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STEWART SHAPIRO

Understanding Church's Thesis, again

The paper tries to show that Church's thesis can be proved mathematically
(though neither by a formal nor by a set-theoretic proof) if only we give up the

. temptation to force absolute certainty and absolute precision onto non-mathe-

matical reality and realize that no given mathematical notion (let alone the
notion of computability) enjoys absolute precision. Church/Turing formulations
would support rather negative than positive claims about computability: if one
shows that a given function f is not recursive, then Church’s thesis will provide
us with conclusive reason for concluding that f is not computable. -

A number of recent articles challenge traditional views concerning Church's
thesis (CT). Mendelson [1990] and Gandy [1988] claim that CT is susceptible
of rigorous, mathematical proof and Gandy, at least, argues that CT has actually
been proved. Turing's [1936] study of a human following an algorithm is cited
as the germ of the proof. In fact, Gandy refers to (a version of) CT as “Turing's
theorem”. Sieg [1992] is a bit more guarded, but the conclusion is similar. “Tur-
ing's theorem” is the proposition that if J1s 2 number-theoretic function that can
be computed by a being satisfying certain determinacy and finiteness conditions,
then f can be computed by a Turing machine!,

The ngm_mos\mmﬂaw\mwom arguments are, I believe, substantially correct, and
they raise interesting and important questions concerning the nature of
computability and, more generally, the relationship between mathematics and
non-mathematical reality, as well as questions concerning the nature of proof,
the centerpiece of mathematical epistemology. The purpose of this article is to
use CT as a case study in order to pursue those questions.

: Turing argues that humans satisfy some of these conditions, but apparently Sieg considers
this text to be less than proof (of which more later).

Acta Analytica 11, 1993, 8. 59-77
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The idea that there is a blurry boundary between mathematics and empiri-
cal science is, of course, widely held on the contemporary philosophical scene.
However, the view is typically supported by global considerations, with
metaphors like “the web of belief”. It is rare for the holism to be illustrated and
tested through the detail of specific examples. Moreover, the more traditional
view that mathematics and science are somehow different in kind, in both
subject matter and methodology, is also widely held (e.g., Field [19807], [1984]).

I take the liberty of using an old article of mine (Shapiro [1981]) as an
exemplar of the erstwhile standard view concerning CT%:

Computability is a property related to either human abilities or mechanical
devices, both of which are at least prima facie non-mathematical. It is therefore
widely agreed that the question of Church's thesis is not a mathematical question,
such as the Goldbach conjecture ... That is to say, mathematicians do not seek
to show either that CT follows from accepted laws of number theory or that it
contradicts such laws. Nevertheless, both mathematicians and philosophers have
offered various non-mathematical arguments either for or against the thesis.
Goldbach's conjecture can be settled, if at all, only by mathematical argument,
but CT can be settled, if at all, only by arguments that are, at least in part, philo-
sophical.

The general attitude is reflected in a mathematics book about knots:

Mathematics never proves anything about anything except mathematics, and a
piece of rope is a physical object and not a mathematical one. So before worry-
ing about proofs, we must have a mathematical definition of what a knot is ...
This problem ... arises whenever one applies mathematics to a physical situation.
The definition should define mathematical objects that approximate physical
objects as closely as possible ... There is no way to prove ... that the mathemat-
ical definitions describe the physical situation exactly. (Crowell and Fox
[1963,3])

There are at least two groups of questions here. One concerns the metaphysical

or semantic status of CT. Does it even have a (bivalent, non-trivial) truth value?
The other concems the epistemic status of CT. If it does have a truth value, is -

CT the kind of thing that can be proved or refuted mathematically? The ques-

tions are, of course, closely related, but I will focus on each one separately. The

% In the same article, I note a minority opinion (once expressed by Harvey Friedman
during a panel discussion) that CT can be given a mathematical proof by constructing a set of
axioms for computability and showing that these axioms are satisfied by all and only recursive
functions. I return to this below. :
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next section concerns metaphysics/semantics and the following concerns epis-
temology and proof.

1. Modality, metaphysics, and truth.

It is widely held that recursiveness, Turing computability, etc. are about as
precise as notions can get. They are rigorously defined properties of functions
of natural numbers. Is the extension of the informal property of computability

- just as precise? If not, then, depending on how vague properties are to be

handled, either Church's thesis does not have a truth value, it has a non-standard
truth value, or it is false. There is no question of a precise property exactly
coinciding in extension with a vague one, let alone a question of how one can
prove such things. Church [1936] himself wrote:

This definition is thought to be justified by the considerations which follow, so
far as positive justification can ever be obtained for the selection of a formal
definition to correspond to an intuitive notion.

and the classic Rogers [1967, 20]:

Church's Eoﬂm may be regarded as a proposal ... that we agree heretofore to
m:E.._H.v\ certain previously intuitive terms (e.g., “function computable by
algorithm™) with certain precise meanings.

Call this the issue of precision. .

