The “Fidelity” Statistical Model
Skill Rating and Cheating Detection

Kenneth W. Regan\(^1\)
University at Buffalo (SUNY)

21 April, 2014

\(^1\)Includes joint work with Guy Haworth and GM Bartlomiej Maciej. Sites: http://www.cse.buffalo.edu/~regan/chess/fidelity/ (my homepage links), http://www.cse.buffalo.edu/~regan/chess/ratings/ (not yet linked).
Outline

1. Cheating detection and much more.
Outline

1. Cheating detection and much more.

2. Two aspects of cheating detection:
 - General: Idea and necessity of \textit{z-score} concept.
1 Cheating detection and much more.

2 Two aspects of cheating detection:
 - General: Idea and necessity of z-score concept.
 - Specific: Operation of my particular model.
The “Fidelity” Statistical Model

Outline

1. Cheating detection and much more.

2. Two aspects of cheating detection:
 - General: Idea and necessity of \textit{z-score} concept.
 - Specific: Operation of my particular model.

3. Three tiers of application (partly depending on \textit{z-score}):
 - 1. Hint to arbiters during competitions
1 Cheating detection and much more.

2 Two aspects of cheating detection:
 - General: Idea and necessity of \textit{z-score} concept.
 - Specific: Operation of my particular model.

3 Three tiers of application (partly depending on \textit{z-score}):
 1 Hint to arbiters during competitions
 2 Support of observational evidence of cheating
The “Fidelity” Statistical Model

Outline

1. Cheating detection and much more.

2. Two aspects of cheating detection:
 - General: Idea and necessity of \textit{z-score} concept.
 - Specific: Operation of my particular model.

3. Three tiers of application (partly depending on \textit{z-score}):
 - 1. Hint to arbiters during competitions
 - 2. Support of observational evidence of cheating
 - 3. Standalone indication of cheating (needs \(z > 5 \), maybe 4.75 or 4.5).
The “Fidelity” Statistical Model

Outline

1. Cheating detection and much more.

2. Two aspects of cheating detection:
 - General: Idea and necessity of z-score concept.
 - Specific: Operation of my particular model.

3. Three tiers of application (partly depending on z-score):
 1. Hint to arbiters during competitions
 2. Support of observational evidence of cheating
 3. Standalone indication of cheating (needs $z > 5$, maybe 4.75 or 4.5).

4. Analytics: specific moves; Intrinsic Performance Ratings (IPRs).
Domain: A set of decision-making situations t. Chess game turns
A Predictive Analytic Model

1. **Domain:** A set of decision-making situations t.
 Chess game turns

2. **Inputs:** Values v_i for every option at turn t.
 Computer values of moves m_i
A Predictive Analytic Model

1. Domain: A set of decision-making situations t.
 Chess game turns

2. Inputs: Values v_i for every option at turn t.
 Computer values of moves m_i

3. Parameters: s, c, \ldots denoting skills and levels.
 Trained correspondence to chess Elo rating E
The “Fidelity” Statistical Model

A Predictive Analytic Model

1. Domain: A set of decision-making situations t. Chess game turns

2. Inputs: Values v_i for every option at turn t. Computer values of moves m_i

3. Parameters: s, c, \ldots denoting skills and levels. Trained correspondence to chess Elo rating E

4. Defines an idealized player $P(s, c, \ldots)$.
A Predictive Analytic Model

1. **Domain:** A set of decision-making situations \(t \).
 Chess game turns

2. **Inputs:** Values \(v_i \) for every option at turn \(t \).
 Computer values of moves \(m_i \)

3. **Parameters:** \(s, c, \ldots \) denoting skills and levels.
 Trained correspondence to chess Elo rating \(E \)

4. Defines an *idealized player* \(P(s, c, \ldots) \).

5. **Main Output:** Probabilities \(p_{t,i} \) for \(P(s, c, \ldots) \) to select option \(i \) at time \(t \).
A Predictive Analytic Model

1. **Domain:** A set of decision-making situations \(t \).
 - Chess game turns

2. **Inputs:** Values \(v_i \) for every option at turn \(t \).
 - Computer values of moves \(m_i \)

3. **Parameters:** \(s, c, \ldots \) denoting skills and levels.
 - Trained correspondence to chess Elo rating \(E \)

4. **Defines an idealized player** \(P(s, c, \ldots) \).

