Chess and Informatics

Kenneth W. Regan University at Buffalo (SUNY)

CISIM 2017 Keynote

Chess and CS...

- Chess: "The Drosophila of AI" (Herbert Simon, John McCarthy, after Alexander Kronod)
- Advice for AI grad students 10 years ago: "Don't do chess." (I've lost my source but see Daniel Dennett, "Higher-order Truths About Chmess" [sic], 2006)
- From 1986 to 2006, I followed this advice. Turned down many requests for what I saw as "me too" computer chess. Main area $=$ computational complexity, in which I also partner Richard Lipton's popular blog.
- Then came the cheating accusations at the 2006 world championship match. . .
- Now: chess gives a window on CS advances and data-science problems.

External History of Computer Chess: Part One

- 1950s: Papers by Turing, Shannon, Newell-Simon-Shaw, others..., programs by Prinz, Bernstein, Russian BESM group.
- 1960s: First programs able to defeat club-level players.
- 1968: David Levy, International Master (my rank) bet McCarthy and Newell \$1,000 that no compter would defeat him by 1978.
- 1978: Levy defeats Chess 4.7 by $4.5-1.5$ to win bet, but computer wins first ever game over master.
- 1981: Cray Blitz (software by Robert Hyatt) achieves first "Master" rating, followed soon by Ken Thompson's Belle.
- 1988: HiTech by Hans Berliner of CMU defeats grandmaster (GM) Arnold Denker in match; Deep Thought by another CMU group defeats GM and former world championship candidate Bent Larsen in a tournament game.
- 1997: Deep Blue defeats Garry Kasparov 3.5-2.5 in match.

Internal Story of Computer Chess

- Chess was microcosm of human thinking.
- "Chess Knowledge" approach persisted into 1970s.
- "Brute Force" considered dominant by 1980.
- Hsu et al. (1990): "emulation" and "engineering" camps.
"It may seem strange that our machine can incorporate relatively little knowledge of chess and yet outplay excellent human players. Yet one must remember that the computer does not mimic human thought-it reaches the same ends by different means."
- Forecast that a basic search depth of 14-15 plies from raw speed of 1 billion positions per second would give an Elo Rating of $\mathbf{3 4 0 0}$.
- Real story IMHO is benchmarking: How much measurable problem-solving power can we get out of a machine?

Benchmarks and Ratings

- Famous benchmarks: Whetstones, Dhrystones, mega/giga/tera/peta-FLOPS via LINPACK, IOzone,...
- Other benchmarks across business suites, embedded computing functions...
- Whole-system benchmarking is harder.
- Do we include human software acumen?
- Ratings ground performance in human competitive arenas.
- Personnel evaluation tests and other psychometrics are partial like course grades...
- Elo Ratings originated for chess by Arpad Elo in the US in the 1950s.
- Adopted by the World Chess Federation (FIDE) from 1971 on.
- Used by some other sporting bodies.
- Embraced by the politics and sports prediction website Five ThirtyEight.

Elo Ratings R_{P} for players P

- Based on idea that your points expectation e goes from 0.0 to 1.0 as a function of difference $x=R_{P}-R_{O}$ to your opponent's rating.
- Most commonly based on the logistic curve

$$
e=\frac{1}{1+e^{-B x}} \quad \text { with } \quad B=\ln (10) / 400
$$

- Makes a 200-point difference == just over 75% expectation.
- Adding e over every game in a tournament yield expected score e_{P}.
- New rating is $R_{P}^{\prime}=R_{P}+K \cdot\left(s_{P}-e_{P}\right)$ where s_{P} is $P^{\prime} s$ actual score and the factor K is set by policy (e.g. $K=10$ for established players but $K=40$ for young/novice/rapidly improving ones).
- Since only differences matter, absolute rating numbers are arbitrary.
- FiveThirtyEight centers on 1500 and rated Golden State at 1850, Cavaliers at 1691 before the NBA Finals began: 28.6% chance for Cavs per game, about 11% for 7 -game series.

Expectation Curve for Elo Differences

Source: http://www.mrscienceshow.com/2009/06/sumo-vs-chess-how-their-ranking-systems.html

Chess Ratings and "Human Depth"

- 600: Adult beginner (scholastics go under 100...)
- 1000: Minimum FIDE rating, beginning tournament player.
- 1500: Solid club player.
- 2000: Expert.
- 2200: Master.
- 2500: Typical Grandmaster.
- 2800: Human championship level.
- 3200: Exceeded by today's best programs on commodity PCs.
- 3400-3500: Ceiling of perfect play??