Second, computability is, at least prima facie, a modal notion, as indicated
by the suffix, “ability”. We say that a function fis computable if one can comp-
ute all of its values or if it is possible for a human or machine to compute f
(ignoring finite limitations on memory and lifetime). Recursiveness and Turing
computability, on the other hand, at least appear to be non-modal. A Turing
machine is a set of ordered quadruples with a certain structure, and a function
Jis Turing computable if there is a Turing machine with a given relation to 2
The relation is defined in terms of sequences of configurations, which are
ordered n-tuples with a certain structure. No modality here. Similarly, a function
Jis recursive if there is a finite sequence of functions whose last member is I
and such that each member of the sequence is either one of a certain class of
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initial functions or bears a certain relation to earlier functions in the sequence.
Again, no Bomm&a\m. . o . o

Thus, prima facie, CT asserts that a modal notion coincides in .n.ﬁoum_ob
with a non-modal one. In contemporary philosophy, there are two ﬂm&ﬁosm that
<<oEa. demur at this point. One of them, traced to Quine, is skeptical .% modal
notions altogether, suggesting that they are too vague or indeterminate for
respectable scientific (or quasi-scientific) use:

We should be within our rights in holding that no monu&mmos of any @E.ﬁ. of
science is definitive so long as it remains couched in idioms of ... modality.

(Quine [1986, 33-34])

On such a view, the modal nature of computability underscores the problem of
precision, and undermines the assertion that CT has a “definitive” truth value.

The other tradition, while not skeptical of modality as such, doubts that
there can be any useful reduction of a modal notion to a wow..Eomm_ one.
Authors of this persnasion claim that modal operators are h.,@DHEHEo: or else
they invoke some sort of possible worlds to explicate modality (see Lycan and
Shapiro [1986]). Now, CT proposes a reduction, of sorts, of the modal owﬁ%ﬁ?
ability to the non-modal recursiveness, and a proof of CT would establish the
reduction. Call this the issue of modality®*.

® For details, see any textbook on computability. The classic Rogers {1967, p- 14] .wun.sw
how "Turing machine" can be defined in traditional arithmetic terms (although this definition

is not used):

Let 7= {0,1} and § = {0,1,2,3}. Then a Turing machine can be mamzma. as a
mapping from a finite subset of NxT into SXN. Here T represents En nou&m.oum
of a tape cell, S represents operations to be performed, and N gives possible
labels for internal states.

One can attempt to define the pre-formal computability .5 non-modal terms: A ?soﬁos. uum
computable if there is an algorithm that computes it. Notice, however, .EB one cannot thi .
of an "algorithm" here in terms of actual, concrete tokens. There Enu.ﬁ .mno.:mr. of them. N
“algorithm” is short for "possible algorithm”, then, of course, computability is still modal.
non-modal alternative is to take algorithms to be abstract objects.

4 Those, like David Lewis (e.g., [1986]), who believe in the existence of wOm&E.o éoﬁmm_
can claim a "reduction” (of sorts) of modal notions to extensional notions. Necessity just is

truth in all possible worlds, etc. However, these modal realists typically do not give a non-

modal analysis of "possible world". In effect, that notion is primitive. Lewis claims that the

straightforward alternative to modal realism is to invoke a "primitive modality". The situation

Understanding Church's Thesis, again 63

Contrary to both of these traditions, the modal nature of computability
does not automatically disqualify CT from having a non-trivial, determinate truth
value, nor a rigorous proof. In fact, both traditions should be rejected. There are
other cases, which are similar to Church's thesis, but are not at all problematic. .
Define a chess-game-model to be a sequence of strings (in standard chess
notation) which denotes a series of legal moves of a complete game. One very
simple chess-game-model is the string “P-K4, P-Q3; resigns”. The notion of a
chess-game-mode] is defined entirely in string-theory. It is not modal. Let the.
chess thesis be the statement that every possible game of chess is represented
by a chess-game-model and every chess-game-model represents a possible game
of chess®. Here we have a proposed reduction of a modal notion (possible game
of chess) to a non-modal one (chess-game-model). .

Notice that an-advocate of the chess-game-thesis need not claim that the
notion of “chess game model” somehow captures the meaning of “possible game
of chess”, or that it is an “analysis” of chess (whatever that would be). It is a
claim of extensional equivalence, in the form “every A corresponds to a unique
B, and vice versa”. This is all the “reducing” that we want or need.

If understood this way, the chess thesis can hardly be denied. To be a little
more careful, the chess thesis would only be denied by a nominalist, who holds
that either there are no strings at all (since strings. are abstract) or there aren't -
enough string tokens to represent every possible chess game®.