5. **Main Output:** Probabilities \(p_{t,i} \) for \(P(s, c, \ldots) \) to select option \(i \) at time \(t \).

6. **Derived Outputs:**
 - Aggregate statistics: move-match MM, average error AE, …
 - Projected confidence intervals for those statistics.
 - “Intrinsic Performance Ratings” (IPR’s).
How to Tell if a “Black Box” is Good?

1. View its operation on positive cases.
How to Tell if a “Black Box” is Good?

1. View its operation on positive cases.
2. View its operation on negative cases.
How to Tell if a “Black Box” is Good?

1. View its operation on positive cases.
2. View its operation on negative cases.
3. View its operation on some extreme cases.
How to Tell if a “Black Box” is Good?

1. View its operation on **positive** cases.
2. View its operation on **negative** cases.
3. View its operation on some **extreme** cases.
4. Compare it with “control” data from a huge amount of cases.
How to Tell if a “Black Box” is Good?

1. View its operation on positive cases.
2. View its operation on negative cases.
3. View its operation on some extreme cases.
4. Compare it with “control” data from a huge amount of cases.
5. Does it generate internal confidence intervals?
How to Tell if a “Black Box” is Good?

1. View its operation on **positive** cases.
2. View its operation on **negative** cases.
3. View its operation on some **extreme** cases.
4. Compare it with “control” data from a huge amount of cases.
5. Does it generate internal confidence intervals? **Yes.**
How to Tell if a “Black Box” is Good?

1. View its operation on positive cases.
2. View its operation on negative cases.
3. View its operation on some extreme cases.
4. Compare it with “control” data from a huge amount of cases.
5. Does it generate internal confidence intervals? Yes.
6. Compare empirical tests against those internals.
How to Tell if a “Black Box” is Good?

1. View its operation on positive cases.
2. View its operation on negative cases.
3. View its operation on some extreme cases.
4. Compare it with “control” data from a huge amount of cases.
5. Does it generate internal confidence intervals? Yes.
6. Compare empirical tests against those internals.
7. Then care theoretically what is inside the box.
How to Tell if a “Black Box” is Good?

1. View its operation on positive cases.
2. View its operation on negative cases.
3. View its operation on some extreme cases.
4. Compare it with “control” data from a huge amount of cases.
5. Does it generate internal confidence intervals? Yes.
6. Compare empirical tests against those internals.
7. *Then* care theoretically what is inside the box.
8. Currently a scientific workbench, not yet a finished product.
How to Tell if a “Black Box” is Good?

1. View its operation on positive cases.
2. View its operation on negative cases.
3. View its operation on some extreme cases.
4. Compare it with “control” data from a huge amount of cases.
5. Does it generate internal confidence intervals? Yes.
6. Compare empirical tests against those internals.
7. Then care theoretically what is inside the box.
8. Currently a scientific workbench, not yet a finished product.

[Demos.]
Main Principle and Schematic Equation

The probability $\Pr(m_i \mid s, c, \ldots)$ depends on the value of move m_i \textit{in relation to the values of other moves}.

- Too Simple:

 $$\Pr(m_i \mid s, c, \ldots) \sim g(s, c, \text{val}(m_i)).$$

 Doesn’t take values of the other moves into account.
Main Principle and Schematic Equation

The probability $\Pr(m_i \mid s, c, \ldots)$ depends on the value of move m_i in relation to the values of other moves.

- Too Simple:

 \[
 \Pr(m_i \mid s, c, \ldots) \sim g(s, c, \text{val}(m_i)).
 \]

 Doesn’t take values of the other moves into account.

- Cogent answer—let m_1 be the engine’s top-valued move:

 \[
 \frac{\Pr(m_i)}{\Pr(m_1)} \sim g(s, c, \text{val}(m_1) - \text{val}(m_i)).
 \]

 That and $\sum_i \Pr(m_i) = 1$ minimally give the Main Principle.
The probability $\Pr(m_i \mid s, c, \ldots)$ depends on the value of move m_i in relation to the values of other moves.

