scassellati 2006) using the new Prolog-based
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Subject E. K. J. H. M. D.
Facing errors 22.5% 22.5% 30%
Ball location errors 22.5% 17.5% 17.5%
Sound localization errors 2.5% 2.5% 0%
Recognition errors 0% 0% 2.5%
“I” consistent, utterance # 2 17 4
“You” consistent, utterance # 30 36 7

Table 1: Comparison of “I” and “you” learning with dif-
ferent sensory error rates for subject facing, ball location,
sound localization, and speech recognition. Most sensory
errors were caused by asynchrony between the speech and
sensory modules.

TWIG system to learn the words “I” and “you.” Two peo-
ple passed a bright yellow ball back and forth in front
of the robot, alternating between the phrases “I got the
ball,” “You got the ball,” and “[name] got the ball” to
comment on the action. Subjects were instructed to look
at the other person when saying “you” and at the robot
when saying the other person’s name. (One of the peo-
ple was always an experimenter, as pairs of subjects left
to their own devices tended to speak and act too quickly
for the speech recognition system.) All of the words
were contained in a small CFG for the purposes of seg-
mentation, but the Prolog system originally only con-
tained the definitionsdefine(got, has, 1, 2) and
define(ball, ball, 1) . The experiment continued
for 40 recognized utterances, and was repeated from the be-
ginning with 3 different pairings of people.

For each pair, the words “I,” “you,” and the names of the
two individuals received the correct definitions by the end
of the final trial: [[I]] = tells@1, [[you]] = tells@2, and
[[(name)]] = lprop@1 or rprop@1, as appropriate. Fig-
ure 4 shows the progress of the definition of “I” for one of
these subjects (M. D.), while Table 1 compares the results
across subjects, based on error rates. Across subjects, “you”
was the most difficult word for the system to learn because it
required the correct facing information, correct sound local-
ization, and correct recognition; “I” was much easier to learn
because the facing of the subject did not matter. The high
number of sensory errors were found to have been caused
by timing disparities between the robot’s sensory modules
and the speech system, but they were not so numerous as
to overwhelm the word learning. Errors were classified post
hoc based on transcripts, with recognition errors assumed
only if another kind of error could not explain the data.

Experiment 2: “Am” and “Are”
For each subject in Experiment 1, the data accumulated in
the first experiment was used to initialize the system in the
second phase. In this experiment, subjects simply alternated
between “I am [name]” and “You are [name].” A ball was
again passed back and forth, but this time passing the ball
only served to force subjects to pause between utterances.
For each subject, the system used only the definitions it
learned during the corresponding trial of Experiment 1. The

Subject E. K. J. H. M. D.
Facing errors 7% 0% 7%
Sound localization errors 7% 7% 7%
Recognition errors 3% 3% 13%
“Am” consistent, utterance # 1 1 1
“Are” consistent, utterance # 21 2 23

Table 2: Comparison of “am” and “are” learning with differ-
ent sensory error rates for subject facing, sound localization,
and speech recognition.

experiment continued until 30 utterances were recognized.
In all three runs, “am” and “are” were paired with the cor-

rect definition ofident@1, 2. “Am” was apparently easier
than “are” because learning it did not require interpreting
“you,” which involved potentially error-prone facing infor-
mation. Table 2 compares the results and error rates across
subjects. (Facing errors were less common in Experiment 2
because the speakers consistently faced each other.)

Discussion
Learning new words is a useful skill for any robotic system
that employs natural language because the robot’s environ-
ment, and therefore the linguistic demands of the task, may
not be known until run-time. However, there are many ob-
vious approaches to the task of word-learning that are in-
correct. It is a mistake to assume that all new words will
be based on low-level visual functions, because many words
refer to function and not form. It is a mistake to assume that
the robot will be able to learn new words simply by associ-
ating everything in its environment with everything it hears;
in psychology, this approach to word learning is called “as-
sociationism” and is known to be fallacious (Bloom 2000).
It is a mistake to assume that grammar is unimportant, and
that proximity to other words is sufficient to define a word;
the linking verbs “am” and “are” are generally not in prox-
imity to other words like them, but define a relation between
those words. Systems that cannot learn such basic words are
likely to fail in more complicated domains.

The ideal word-learning system should be able to lever-
age all of the information available to the robot at com-
pile time. For applications of AI, as opposed to modeling
work, we should care more about the “inductive step” of
learning more words, rather than the “base case” of learning
first words, because the base case can be preprogrammed.
The TWIG system can take advantage of an existing knowl-
edge base, speech recognition system, and semantic infor-
mation to learn new word groundings, rather than starting
from scratch each time.

Though we have presented this work using the language
of predicate logic, it should be clear that frame-based se-
mantics (Minsky 1974) fit nicely into this approach as well.
Predicates can act as frames, with the predicate arguments
serving as slots of the frame. The TWIG system then al-
lows these frame slots to serve as potential new word def-
initions. For instance, a frame for a car may indicate a
place where it is usually found, but not have a word for it;
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TWIG could learn through context that this place was called
a “garage.” TWIG would also function well with planning
systems, since planning operators similarly can include slots
for objects that aren’t necessarily in the robot’s vocabulary.

The specific examples in our experiments were chosen to
highlight aspects of word learning that TWIG can perform
that previous systems could not. For instance, under a “naive
associationist” framework, it would be difficult to learn “I”
and “you” because every sentence always has a speaker and
an addressee; this fact is not true more often when these
words are spoken. Rather, it is the method of finding the
extension that allowed the system to know when speaking
or being addressed was potentially relevant. In the case of
“am” and “are,” we again showed how a difficult non-visual
definition – the identity property – could be learned through
the correct use of context. This also demonstrated how the
words learned by the system earlier – “I,” “you,” and the
proper names – allowed the system to make sense of sen-
tences that were composed entirely of words it had not un-
derstood when the experiments were begun.

The implementation presented here contains a number of
limitations, and we shall attempt to evaluate just how limit-
ing these may be in the long term. First, the grammar was
simple, and did not contain relative clauses, adjectives, or
prepositions. This was primarily to allow us to continue to
use Prolog’s default search tactic of depth-first search, which
can fail to halt when a grammar allows recursive construc-
tions. It also allowed us to sidestep issues of parse ambigu-
ity, which may pose a more serious problem. These issues
might be overcome by introducing depth limits to search and
weighting evidence by parse likelihoods, respectively.

We also note that our system assumes a segmentation
is computed before engaging in parsing and word learn-
ing. Ideally, our methods would work equally well with
phoneme sequences instead of words, but in practice, accu-
rate phoneme recognition tends to require a language model
of word transition probabilities (Jelinek 1997). This fact
tends to make abstraction at the phoneme level less appeal-
ing, and encourages us to deal with whole words as our se-
mantic targets; luckily, language models generally do not
require semantic knowledge.

Two issues that we have addressed since this paper was
originally submitted are the ability to deal with predicates
that have values associated with them, such as distance and
color, and the creation of new definitions that are conjunc-
tions of simpler predicates. The addition of these abili-
ties has allowed TWIG to learn words for simple preposi-
tions such as “above” and “below,” and the proximal/distal
distinction between “this” and “that.” Details of the new
method, which organizes word intensions into decision
trees, will appear in a future paper.

Despite the recent interest in problems of semantics
among roboticists, there has actually been little work that
incorporates Montagavian formal semantics with grounded
word learning research. We hope that if TWIG demonstrates
nothing else, it is that a combination of formal and statisti-
cal approaches is necessary to deal with the hard problems
of grounded semantics.
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