
Statistical Inference (Re: Chess) and Computational Complexity

Statistical Inference (Re: Chess)
and Computational Complexity

Kenneth W. Regan1

University at Buffalo (SUNY)

8 September, 2020

1Recent and Current Students: Tamal Biswas, Chaowen Guan; Marissa
Dominijanni, Chen Xu
Includes work using the UB Center for Computational Research (CCR)



Statistical Inference (Re: Chess) and Computational Complexity

A Basic Inference Example

Suppose positive cancer result from test that is 99.9% accurate.

Suppose the cancer affects 1 in 5,000 people.

What are the odds that you have the cancer?

Let’s give 5,000 people the same test. We will expect to get:

1 true positive from 1 person who has the cancer;
5 false positives from the other 4,999 people who don’t have it.

All you know is you are 1 of 6 positives, 5 of whom do not have it.

So: 1 in 6.

Now, however, suppose the test is for Covid-19.

Affects 1 in 50 people in US. (Local positivity rate even higher.)

The 5,000 tests give same 5 false positives but 100 true positives.

So odds are 20-to-1 in favor.



Statistical Inference (Re: Chess) and Computational Complexity

Chess Cheating Before 2020...

I have been dealing this year with essentially the same numbers. I
have a statistical test for cheating with computers (in human-only
tournaments) that gives a z-score representing “face-value odds”
against the null hypothesis of fair play.

In over-the-board chess, the prior probability of a player cheating
is about 1-in-5,000.

Even if I have 99.999% accuracy, meaning face-value odds of
100,000-to-1, that becomes only 20-1 odds after the prior—not
enough confidence for comfortable satisfaction (CAS criterion).

Using a z > 5.00 criterion (3.5 million-to-one face value) gives a
1-in-700 case-error rate.

Tournaments recognized by the International Chess Federation
(FIDE) comprise 50,000-to-100,000 players per year.

At 10–20 cases a year for OTB chess (fewer than 5 coming to
hearings), that projects an error once per 35 years at most.



Statistical Inference (Re: Chess) and Computational Complexity

...And Since Chess Went Online

But in online chess, the observed rate is above 2%.

Now sanctioning at 99.9% face-value confidence is 1-in-20 case-error
(still too high).

Sanctioning at 99.99% (z > 3.75) is about 1-in-200 case error.

Sanctioning at 99.999% (z > 4.25) is 1-in-2,000 case error. OK?

However the rate of online play is also much higher.

Over 30 million games per month on each of several major
chess servers. (How many in yea-recognized tournaments?)

So 1-in-2,000 case error could mean errors every week...

But are online sanctions themselves less serious?

FIDE is 7th largest world sporting body by # of member
federations (FIFA is 4th), higher by # of registered players.

Have been in policy “summits”; recent word of thanks.

https://www.fide.com/news/703


Statistical Inference (Re: Chess) and Computational Complexity

Predictive Analytics

A Predictive Analytic Model:

Addresses events or decisions with possible outcomes
m1,m2, . . . ,mj , . . .

Assigns to each mj a probability pj .

Projects risk/reward quantities associated to the outcomes.

Should also assign confidence intervals for pj and those quantities.

Examples of areas that use predictive models:

Insurance

Weather forecasting

Investment managing

Equity markets

Betting—in particular, setting initial odds in horse racing etc.

In my model, the mj are possible moves in a given chess position.



Statistical Inference (Re: Chess) and Computational Complexity

Decision Making in Chess... and Tests



Statistical Inference (Re: Chess) and Computational Complexity

Advantages of Chess Model

1 Large data: tens of millions of moves in the public record of
games.

2 Known and Stable Standards: Quality in chess measured by
Elo rating scale.

3 Depth and level of thinking natural from structure of game.

4 Intrinsic formulation of difficulty.

5 CSE735 in Fall 2019: “Introspected” model’s own predictive
error.

6 Led to new test based on Spiegelhalter’s Z-test.

7 Model update in April 2020 deployed it just in time...

8 Discover new scientific regularities of human thought
processes.



Statistical Inference (Re: Chess) and Computational Complexity

Computational Complexity

The study of the time needed to solve computational problems, and
how much memory and other resources computers require.

Largely independent of the computer model, beyond a fundamental
divide into serial, parallel, and quantum.

Main technical achievement: the relation of computational
problems by reducibility.

Main scientific surprise:

The many thousands of computational problems that have
been studied in many disciplines, some for centuries, cluster into
barely over a dozen equivalence classes under reducibility.

The biggest cluster is the class of NP-complete problems.



Statistical Inference (Re: Chess) and Computational Complexity

P=NP and Worse

P: problems with algorithms that solve them in polynomial time:

As the size of the data doubles, the time needed goes up by at
most a linear factor: t(n) = nk =⇒ t(2n) ≤ Kt(n), K = 2k.

NP: “Nondeterministic” Polynomial Time: If you know a secret
fact or guess a good answer, you can verify and teach it to
someone in polynomial time.

Example: Given a Boolean formula f like

f = (x1 ∨ (¬x2)) ∧ ((¬x1) ∨ x2 ∨ x3) ∧ ((¬x2) ∨ (¬x3)),

is there a way to make f true?

Called Satisfiability (SAT).

Equivalent to ¬f not being a tautology.

Is NP-complete, so NP = P ⇐⇒ SAT belongs to P.

We don’t even know whether SAT can be solved in linear time!



Statistical Inference (Re: Chess) and Computational Complexity

Other Problems and Models

Factoring is among a handful of problems in NP not known to be
complete or in P.

RSA security depends on it, so many want it to be hard.

But solvable in polynomial time by a quantum computer.

Textbook on quantum algorithms; blog series: Can QCs be Built?

Research on simulating quantum circuits by logic and algebra:

x1 H
y0

• H
y2 v1(=y2+y1y3−2y1y3y2)

b1

x2 H
y1

• • y1

x3

v0(=x3+y0y1−2y0y1x3)
H

y3
• b3

p1 = p0 XOR (y0 & x1) p2 = p1 XOR (y1 & x2) v0 = x3 XOR (y0 & y1)

p3 = p2 XOR (y2 & y0) p4 = p3 XOR (y3 & v0) v1 = y2 XOR (y3 & y1)