- **Too Simple:**
 \[
 \Pr(m_i \mid s, c, \ldots) \sim g(s, c, \text{val}(m_i)).
 \]
 Doesn’t take values of the other moves into account.

- **Cogent answer**—let m_1 be the engine’s top-valued move:
 \[
 \frac{\Pr(m_i)}{\Pr(m_1)} \sim g(s, c, \text{val}(m_1) - \text{val}(m_i)).
 \]
 That and $\sum_i \Pr(m_i) = 1$ minimally give the Main Principle.

- **Much Better answer** (best?): Use $\frac{\log(1/\Pr(m_1))}{\log(1/\Pr(m_i))}$ on LHS.
The “Fidelity” Statistical Model

Main Principle and Schematic Equation

The probability $\Pr(m_i \mid s, c, \ldots)$ depends on the value of move m_i \textit{in relation to the values of other moves}.

- **Too Simple:**

 $$\Pr(m_i \mid s, c, \ldots) \sim g(s, c, \text{val}(m_i)).$$

 Doesn’t take values of the other moves into account.

- **Cogent answer**—let m_1 be the engine’s top-valued move:

 $$\frac{\Pr(m_i)}{\Pr(m_1)} \sim g(s, c, \text{val}(m_1) - \text{val}(m_i)).$$

 That and $\sum_i \Pr(m_i) = 1$ \textbf{minimally} give the \textbf{Main Principle}.

- **Much Better answer** (best?): Use $\frac{\log(1/\Pr(m_1))}{\log(1/\Pr(m_i))}$ on LHS.

- Needs **Multi-PV** analysis—already beyond Guid-Bratko work.

- **Single-PV** data on millions of moves shows other improvements.
The “Fidelity” Statistical Model

The Data

- Over 1 million moves of 50-PV data: 62GB
The Fidelity Statistical Model

The Data

- Over 1 million moves of 50-PV data: 62GB
- Over 20 million moves of Single-PV data: 22 GB
The Data

- Over 1 million moves of 50-PV data: 62GB
- Over 20 million moves of Single-PV data: 22 GB
- = 42 million pages of text data at 2k/page.
- All taken on two quad-core home-style PC’s. Is this “Big Data”?
The “Fidelity” Statistical Model

The Data

- Over 1 million moves of 50-PV data: 62 GB
- Over 20 million moves of Single-PV data: 22 GB
- = 42 million pages of text data at 2k/page.
- All taken on two quad-core home-style PC’s. Is this “Big Data”?
The “Fidelity” Statistical Model

“Big-Data” Aspects
“Big-Data” Aspects

1. **Synthesis of two different kinds of data.**
 - Single-PV data acts as scientific control for Multi-PV data.
 - Covers almost entire history of chess.
 - Shows large-scale regularities.
1. **Synthesis of two different kinds of data.**
 - Single-PV data acts as scientific control for Multi-PV data.
 - Covers almost entire history of chess.
 - Shows large-scale regularities.

2. **Model design decisions based on large data.**
 - Logarithmic scaling law
 - “58%-42% Law” for probability of equal-value moves
 - Choice of fitting methods
1. Synthesis of two different kinds of data.
 - Single-PV data acts as scientific control for Multi-PV data.
 - Covers almost entire history of chess.
 - Shows large-scale regularities.

2. Model design decisions based on large data.
 - Logarithmic scaling law
 - “58%-42% Law” for probability of equal-value moves
 - Choice of fitting methods

3. Scientific discovery beyond original intent of model.
 - Human tendencies (different from machine tendencies...)
 - Follow simple laws...
Better, and Best?

Need a general function \(f \) and a function \(\delta(i) \) giving a *scaled-down* difference in value from \(m_1 \) to \(m_i \).

\[
\frac{f(Pr_E(m_i))}{f(Pr_E(m_1))} = g(E, \delta(i)).
\]

Implemented with \(f = \log \) and log-log scaling, as guided by the data.

