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o Predictive Analytics: Inferring the probabilities p; of various events
7

o Risk or damage events.

e Voter 7 choosing candidate <.

e Student ¢ choosing answer j.

o Player choosing move m; at chess.
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Chess and Tests: Prediction ~ Grading

The of drug-resistant strains of o) T p =) = £ = h ®
bacteria and viruses has

. g (d) 8
researchers” hopes that permanent
victories against many diseases 7 g m @ ‘ * ?
have been achieved.

s A ||
@ vigor . . corroborated 5 <§b e) 5
@ feebleness . . dashed 4 8 & ‘ ug 4
@ proliferation . . blighted 3 ; /2”’:‘ ] 3
=
@ destruction . . disputed 2 (b) a g & 2
@ disa i 3
ppearance . . frustrated
a b [=] d & b g h

{source: itunes.apple.com)



Modeling and Predictivity (at Chess)

Multinomial Logit Model

Given options my,..., my and information X = Xi,..., X; about all of
them, and characteristics S of a person choosing among them, we want
to project the probabilities p; of m; being chosen.



Modeling and Predictivity (at Chess)

Multinomial Logit Model

Given options my,..., my and information X = Xi,..., X; about all of
them, and characteristics S of a person choosing among them, we want
to project the probabilities p; of m; being chosen. First define numbers
u; = g(X, S); often thought of as “utilities.”



Modeling and Predictivity (at Chess)

Multinomial Logit Model

Given options my,..., my and information X = Xi,..., X; about all of
them, and characteristics S of a person choosing among them, we want
to project the probabilities p; of m; being chosen. First define numbers
u; = g(X, S); often thought of as “utilities.” Then the multinomial
logit (MNL) model represents the probabilities via

log(p;) = a + Bu,.



Modeling and Predictivity (at Chess)

Multinomial Logit Model

Given options my,..., my and information X = Xi,..., X; about all of
them, and characteristics S of a person choosing among them, we want
to project the probabilities p; of m; being chosen. First define numbers
u; = g(X, S); often thought of as “utilities.” Then the multinomial
logit (MNL) model represents the probabilities via

log(p;) = a + Bu,.

The quantities
L = e*"Pu

are called lzkelthoods.



Modeling and Predictivity (at Chess)

Multinomial Logit Model

Given options my,..., my and information X = Xi,..., X; about all of
them, and characteristics S of a person choosing among them, we want
to project the probabilities p; of m; being chosen. First define numbers
u; = g(X, S); often thought of as “utilities.” Then the multinomial
logit (MNL) model represents the probabilities via

log(p;) = a + Bu,.
The quantities
Lj = e*™Pu
are called ltkelthoods. Then the probabilities are obtained simply by
normalizing them:
L .

7
= ———— =d4ef SOftmaz(Bu,...,Lus).
Zj:l L]/

by



Modeling and Predictivity (at Chess)

Multinomial Logit Model

Given options my,..., my and information X = Xi,..., X; about all of
them, and characteristics S of a person choosing among them, we want
to project the probabilities p; of m; being chosen. First define numbers
u; = g(X, S); often thought of as “utilities.” Then the multinomial
logit (MNL) model represents the probabilities via

log(p;) = a + Bu,.
The quantities
L = e*"Pu

are called ltkelthoods. Then the probabilities are obtained simply by

normalizing them:

_ L
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Finally obtain S by fitting; e® becomes a constant of proportionality so

that the p; sum to 1.

; =d4ef SOftmaz(Bu,...,Buy).
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Chess Decision Setting

One player P with characteristics S.

Multiple game turns t, each has possible moves m; ;.

For a given turn (i.e., chess position) ¢, legal moves are
my,...,mj, ..., my (index ¢ understood).

Moves indexed by values v1, ..., vs in nonincreasing order.
Values determined by strong chess programs. Not apprehended
fully by P (bounded rationality, fallible agents).

Raw utilities u; = d(v;, v;) by some difference-in-value function 4 in
either “pawn units” or “chance of winning” units.

Parameter § treated as a divisor s of those units, i.e., § = %
Second parameter c allows nonlinearity: §(vi, v;)¢. (First ¢ = 1.)

MNL model (called “Shares” by me) then equivalent to:
8(v,v;)\ €
log(p;) = U; = <( ; ]))

and we go as before. Taking log(p;) —log(p1) on LHS gives same model.
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Alternative “Loglog-Linear” Model

Represent a difference in double logs of probabilities on left-hand side
instead. Now nice to keep signs nonnegative by inverting probabilities.

loglog(1/p;) —loglog(1/p1) = BU;

The B can be absorbed as ()¢ even when ¢ # 1 so my nonlinearized
utility still fits the setting. Then abstractly:

log(1/p;) N _
1og(1/p]1) = exp(BU;) =aer Ly
log(1/p;) = log(1/p1)L,
log(p;) = log(p1)L;
p; = p’.

Analogy to power decay, Zipf's Law. .. Proceed to demo.