The chess thesis is an exchange of modality for ontology. Instead of
speaking of what is possible, we speak of what occurs in an abstract, but actual

cﬁauoﬁmnmEooEQ....Emmnm__ &mn:mmmav&oﬁwmuoﬁEnmﬁEm. Ultimately, the "reducing
theory":is just arithmetic and set theory. - v

* Ido not wish to raise issues concerning whether someone who resigns before his second
move has really played 4 game of chess. If the phrase "possible game of chess" is bathersome,
then one can substitute something like "possible play according to the current rules of chess",
The latter is a modal notion, and that is all that matters here, -

. § Unlike the situation with CT, we don't have problems with "the infinite" here, since there
are.only a finite number of possible.chess games (according to
Of course, there are still a lot of possible games, more than the number of string tokens in the
solar system. Presumably, a nominalist could hold that for every possible game of chess there
is a possible string that represents it, but this is not a reduction. .
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mathematical structure, a set of strings on a finite alphabet in this case’. As
Putnamn [1975] notes in a different context,

[m]athematics has ... got rid of possibility by simply assuming that, up to
isomorphism anyway, all possibilities are simultaneously actual — actual, that
is, in the universe of “sets”.

In the case of Church's thesis, the problem of modality is resolved in mEmE.H
fashion. The claim behind CT is that Turing machines somehow represent
possible algorithms or possible machine programs, and sequences of Turing

machine configurations represent possible computations. From this perspective, -

CT would hold only if, for every possible algorithm, there is a Turing machine
that represents an algorithm that computes the same function. The thesis, then,
is that the possibilities of computation are reflected accurately in a certain
arithmetic, or set-theoretic structure. _

One could, I suppose, make a similar claim about the algorithms behind
A-terms and recursive definitions, but if one thinks of CT along present lines, it
is more natural to focus on Turing machines (as we just did). Those are
supposed to be models of actual computing devices. Moreover, Turing's own
arguments — the centerpiece of the purported “proof”’ of Church's thesis —
constitute a study of a human computer following an algorithm, noting what
sorts of moves are allowed, what abilities are presupposed, etc. Turing argues
that anything such a person does can be simulated on a Turing machine.

Two historical asides: When Church first posed CT, he argued for it by
noting that every computable function examined to date had been shown to be
recursive, that the class of recursive functions is closed under certain operations,
and that a number of different characterizations are extensionally equivalent.

This “evidence” might be labeled “quasi-empirical”. In a letter to Church around :

that time, G&del regarded the proposal of CT as “thoroughly unsatisfactory”.
Church replied that “if [G6del] would propose any definition. of effective
calculability, [Church] would undertake to prove that it was included in lambda-

! Incidentally, there is a trend in contemporary philosophy of mathematics that attempts
to reverse this "exchange”. The plan is to reduce ontology by invoking (primitive) modality.
Instead of asserting that there exisis a number with a given property, one speaks of what is
possible, or of what one can construct. See, for example, Hellman [1989], Chihara [1990], and,
for a response, Shapiro [1993]. Putnam [1967], [1975] suggests that there is no real difference
between certain modal and certain ontological assertions. This is congenial with the present
orientation toward CT, and the resolution of the problem of modality. :

definability”.- But this would be more of the same kind of evidence already
available, and there was plenty of that. Gédel seemed to prefer the rigor of
conceptual analysis to the quasi-empirical methodology. This analysis was
provided by Turing's work, which did convince Gédel (see Kleene [1981],
[1987], Davis [1982], and my review, Shapiro [1990]).

Second, the foregoing interpretation, with reference to “analysis”, is re-
miniscent of what has been called “Church's superthesis”, an assertion that for
any algorithm whatsoever, there is a Turing machine that computes the same
function the same way:

the evidence for Church's thesis, which refers to results, to functions
computed, actually establishes more, a kind of superthesis: to each ... algorithm
... is assigned a ... [Turing machine] programme, modulo trivial conversions,
which can be seen to-define the same computation process as the [algorithm].
(Kreisel [1969, 177])

This is getting close to asking for the meaning of computability, demanding
some sort of intensional equivalence between computability and Turing comput-
ability. For this line to be developed fully, we would need a better articulation
of how to identify “computation processes” or, in other words, of what it is for
two algorithms to compute the same function “the same way”. But perhaps this
need not stand in the way of the extensional thesis. Turing and Church do not
state the superthesis, and perhaps the argument for CT can proceed without
completing the “conceptual analysis”.

To return to our theme, even if the modal nature of computability does not
prevent CT from having a non-vacuous truth value, it still requires further consi-
derations to establish that it does, and that this value is True. Jt is not self-evi-
dent that CT is exactly analogous to, say, the chess thesis. In particular, we need
to be shown that the specific modal notions involved in computability are in fact
sufficiently determinate to support a clear notion of ooHEuEm,cEQ. That's what
a proof of CT would have to establish.

The problem of other idealizations is an exténsion of both the problem of
precision and the problem of modality. The so-called “trivial” side of CT is that
every Turing machine represents a possible algorithm. One could complain about
feasibility. Some Turing machines do not represent possible algorithms because
1o human or machine could compute even one instance before the sun goes
cold. The standard response is that we are to ignore (accidental) finite bounds
on human lifetimes, the amount of paper or magnetic media in the universe, etc.
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This is a standard idealization in mathematics, not unlike what is done in virtu-
ally any area of applied mathematics, geometry, etc. However, one can' still
wonder whether there is a sufficiently determinate property of computability that
exactly corresponds to recursiveness. Is the idealization univocal and determi-
nate?