Best model? Let weights \(w_d \) at different *engine depths* \(d \) reflect a player’s depth of calculation. Apply above equation to evals at each depth \(d \) to define \(Pr_E(m_i, d) \). Then define:

\[
Pr_E(m_i) = \sum_d w_d \cdot Pr(m_i, d).
\]

This accounts for moves that *swing* in value and idea that weaker players prefer weaker moves. *In Process Now.*
The “Fidelity” Statistical Model

Why Desire Probabilities?

- Allows to predict the # N of agreements with any sequence of moves m_t^* over game turns t, not just computer’s first choices:
 \[N = \sum_t \Pr_E(m_t^*). \]

- and it gives confidence intervals for N.
- Also predicts aggregate error (AE, scaled) by
 \[e = \sum_t \sum_i \delta(i) \cdot \Pr_E(m_i^t). \]

Comparing e with the actual error e' by a player over the same turns leads to a “virtual Elo rating” E' for those moves.

- IPR \equiv “Intrinsic Performance Rating.”
The “Fidelity” Statistical Model

The Turing Pandolfini?

- **Bruce Pandolfini** — played by Ben Kingsley in “Searching for Bobby Fischer.”
- 25th in line for throne of Monaco.
- Now does “**Solitaire Chess**” for Chess Life magazine:
 - Reader covers gamescore, tries to guess each move by one side.
 - E.g. score 6 pts. if you found 15.Re1, 4 pts. for 15.h3, 1 pt. for premature 15.Ng5.
 - Add points at end: say 150=GM, 140=IM, 120=Master, 80 = 1800 player, etc.
- Is it scientific?
- With my formulas, yes—using *your* games in *real* tournaments.
Training Sets: **Multi-PV** analyze games with both players rated:

- 2590–2610, "" "", extended to 2580–2620 in 1976–1979
- 2490–2510, all three times
- 2390–2410, (lower sets have over 20,000 moves)
- 2290–2310, (all sets elim. moves 1–8, moves in repetitions,
- 2190–2210, (and moves with one side > 3 pawns ahead)
- Down to 1590–1610 for years 2006–2009 only.
- 2600-level set done for all years since 1971.
The “Fidelity” Statistical Model

Training the Parameters

- Formula $g(E; \delta)$ is really
 \[
g(s, c; \delta) = \frac{1}{e^{x^c}} \quad \text{where} \quad x = \frac{\delta}{s}.
\]

- s for *Sensitivity*: smaller $s \equiv$ better ability to sense small differences in value.

- c for *Consistency*: higher c reduces probability of high-δ moves (i.e., blunders).

- Full model will have parameter d for depth of calculation.
For each Elo E training set, find (s, c) giving best fit.

Can use many different fitting methods...
 - Can compare methods...
 - Whole separate topic...
 - Max-Likelihood does *poorly*.

Often s and c trade off badly, but $E' \sim e(s, c)$ condenses into one Elo.

Strong linear fit—suggests Elo mainly influenced by error.
The “Fidelity” Statistical Model

Some IPRs—Historical and Current

Magnus Carlsen:
- 2983 at London 2011 (Kramnik 2857, Aronian 2838, Nakamura only 2452).
- 2855 at Biel 2012.

Bobby Fischer:
- 2921 over all 3 Candidates’ Matches in 1971.
- 2650 vs. Spassky in 1972 (Spassky 2643).
- 2724 vs. Spassky in 1992 (Spassky 2659).

Hou Yifan: 2971 vs. Humpy Honeru (2683) in Nov. 2011.

Paul Morphy: 2344 in 59 most imp. games, 2124 vs. Anderssen.

Capablanca: 2936 at New York 1927.

Alekhine: 2812 in 1927 WC match over Capa (2730).

Sebastien Feller Cheating Case

- Cyril Marzolo confessed 4/2012 to cheating most moves of 4 games. On those 71 moves:
 - Predicted match% to Rybka 3 depth 13: 60.1% ± 10.7%
 - Actual: 71.8%, z-score 2.18 (Barely significant: rumor says he used Firebird engine.)
 - AE test more significant: $z = 3.37$ sigmas.
 - IPR on those moves: 3240.
- On the other 5 games: actual $< $ predicted, IPR = 2547.
- Paris Intl. Ch., July 2010: 3.15 sigmas over 197 moves, IPR 3030.
- Biel MTO, July 2010: no significant deviation, alleged cheating on last-round game only.
What is a Scientific Control?