László Mérő, Ways of Thinking (1990): Chess has human depth of 11 (or 14) class units of 200 Elo, 14 (or 17) including computers.

Programs for Chess and Other Games

Game Representation + Evaluation + Search

- Game Rep.: Hardware advances and software tricks.
- Base evaluation $e_{0}(p)$ for each position p.
- Typically linear: $\sum_{j} w_{j}$ (value of factor j).
- Factors begin with 1 for each pawn, 3+ for Knight, 3++ for Bishop, 5 per Rook, 9 (or 10 or...) for the Queen, then go into many "positional" elements.
- Weights w_{i} now automatedly "tuned" by extensive game testing.
- Eval in discrete units of 0.01 called centipawns.
- Minimax search: $e_{d}(p)=\max _{i \leq \ell(p)} e_{d-1}\left(p\left[m_{i}\right]\right)$.
- Negate eval for opponent's view and recurse: negamax search.
- Basic branching factor $\ell \approx 35$ legal moves on average.

Sound Search Principles

- If we already know an opponent reply n_{2} to move m_{2} that makes $e_{d-1}\left(p\left[m_{2}\right]\right)<e_{d-1}\left(p\left[m_{1}\right]\right)$, then no need to search any other replies to m_{2}.
- We need not be precise about values far from $v=e_{d}(p)$.
- Hence we can save by guessing not just v but a window $\alpha<v<\beta$ around v, using " $<\alpha$ " and " $>\beta$ " as boundary "cutoff" values.
- If we guess wrong and it appears $v<\alpha$ ("fail low") or $v>\beta$ ("fail high"), widen the window and start over.
- Successful $\alpha-\beta$ pruning reduces branching factor to $\approx \sqrt{\ell}$.

Alpha-Beta Search—Diagram

Iterative Deepening

- Work in rounds of search $d=1,2,3, \ldots$
- Use rankngs of moves at $d-1$ to optimize $\alpha-\beta$ pruning: "try the best moves first."
- Use value v_{d-1} as best guess for v_{d} to center the window.
- Extend search to depths $D>d$ along lines of play that have checks and captures and/or moves that are singular (meaning next-best move is much worse).
- Stop extending when line becomes quiescent.
- Each stage yields a well-defined principal variation (PV) along which:

$$
e_{d}(p)=e_{d-1}\left(p^{\prime}\right)=\cdots=e_{0}\left(p^{(D)}\right)
$$

- Stop when time budget dictates making a move.
- Values $v_{1}, v_{2}, v_{3}, \ldots, v_{d}, \ldots$ converge to "true value."

"Soundy" Search Principles

- Often one can "prove" cutoffs faster by letting the other player make two moves in a row.
- Unsound for Zugzwang positions (where you want your opponent not you to have to move), but there are smart ways to avoid being fooled by them.
- Evaluate inferior moves only to depth $c \ll d$.
- These "Null Move" and "Late Move" reduction heuristics do the most to reduce the operatioal branching factor to about 1.5-1.6(!)
- Note: $1.55^{40} \approx 6^{10}=$ only about 60 million(!)
- The champion program Stockfish 8 reaches depth 40 within an hour on my laptop.
- Nominal depth d really a mix of depth c and depth D; actual visited nodes are mostly wrapped around the PV. How effective?

The Logistic Law...

What percentage e of points do human players (of a given rating R) score from positions that a program gives value v ?

Answer:

$$
e \approx \frac{1}{1+e^{-B v}}
$$

where B depends on R.
Exact fit to $A+\frac{1-2 A}{1+\exp (-B v)}$ where A is small; A represents the chance of missing a checkmate or otherwise blowing a "completely winning"game.

Data from all available games at standard time controls with both players rated within 10 (or 12) of an Elo quarter-century point 1025, 1050, 1075, 1100, ..., 2800. From 1,000s to 100,000s of positions in each group, just over 3 million positions total.

Example: Elo 1200

Points frequency vs. eval for AA1200_SF7d00LREG2b100sk4

Example: Elo 1600

Points frequency vs. eval for AA1600_SF7d00LREG2b100sk4

Example: Elo 2000

Points frequency vs. eval for AA2000_SF7d00LREG2b100sk4

Example: Elo 2400

Points frequency vs. eval for AA2400_SF7d00LREG2b100sk4

Example: Elo 2800

Points frequency vs. eval for AA2800_SF7d00LREG2b100sk4

Example: Elo 2800 Ignoring Draws

Points frequency vs. eval for AA2800 SF7d00LREG2b200sk4nd

Significances

(1) Rated skill difference x and position value v occupy the same scale-both multiplied by B.
(2) For expert players, being rated 150 Elo higher is like having an extra Pawn.
(3) B has a third role as the conversion factor between engine scales.