Recall, for example, that there are more “realistic” mathematical defini-
tions of possible computing devices. The crucial difference between a Turing
machine and a finite-state machine is that a Turing machine has an unlimited
“tape” which can be used for storage, scratch work, etc., while a finite state
machine does not. There is no bound in advance on how much “work space” a
finite state machine can have, but for each such machine, there is a lmit to its
space. By contrast, a Turing machine cannot run out of work space. Clearly, real
computers, such as PC's or mainframes, are more like finite state machines than
Turing machines. Real computers are being made with larger and larger storage
capacities, both in terms of working memory and disk space, but for each such
machine or each such network, there is a fixed limit to its work space — even
if this limit is measured in gigabytes®.

. The point is that recursiveness or Turing computability represent more
idealized models of computability than what may be called finite-state comput-
ability. And there are other models, such as push-down automata computability,
and Turing computability in deterministic polynomial time (or space, or both).
If we get even more “realistic” and put a fixed bound, in advance, on the
amount of material available for any computation, we would get something like
“computable by a finite state machine with at most N states” or “computable by
a Turing machine with less than N squares of tape”, for some fixed N. At least
mathematically, these do not appear to be very interesting notions. For the most
part, only finite, partial functions would be “computable”. But, of course, only

8 Turing's original [1936] analysis did not focus on mechanical computing devices, but
rather on a human following an algorithm. In these cases, the idealization of Turing machines
is that for any such person (or any such possible person), there is no limit on the amount of

paper and pencils she can use in the course of the calculation and no bound on her lifetime -
and attention span. If we were to build in the assumption that, no matter what, there will i
always be some limit on the available materials (even if no specific limit is set for all cases),

we would be closer to finite state computations.
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finite, partial functions are computable, in the literal sense of “capable of com-
putation”. Again, the modality is non-trivial®.

The problem of other idealizations will be addressed after we deal briefly
with the epistemic side of our question.

2. What do we prove and what does a proof show?

In contemporary mathematical logic, there are several models of mathematical
deduction, or proof. The most common construes a deduction to be a sequence
of well-formed-formulas in a formal language, constructed according to certain
rules. Such a deduction is a proof if the deductive system is sound-and if the
premises are interpreted as statements previously known to be true. Call such a
sequence a “formal proof”. Sometimes a proof is taken to be a derivation in
Zermelo-Fraenkel set theory (ZF), or a sequence of statements that can be
“translated” into a derivation in ZF. Call this a “ZF-proof™.

Clearly, in claiming that CT is capable of proof, Mendelson and Gandy
are not asserting the existence of a formal proof or a ZF-proof:

The fact that it is not a proof in ZF or some other axiomatic system is no draw-
back; it shows that there is more to mathematics than appears in ZF. (Mendelson
[1990, 233])

This is an insightful consequence of the Zoumﬂmou\mmu%\mwom position. No
doubt, the study of computability in Turing [1936], or anywhere else for that
matter, could be cast in a formal deductive system or in ZF. But that would not
be the end of the matter. The issue would then be to determine that the resulting
derivation is a good “translation” of the informal arguments. Can that be estab-
lished with a formal proof or a ZF-proof? The problem of evaluating the ad-
equacy of formal translations of informal arguments is a wide and deep one, not
to be solved here, but some remarks on the present case are in order.

? Recall that, even in ordinary cases, Wittgenstein, at least, was skeptical of there being
any fact of the matter concerning which function a given person or mechanical device is
computing (see, for example, Wiftgenstein [1958], [1978] and Kripke [1982]). Functions are
infinite, and no human or machine will ever compute more than a finite number of values.
There is no fact of the matter concerning which features of the organism or device are relevant
to the execution of the abstract algorithm, which fearures are incidental, and which features .
interfere with the execution (such as the decay of the parts).
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The only non-logical term in the language of ZF is “e”, the sign for mem-
bership. To echo Crowell and Fox [1963], before worrying about whetherCT
can be proved in ZF, we would need a formulation of “computability” and either
“recursiveness”, “Turing computability”, “A-definability”, etc. in the language
of ZF. There are, or could be, good formulations of the latter notions in ZF, by
following a number-theoretic formulation of Turing computability (see note 3)
with a translation of number theory into ZF. There would be little room for
doubt here, I presume (at this point in history). Formulating “computability” in
the language of ZF is another story. How could we be sure that the proposed
set-theoretic predicate really is an accurate formulation of the intuitive, pre-
theoretic computability? Would we prove that? In effect, a statement that the
proposed predicate does in fact coincide with computability would be the same
sort of thing as CT, in that it would propose that a precise (now set-theoretic)
property is equivalent to an intuitive one. We would be back where we started,
philosophically™.

A formal proof of CT would consist of a direct formulation of an argu-
ment in a formal deductive system. Presumably, one would begin with a formal-
ization of number-theory, and add a predicate for computability, together with
some axioms for it (see note 2). Then one would show in the deductive system
that this predicate holds of all and only recursive functions. Here the “translation
problem” would focus on the axioms for computability. There would be no
Jormal guarantee that the axioms are both necessary and sufficient for comput-
ability. This question wouldn't be settled by a derivation in ZF or a formal
deductive system, not without begging another question.