- If I say odds are 2,000-to-1 against Feller’s performance being “by chance,” then I should be able to show 2,000 other players who did not match the computer as much.

- (show “Control” site on Internet)

- But note—if I have many more performances, say over 20,000, then I should expect to see higher match % by non-cheating players! “Littlewood’s Law”

- (show)

- To be sure, stats must combine with other evidence.

- (show “Parable of the Golfers” page)

- Aside from cheating, what does this tell us about humanity?
1. Perception Proportional to Benefit

How strongly do you perceive a difference of 10 kronor, if:

- You are buying lunch and a drink in a pub. (100 Kr)
- You are buying dinner in a restaurant. (400 Kr)
- You are buying an I-pod. (1000 Kr)
- You are buying a car. (100,000 Kr)

For the car, maybe you don’t care. In other cases, would you be equally thrifty?

If you spend the way you play chess, you care maybe 4× as much in the pub!

(show pages)
2. Is Savielly Tartakover Right?

The winner is the player who makes the next-to-last blunder.

- We like to think chess is about Deep Strategy.
- This helps, but is it statistically dominated by blunders?
- Recent Examples:
 - USA-Russia and USA-China matches at 2012 Olympiad.
 - Gelfand-Anand 2012 Rapid playoff.
- My Average Error (AE) stat shows a tight linear fit to Elo rating.
- Full investigation will need ANOVA (analysis of variance).
3. Procrastination...

- (Show graph of AE climbing to Move 40, then falling.)
 - King’s Indian: 12. Bf3!? then 13. Bg2 N (novelty)
 - “Grischuk was already in some time pressure.”
- IPR for Astana World Blitz (cat. 19, 2715) **2135**.
- IPR for Amber 2010+2011 (cat. 20+21): **2545**.
- Can players be coached to play like the young Anand?
4. Human Skill Increasing Over Time?

- In 1970s, two 2700+ players: Fischer and Karpov. In 1981: none!
- Sep. 2012 list, 44 2700+ players. Rating Inflation?
- My results:
 - 2600 level, 1971–present:
 - Can argue 30-pt. IPR difference between 1980’s and now.
 - Difference measured at 16 pts. using 4-yr. moving averages, 10-year blocks.
 - Explainable by faster time controls, no adjournments?
- Single-PV AE stat in all Cat 11+ RR since 1971 hints at mild deflation.
- Moves 17–32 show similar results. Hence not just due to better opening prep?
- Increasing skill consistent with Olympics results.
Let’s say I am 2400 facing 2600 player.

My expectation is 25%. Maybe:

- 60% win for stronger player.
- 30% draw.
- 10% chance of win for me.

In 12-game match, maybe under 1% chance of winning if we are random.

But my model’s intrinsic error bars are often 200 points wide over 9–12 games.

Suggests to take event not game as the unit.

How can we be motivated for events? (show examples)
6. Are We Reliable?

- One blunder in 200 moves can “ruin” a tournament.
- But we were reliable 99.5% of the time.
- Exponential $g(s, c)$ curve fits better than inverse-poly ones.
- Contrary to my “Black Swan” expectation.
- But we are even more reliable if we can use a computer...
- (show PAL/CSS Freestyle stats if time).
7. Not Just About Chess?

- *Only chess aspect of entire work is the evaluations coming from chess engines.*
- No special chess-knowledge, no “style” (except as reflected in fitted s, c, d).
- General Problem: **Converting Utilities Into Probabilities** for color dark red fallible agents.
- Framework applies to **multiple-choice tests**, now prevalent in online courses.
- Alternative to current psychometric measures?
- Issue: Idea of “best move” at chess is the same for all human players, but “best move” in sports may depend on natural talent.
Conclusions

- Lots more to do!
- Can use helpers!
 - Run data with other engines, such as Stockfish.
 - Run more tournaments.
 - Run to higher depths—how much does that matter?
- Spread word about general-scientific aspects; fight gullibility and paranoia over cheating.
- Deter cheating too.
- Learn more about human decision making.
- Thus the Turing Tour comes back to the human mind.
- Thank you very much for the invitation.