- That is, if one program values a Queen as 9 and another says 10 , you might expect to convert the latter by $9 / 10$.
(a) Higher B for higher rating thus means we perceive values more sharply.

The Logistic Law ... is Technically False

> A program's behavior is unchanged under any transformation of values $e_{d}\left(m_{i}\right)$ that preserves the rank order of the moves m_{i}.

- Some commercial programs do such transformations after-the-fact.
- The open-source Stockfish program does not.
- Amir Ban, co-creator of both the chess program Deep Junior and the USB flash drive, attests that the law comes from doing things naturally and maximizes predictivity as well as playing strength for programs.

A Second Tweak to the Logistic Law

Conditioned on the position having value v from your point of view, would you rather have it be your turn to move or the opponent's?

- The value $v==$ the value of the best move, so it "prices in" your finding it.
- More crudely put, the player to move has the first chance to make a game-losing blunder.
- Measured difference of $3-4 \%$ in expectation.
- The curves you saw were symmetrized by including both player-to-move and opponent-to-move data points.
- GM Savielly Tartakover (Polish: Ksawey Tartakower, born in Rostov-on-Don): "The game is won by the player who makes the next-to-last blunder."

Tartakover's Dictum. . .

Position Evaluation vs. Win Expection

... Is Not True for Computers

History of Computer Chess - Part 2

- 1997: Deep Blue abruptly retires.
- 1998: Kasparov says, "if you can't beat 'em, join 'em" and promotes Advanced Chess where players team with one computer.
- (Freestyle Chess allows any number of computers; majpr events sponsored in 2005-2008 and 2014.)
- 1999-2003: Smaller systems beat GMs but only tie with Kasparov and later World Champion Viswanathan Anand.
- 2004-2005: Fritz, Deep Junior, and massively parallel Hydra beat WC Challenger class players 16.5-7.5 in two Bilbao Human-Computer tournaments.
- 2005: Souped-up Hydra crushes GM Michael Adams 5.5-0.5.
- 2006: WC Vladimir Kramnik loses to Deep Fritz 10 on ordinary quad-core PC by 4-2; he overlooks Mate-in-1 in one game.

No human GM has played a computer on even terms in a sponsored match since then.

History of Computer Chess - Part Deux

- 2006: GM Veselin Topalov accuses Kramnik of getting moves from Fritz 9 by Internet cable to his toilet-the only off-camera part of their 2006 WC match milieu.
- Only evidence given was alleged too-high "coincidence rates" of Kramnik's moves with those liked by Fritz 9.
- Frederic Friedel, co-founder of Fritz maker ChessBase: "Can anyone help us evaluate such statistical accusations?" \rightarrow my involvement.
- 2009: Smartphone "Pocket Fritz" measured at 2900+ performance crushing 2250-level human players 9.5-0.5.
- 2010: First later-proven case involving top-100 player.
- 2012-13: Borislav Ivanov produced my first-ever z-score above 3.5. It was >5.5. Higgs Boson declared discovered at $z=5.1$.
- 2013: FIDE formed Anti-Cheating Commission.
- 2014-2017: More cases, including players caught stashing smartphones in toilet stalls.

Fantastic CS Success Story

- Chess is a hard problem. Narrowly defined but needs broad resources.
- Advances in hardware first.
- Later trumped by advances in software.
- Albert Silver 2014 experiment: Komodo 8 on smartphone trounced 2006 leader Shredder 9 on hardware 50 times faster.
- Still not emulating the human mind...
- But powerful enough to "scope" players' minds...
- ... aided by acuity in modeling.

Predictive Models

Given data and analysis on potential events E_{1}, \ldots, E_{L} estimate probabilities p_{1}, \ldots, p_{L} for them to occur.

Examples:

- Some of the events E_{1}, \ldots, E_{m} are natural disasters.
- E_{1}, \ldots, E_{L} are potential courses that a disease can take.
- The events are correct answers on an exam with L questions, and we want to estimate the distribution of results.
- The events are the legal moves in a chess position. They are mutually exclusive and (together with "draw" or "resign") collectively exhaustive: $\sum_{i} p_{i}=1$.
- Cost of a (non-optimal) move $m_{i}==$ its difference in value $\delta_{i}=\delta\left(v_{1}, v_{i}\right)$ to the first move m_{1}.
- Predicted cost: $\sum_{i=1}^{\ell} p_{i} \delta_{i}$. Scaled down when $\left|v_{1}\right|$ is high.