The conclusion, so far, is that if there is to be a mathematical proof of CT,
the proof cannot be fully captured with a formal proof or a ZF-proof. If one
identifies mathematical proof with formal proof or ZF-proof'!, then one can
invoke modus tollens and accept the conclusion that CT is not a mathematical
-question. There is an essential “quasi-empirical” or “philosophical” side to it.

1% 1f there were a theorem in ZF equating recursiveness with a set-theoretic formulation
of noB@EchQ, we would have more evidence for CT, or else evidence that the set-theoretic
formulation is correct (or both). The indicated theorem would be the same sort of thing as the
equivalence of recursiveness and Turing computability.

1 The proposed identification is a lot like CT, equating a pre-formal notion (proof) with
a precise, mathematical one (formal proof or ZF-proof). Moreover, the pre-formal notion of
“proof™ is at least prima facie modal. So, to be consistent, a holder of the received view should
also hold that this identification is quasi-empirical or philosophical.
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Against the received views, and with Mendelson, Gandy, and Sieg (and, in the
general matter, Putnam [1975]), I submit that this is a false dilemma. CT is, in
part, a quasi-empirical or philosophical question but that does not prevent it
from being a mathematical question as well, capable of demonstration (or refuta-
tion) with whatever standards of rigor are operative in live mathematics. The
proper conclusion of the foregoing considerations is that CT is not a Jormal (or
ZF) matter, but, with Mendelson, there is more to mathematics, and to mathe-
matical proof, than is dreamt of in ZF and in other formal deductive systems.

S0 what is “proof”? This is, of course, a deep problem in the philosophy
of mathematics, and I have no new (positive) insights to convey here. For
present purposes, let us define a “proof” to be a rationally compelling argument,
one that a mathematician (gua mathematician) should find thoroughly convinc-
ing. It is not a question, of course, of what a given mathematician does find con-
vincing. Errors, gaps, and fallacies abound, and people are often not convinced
when they should be. Like any other epistemic notion, “proof” is inherently
normative. There is no consensus on the nature of normativity, and (again) I
have no plans on changing that situation. Normativity remains one of the more
sticky problems on the agenda of contemporary philosophy. However, the notion
of mathematical proof is one where some progress has been made. The present
purpose is to lend some perspective to that progress.

Notice that, as presently construed, “proof” depends on context. What
someone should find convincing depends on her training, on what is already
known, etc. Moreover, a proof is not something that is immune from all con-
ceivable skeptical challenges. Even if there is some notion of absolute rigor, in-
dependent of social context, mathematics as practiced does not need to adhere
to such a standard. Moreover, the notion of “proof” is not necessarily precise.

In a collection of notes entitled “What does a mathematical proof prove?”
(published in his [1978]), Imre Lakatos makes a distinction between the pre-for-
mal development, the formal development, and the post-formal development of
a branch of mathematics (see also my [1989]). Lakatos observes that even after
a branch of mathematics has been successfully formalized, there are residual
questions concerning the relationship between the formal deductive system (or
the definitions in ZF) and the original, pre-formal mathematical ideas. How can
we be sure that the formal system accurately reflects the original mathematical
structures? These questions cannot be settled with a derivation in a further for-
mal deductive system, not without begging the question or starting a regress —
there would be new, but similar, questions concerning the new deductive system.
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The crucial point here is that it does not follow that the residual questions

are (merely) philosophical or quasi-empirical, or that the questions are in any -

way non-mathematical. In some cases one can and should regard the questions
as settled. Moreover, this is the normal sitnation in mathematics. There ‘is
nothing unusual about CT.

To bolster this claim, Mendelson mentions other situations in mathematics
which are like CT in the relevant respects, but which are not subject to the same
doubts, prima facie (see also Shapiro [1981]). Here, I will only discuss a few
cases.

Consider, first, the chess thesis, the assertion that for every possible chess
game, there is an appropriate sequence of strings that represents it. It seems as
clear as anything that this thesis is true, by whatever standards of rigor are
prevalent in modern mathematics. Consider, for example, a “thecrem” about
possible chess games based on something like the chess thesis: It is not possible
to force a checkmate with two nights and a king against a lone king. I submit
that this is as certain as anything in mathematics, despite the modality. After
grasping such a proof, it would be irrational to doubt this claim about possible
chess games, just as irrational as doubting things correctly proved in informal
number theory.

Near the top of this paper, I mentioned a mathematics book about knots
(Crowell and Fox [1963]). The authors prove that a “figure-eight knot” cannot
be transformed into an “overhand knot” without “tying” or “untying”. All of the
quoted expressions are given careful, topological definitions. The issue concermns
the relationship between these definitions and pieces of rope. The anthors may
be right that there “is no way to prove ... that the mathematical definitions
describe the physical situation exactly”, but it is quite clear that something about
real knots has been proved beyond rational doubt. One can see that the
mathematical “models” do in fact correspond to the structure of real (physical)
knots — enongh so that it would be irrational for someone to ignore the result
and keep on trying to transform the one knot into the other. Furthermore,
suppose that someone did claim that after ten hours of hard, concentrated work,
he did in fact transform a figure-eight knot into an overhand knot. The rational
conclusion (for us) to draw would be that he had (perhaps unknowingly) untied
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and retied the rope. Why? Because we have proved that the proposed task is
impossible!?. .

Closer to home, Mendelson observes that there is litile doubt that the so-
called “trivial half” of CT, all recursive functions are computable, is established:

The so-called initial functions are clearly ... computable; we can describe simple
procedures to compute them. Moreover, the operations of substitution and
recursion and the least-number operator lead from ... computable functions to
... computable functions. In each case, we can describe procedures that will
compute the new functions.

Mendelson concludes that this “simple argument is as clear a proof as I have
seen in mathematics, and it is a proof in spite of the fact that it involves the in-
tuitive notion of ... computability”. As an aside, notice that one bonus of this
proof is that it allows us to see where the idealization from actual human or
machine abilities comes in. There is no limit on the sequence of functions used
to define a recursive function. We ignore, or reject, the possibility of a sorites
situation.

For a final example, consider a small portion of Turing's study of a human
following an algorithm. Turing shows that the alphabet involved in executing the
algorithm must be finite. First, there is an upper limit to the size of a single
symbol--any human (or mechanical device) will have some limit on the amount
of space it can scan at one time'>. This strikes me as a good premise, one that
is clear and hard to doubt. It follows that “if we were to allow an infinity of*
symbols, then there would be symbols differing to an arbitrarily small extent”.
In a footnote, Turing suggests that under reasonable assumptions, there is a
natural topology for the space of symbols, under which they form a condition-
ally compact space. The conclusion that there are only finitely many symbols
follows from another premise (not stated) that there is some limit to the ability

2 Suppose that someone transformed the knots in a few seconds, right in front of us. What
would we conclude? Probably that it was a sleight of hand — the person cheated. I am not
saying, however, that it is impossible for us to change our mind. It is conceivable (barely) that
someone could get us to see that we were wrong about the transformation theorem, and thus
that we had made a mistake in the topological definitions. It is also (barely) conceivable that
someone could show us how to force checkmate with two knights and a king against a lone

king. I don't think this undermines the present considerations. Infallibility is not required in
mathematics.

** This is among the “finiteness conditions” mentioned by Sieg [1992].
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ﬁo&molammﬁOme@oﬂmL»mHFEomamcaoamoﬂummcoﬁmm good as anything
in mathematics'*, u.\

hand:

Turing's analysis does much more than provide an argument for Church's thesis;
it proves a theorem ... The proof is quite as rigorous as many accepted
mathematical proofs — it is the subject matter, not the process of proof, which
is unfamiliar. However — as with published mathematical proofs — there are
gaps which need to be filled in. .

One need not go that far, at least not yet. The foregoing considerations show
that CT is the kind of thing that can be proved mathematically. It does not
follow that CT has in fact been proved. Given the above rough characterization
of “proof” as something like “rationally compelling argument”, one should ex-
pect there to be borderline cases of proofs. Perhaps the argument for CT is such
a borderline. .

3.  What to make of this.

I conclude with a few remarks on what it is that would be proved if CT were
in fact established. This depends on what CT is, and, more generally, on the re-
lation between mathematics and the physical world, not to mention the nature
of mathematics itself. We return to the problem of precision and the problem of
other idealizations.

It is widely held, often implicitly, that mathematics deals exclusively with
absolutely precise notions and concepts. No vagueness abounds here. One way
to square this with the provability of CT would be to hold that computability is
also a precise property of number-theoretic functions. In Shapiro [1981], I note
that this view is congenial with a structuralist account of the application of
mathematics. In this case, the idea is that there are definite mathematical struc-
tures underlying possible computing machines and/or the human ability to calc-
ulate. Rogers [1967, 1] may have had something like this in mind, when he re-

¥ Kreisel [1967] is a detailed, insightful account of mathematical arguments that involve
intuitive, pre-theoretic notions. Kreisel calls this “"informal rigor". The most well-known
instance of this is Kreisel's proof that, for first-order logic, the pre-theoretic notion of validity
coincides with its model-theoretic formulation in set theory.

Gandy [1988, 82] draws a deep conclusion about the general matter at

L
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ferred to computability as “the informal mathematical notion of function
computable by algorithm” (emphasis mine)'>. In writing about CT, Post [1941]
suggested that

... Tor full generality a complete analysis would have to be made of all the
possible ways in which the human mind could set up finite processes.

... we have to do with a certain activity of the human mind as situated in the
universe. As activity, this logico-mathematical process has certain temporal
properties; as situated in the universe it has certain spatial properties.