Inputs and Outputs

(1) Domain: A set T of decision-making situations t.

Chess game turns
(2) Inputs: Values v_{i} for every option at turn t.
(3) Parameters: s, c, \ldots denoting skills and levels.
(3) Defines fallible agent $P(s, c, \ldots)$.
(6) Main Output: Probabilities $p_{i, t}$ for $P(s, c, \ldots)$ to select option i at time t.
(0) Derived Outputs (Aggregate Statistics):

$$
\begin{aligned}
\mathrm{MM} & =\sum_{t} p_{1, t} & & \text { Move-Match } \\
\mathbf{E V} & =\sum_{t} \sum_{i: \delta_{i, t}=0} p_{i, t} & & \text { Equal-top Value } \\
\mathbf{A S D} & =\sum_{t} \sum_{i} p_{i, t} \delta_{i, t} & & \text { Average Scaled Difference. }
\end{aligned}
$$

Obtaining the Proabilities

- Each move m_{i} is assigned a perceived inferiority $z_{i} \geq 0$.
- Dimensionless, not in centipawn units like δ_{i}.
- Exponential decay:

$$
p_{i}=p_{1}^{g\left(z_{i}\right)}
$$

where $g(0)=1, u_{i}=g\left(z_{i}\right) \geq 1$ is the "utility share curve."

- Could be $g\left(z_{i}\right)=z_{i}+1$ but a second layer of exponentiation works better (so far).
- Have used $g(z)=e^{z}$ and $g(z)=\frac{e^{z}+1}{2}$; the latter makes $1 / g(z)$ a "folded" logistic curve.
- Then calculate p_{1} to make $\sum_{i} p_{i}^{u_{i}}=1$.

Given $u_{1}, \ldots, u_{\ell} \geq 1$, how to solve for p giving $p^{u_{1}}+\cdots+p^{u_{\ell}}=1$? Better way than Newton?

Inferiority Main Equation

$$
z_{i}=\left(\frac{\delta_{i}}{s}\right)^{c}
$$

- Parameters s for sensitivity, c for consistency.
- ∂s greatest near $\delta_{i}=0 ; \partial c$ takes over for large mistakes.
- Given any sample of positions, fit s, c to make projected MM and ASD agree with the sample values.
- Makes MM and ASD into unbiased estimators (EV generally conservative).
- Monotone in sense that better moves always get higher probability no matter how weak the player, and an uptick in the value of a move always increases its probability.
- Not only yields linear relation $E=\alpha s+\beta c$ to Elo rating, but the training gives good progressions $\left[s_{E}\right]$ and $\left[c_{E}\right]$ in each parameter.
- Unique fit and Intrinsic Performance Rating (IPR) for any set of games.

How Sensitive Are We?

Conditioned on the best move m_{1} being superior to m_{2} by x and one of m_{1} or m_{2} being played, with what frequency f_{1} do 2000 -rated players prefer m_{1} ?

- $x=0.01, f_{1}=52.85 \%$.
- $x=0.02, f_{1}=53.83 \%$.
- $x=0.03, f_{1}=56.08 \%$.
- $x=0.04, f_{1}=56.165 \%$.
- $x=0.05, f_{1}=58.28 \%$.
- $x=0.00, f_{1}=58.72 \%$.

Co? Note: Sample sizes are 2,605-7,701 positions each, out of 140,999 positions by 2000-rated players overall.

It's an ESP Test

Same thing for 2600-rated players, 102,472 positions overall:

- $x=0.01, f_{1}=54.78 \%$.
- $x=0.02, f_{1}=54.64 \%$.
- $x=0.03, f_{1}=56.99 \%$.
- $x=0.04, f_{1}=57.86 \%$.
- $x=0.05, f_{1}=61.11 \%$.
- $x=0.00$? $f_{1}=60.22 \%$.
- Last dataset has 10,611 turns with tied-optimal moves.
- Go back all the way to 1971 -when there was no Stockfish 7 program.
- Stockfish 7 would not diminish in game-playing quality at all if m_{1} and m_{2} were switched in those situations. How can we "precognite" which one it will list first??? An ESP test that humans pass over 60%.