On a view like this, a proof of CT would establish that the precise computability
is coextensive with recursiveness. )

It is, of course, more common, and perhaps more natural, to think of
computability as a vague property from ordinary langnage. This, together with
the precision of mathematics, entails the received view that CT is not a mathe-
matical matter.

This argument at least suggests that there is a difference in kind between
mathematics and the rest of our intellectual activity. As above, this distinction
is rejected here. Mathematical language has its roots in ordinary language, and
those roots cannot be severed. The present concern is to square this holism with
the vagueness of ordinary langnage. One can, I suppose, argue that ordinary or
scientific language is not vague, appearances notwithstanding. A more intriguing
option is to reject, or at least temper, the precision of mathematical notions.
Mendelson does just that:

The concepts and assumptions that support the notion of partial-recursive func-
tion are, in an essential way, no less vague and imprecise than the notion of ef-
fectively computable function; the former are just more familiar and part of a re-
spectable theory with connections to other parts of logic and mathematics.

Mendelson does not develop this idea further, and if the claim is taken literally,
one can certainly challenge it. I don't know of a border-line case of, say, a

% In Section 1 above, there is a passage from Rogers [1967] indicating that computability
is vague. There may be some ambivalence here, or else Rogers rejects the view that mathema-
tics deals exclusively with precise notions.
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natural number, or a number-theoretic function'®. However, the notions involved
In recursion theory — or any other branch of mathematics for that matter —
have not always been so clear and precise. The central notions of “set”, “func-
tion”, and “infinite” all have long and troubled histories. Even a cursory look at
the growth of mathematical ideas reveals a lot of uncertainty, ambivalence,
vagueness, and plain unclarity. Nevertheless, it is clear, if anything is, that the
current formulations of these notions are correct. If nothing else, current defini-
tions capture an important and non-arbitrary “natural kind” underlying the pre-
vious mathematical discussions. That is, the original vagueness of the notions
did not preclude mathematicians, gua mathematicians, from discussing the
notions, “defining” them, and proving theorems about them. In large part, that's
what mathematics is all about.

Similar remarks apply to the “theses” alluded to above, and in Mendelson
[1990] and Shapiro [1981], which are claimed to be analogous to CT. In each
case, there are arguments, which are often thoroughly convincing, that a given
mathematical notion is a clear “natural kind” underlying a notion or concept
from everyday language, from natural science, or from other parts of mathema-
tics (a possible chess game, a knot, a limit, a symbol involved in an algorithm,
etc.). The definitions are in no way arbitrary, and one is completely justified in
accepting theorems about the “definiens” to represent facts about “de-
finiendum”!’. We can and do prove theses a lot like CT.

This does not preclude the possibility that the pre-theoretic notions may
have other definitions, incompatible with the accepted ones. The alternatives
may even be useful for some purposes. The notion of continuity comes to mind,
with its separate formulations as uniform continuity and pointwise continuity.
In a sense, both are correct. There may also be other formulations of “possible
game of chess” that take feasibility into account. For the purpose of devising

16 George Schumm suggests the following: Consider a room that contains only two
(clearly) bald men and one borderline case of a bald man. Let n be the denotation of "the
number of bald men in the room". Isn't # a borderline case of a natural number? I would say
that although it is indeterminate which number the expression denotes, we do not have a
borderline natural number here. Unlike the case with "bald", the vagueness here is not in the
property "natural number”, but rather in the denotation relation.

17 To take one more example, Lakatos [1976] is a sketch of the historical development of
the notion of “polyhedron”. The examples make it plain that the original notion was quite
vague — borderline cases abound — and yet the current formulation, in set-theoretic terms,
clearly captures an essential property underlying the original mathematical ideas.
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and ruling out strategies against human opponents, such a formulation may be
more useful. But it would not undermine the chess thesis.

Turning to computability, I would suggest that the Church/Turing (et al.)
formulations support negative claims about computability. If one shows that a
given function f is not recursive, then, with CT, that is conclusive reason to
conclude that f is not computable. However, since feasibility is ignored, the
current formulation is not as useful for establishing positive claims. If one shows
that a given function is recursive, that does not, by itself, give us a good reason
to think that the function “can” be computed, in any realistic sense. Other form-

- ulations, like finite state computability, or Turing computability in polynomial

time, may be better for this. But this observation does not undermine CT.
In short, even if one holds that computability is vague, and notes that there
are several incompatible “precisifications”, one should not conclude that CT is

_beyond the purview of mathematics. One can think of CT as an assertion that

recursiveness represents the clear “natural kind” underlying computability, or
else a clear natural kind underlying computability. One can, and rationally
should, use the notion of recursive function to clear the vagueness from comput-
ability, and one can know this with whatever certainty anything in mathematics
enjoys. Moreover, one can know that facts about recursiveness represent facts
about computability, and vice-versa.

In fact, the identification goes both ways. If one shows that a function f
is computable (by giving an algorithm, for example), one can conclude without
further ado that f is recursive. Such an inference, sometimes called “argument
by Church's thesis”, is the contrapositive of the above statément concerning
negative results about computability (see Shapiro [1983]). The technique was
proposed as early as Post:[1944]. Rogers [1967] is built around argument by
Church's thesis and, to invoke the theme of this paper, no one doubts that Ro-
gers [1967] is a mathematics book. .

In conclusion, the resolution of the issue of Church's thesis is not to put
it outside of mathematics, nor to force absolute certainty and absolute precision
onto non-mathematical reality. Rather, one realizes that mathematics itself does
not enjoy absolute certainty and its notions do not enjoy absolute precision.




76 STEWART SHAPIRO

Aclknowledgements:

I would like to thank Michael Detlefsen, Jill Dieterle, Penelope Maddy, and
George Schumm for useful and insightful criticism of an earlier version of this
project.

References

Chihara, C [1990], Constructibility and mathematical existence, Oxford, Oxford University
Press.

Church, A [1936], “An unsolvable problem of elementary number theory”, American Journal
of Mathematics 58, 345-363; also in Davis [1965], 89-107.

Crowell, R, and R Fox [1963), Introduction of knot theory, Boston, Ginn and Company.

Davis, M [1965], The undecidable, Hewlett, New York, The Raven Press.

Davis, M [1982], “Why G&del didn't have Church's thesis™, Information and control 54, 3-24.

Field, H [1980), Science without numbers, Princeton, Princeton University Press.

Field, H [1984], “Is mathematical knowledge just logical knowledge?”, The Philosophical
Review 93, 509-552.

Gandy, R [1988], “The confluence of ideas in 1936”, in R. Herken ed., The universal Turing
machine, New York, Oxford University Press, 55-111. ’

Hellman, G [1989], Mathematics without numbers, Oxford, Oxford University Press.

Kleene, S [1981], “Origins of recursive function theory”, Annals of the History of Computing
3 (no. 1), 52-67.

Kleene, S [1987], “Reflections on Church's thesis”, Notre Dame Journal of Formal Logic 28,
490-498. -
Kreisel, G [1967], “Informal rigour and completeness procis”, Problems in the philosophy of
mathematics, ed. by 1. Lakatos, Amsterdam, North Holland, 138-186. .
Kreisel, G [1969], “Some reasons for generalizing recursion theory”, Logic colloquium '69,
Amsterdam, North Holland, 138-198.

Kripke, S [1982], Wittgenstein on rules and private language, Cambridge, Massachusetts,
Harvard University Press.

Lakatos, I [1976], Proofs and refutations; ed. by J. Worrall and E. Zahar, Cambridge,
Cambridge University Press. :

Lakatos, I [1978], Mathematics, science and epistemology, ed. by J. Worrall and G. Currie,
Cambridge, Cambridge University Press. )

Lewis, D [1986], On the plurality of worlds, Oxford, Basil Blackwell Ltd. B

Lycan, W and S Shapiro [1986], “Actuality and essence”, Midwest Studies in Philosophy 11,
343-377. . .

Mendelson, E [1990], “Second thoughts about Church's thesis and mathematical proofs”, The
Journal of Philosophy 87, 225-233.

Post, E [1941], “Absolutely unsolvable problems and relatively undecidable propositions”, in
Davis [1965], 338-433. ,

{

Understanding Church's Thesis, again - 77

Post, E [1944], “Recursive sets of positive integers and their decision problems”, Bulletin of
the American Mathematical Society 50, 284-316; also in Davis [1965], 305-337.

Putnam, H [1967], “Mathematics without foundation”, Journal of Philosophy 64, 5-22.

Putnam, H [1975], “What is mathematical truth?” in Mathematics, matter and method:
Philosophical Papers Volume 1, by Hillary Putnam, Cambridge, Cambridge University
Press, 60-78.

Quine, W V O [1986], Philosophy of logic, second edition, Englewood Cliffs, New Jersey,
Prentice-Hall. T

Rogers, H [1967], Theory of recursive functions and effective computability, New York,
McGraw-Hill.

Shapiro, S [1981], “Understanding Church's thesis”, Journal of Philosophical Logic 10,
353-365.

" Shapiro, .S [1983], “Remarks on the development of computability”, History and Philosophy

of Logic 4, 203-220. .

Shapiro, 3 [1989], “Logic, ontology, mathematical practice”, Synthese 79, 13-50.

Shapiro, S [1990], review of Kleene [1981], Kleene [1987], and Davis [1982], Journal of
Symbolic Logic 55 (1990), 348-350. :

Shapiro, S [1993), “Modality and ontology”, Mind, forthcoming,

Sieg, W [1992], “Mechanisms and search: Aspects of proof theory”, Carnegie Mellon Report.

Turing, A [1936], “On computable numbers, with an application to the Entscheidungspro-
blem”, Proceedings of the London Mathematical Society 42, 230-265; also in Davis
[1965], 116-153.

Wittgenstein, L [1958], Philosophical investigations, tr. by G. E. M. Anscombe, New York,
MacMillan Publishing Company.

E Wittgenstein, L [1978], Remarks on the foundations of mathematics, tr. by G. E. M. Ans-

combe, Cambridge, Massachusetts, The MIT Press.