Measuring "Swing" and Complexity and Difficulty

- Non-Parapsychological Explanation:

Measuring "Swing" and Complexity and Difficulty

- Non-Parapsychological Explanation: Stable Library Sorting.
- Chess engines sort moves from last depth to schedule next round of search.
- By stability, lower move can become 1st only with strictly higher value.
- Lead moves tend to have been higher at lower depths. Lower move "swings up."
- Formulate numerical measure ρ_{i} of swing "up" and "down" (a trap).
- When best move swings up 4.0-5.0 versus $0.0-1.0$, players rated $2700+$ find it only 30% versus 70%.
- Goal is to develop a Challenge Quotient based on how much trappy play a player sets for the opponent

Measuring "Swing" and Complexity and Difficulty

- Non-Parapsychological Explanation: Stable Library Sorting.
- Chess engines sort moves from last depth to schedule next round of search.
- By stability, lower move can become 1st only with strictly higher value.
- Lead moves tend to have been higher at lower depths. Lower move "swings up."
- Formulate numerical measure ρ_{i} of swing "up" and "down" (a trap).
- When best move swings up 4.0-5.0 versus $0.0-1.0$, players rated $2700+$ find it only 30% versus 70%.
- Goal is to develop a Challenge Quotient based on how much trappy play a player sets for the opponent-and emself.
- Separates performance and prediction in the model.

Example of "Swing" over Increasing Depths

The \qquad of drug-resistant strains of bacteria and viruses has \qquad researchers' hopes that permanent victories against many diseases have been achieved.vigor . . corroboratedfeebleness . . dashedproliferation . . blighteddestruction . . disputeddisappearance . . frustrated (source: itunes.apple.com)

Move	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
Nd2	103	093	087	093	027	028	000	000	056	-007	039	028	037	020	014	017	000	006	000
Bxd7	048	034	-033	-033	-013	-042	-039	-050	-025	-010	001	000	-009	-027	-018	000	000	000	000
Qg8	114	114	-037	-037	-014	-014	-022	-068	-008	-056	-042	-004	-032	000	-014	-025	-045	-045	-050
\ldots			\ldots			\ldots			\ldots			\ldots			\ldots			\ldots	
Nxd4	-056	-056	-113	-071	-071	-145	-020	-006	077	052	066	040	050	051	-181	-181	-181	-213	-213

Modeling "Heave"

$$
z_{i}^{\prime}=\left(\frac{\delta_{i}}{s}\right)^{c}+\left(\frac{h \cdot \rho_{i}}{s}\right)^{a \cdot c}
$$

- Coupling h, a to s, c in the second term gives the interpretation

$$
h, a>1 \Longrightarrow \rho_{i} \text { is more significant than } \delta_{i} .
$$

- Often allows solving EV plus 1 more equation for improved fits.
- But those fits usually give $h>1.5$, Uh-Oh!

Big Wins for the New Model

- Predicts tied-move frequencies without an ad-hoc patch.
- Fits with 4 equations often make 30 others follow...
- No longer strictly monotone: Weaker players may prefer weaker moves that look better at early depths, more so if they have higher h.
- Separates prediction and performance-assessment components.
- Often accurately predicts inferior moves to be more likely, But...

Fine-Grained Trouble Under the Dial

- ... at the same time it gives near-zero probability to reasonable moves that were played.
- Even sometimes gives ϵ projection to the best move!
- [show examples from web article, "Stopped Watches and Data Analytics"]
- So far the cause seems to be that the fit is latching on to features of ρ_{i} that allow it to be welded onto the frequency histogram $f_{1}, f_{2}, f_{3}, \ldots$.

From "Data Skeptic" to "Model Skeptic"

- "Data Skeptic" is even the name of a podcast I once appeared on.
- Jaap van den Herik's CISIM 2016 keynote gave a healthy dose of it.
- "Model Skpetic" is represented by Cathy O'Neil's book Weapons of Math Destruction.
- And by the University of Washington-Seatle course http://callingbullshit.org/.

From Jaap van den Herik's CISIM 2016 Keynote

"In data science we nowadays distinguish seven phases of activities:
(1) collecting data,
(2) cleaning data,
(3) interpreting data,
(4) analyzing data,
(6) visualization of data,
(6) narrative science, and
(0) the emergence of new paradigms.

These are our recommendations:
(1) Increase research on AI systems for Big Data and Deep Learning with emphasis on moral constraints.
(2) Increase research on AI systems for Big Data and Deep Learning with emphasis on the prevention of AI systems to be hacked.
(3) Establish (a) a committee of Data Authorities and (b) an ethical committee.

Adding a few more "Commandments"

- Models should be "introspected" for meanings of their quantities...
- ... and for implications of those meanings.
- Cross-validation not just on subsets of the data but also of models.
- Models should be "Good At Any Grain"-?
- [your reactions go here]
- Thank you very much for the invitation!

