Deep Analysis of Human Decision Making
Skill Rating and Cheating Detection

Kenneth W. Regan
University at Buffalo (SUNY)

14 November, 2013

1Includes joint work with Guy Haworth, Giuseppe DiFatta, GM Bartlomiej Macieja, and Tamal Biswas. Sites:
http://www.cse.buffalo.edu/~regan/chess/fidelity/ (my homepage links),
http://www.cse.buffalo.edu/~regan/chess/ratings/ (not yet linked).
A Rich and Deep Waterway, Albeit Narrow

Human decision-making in one area: Chess.
A Rich and Deep Waterway, Albeit Narrow

1. Human decision-making in one area: Chess.

2. In real not simulated competition.
A Rich and Deep Waterway, Albeit Narrow

1. Human decision-making in one area: Chess.

2. In real not simulated competition.

3. Supports studying *depth* and *biases* in thinking.
Human decision-making in one area: Chess.

In real not simulated competition.

Supports studying *depth* and *biases* in thinking.

Large-scale data finds robust patterns.
A Rich and Deep Waterway, Albeit Narrow

1. Human decision-making in one area: Chess.

2. In real not simulated competition.

3. Supports studying *depth* and *biases* in thinking.

4. Large-scale data finds robust patterns.

5. Model includes no details of chess other than move values supplied by computer analysis. Hence transferable at least to other games of strategy.
Human decision-making in one area: Chess.

In real not simulated competition.

Supports studying *depth* and *biases* in thinking.

Large-scale data finds robust patterns.

Model includes no details of chess other than move values supplied by computer analysis. Hence transferable at least to other games of strategy.

Isomorphic to multiple-choice testing with partial credits. Metrics such as “Intrinsic Performance Rating” (IPR) connect to standard item-response theory measures.
A Predictive Analytic Model

Domain: A set of decision-making situations t. Chess game turns
A Predictive Analytic Model

1. Domain: A set of decision-making situations t. Chess game turns

2. Inputs: Values v_i for every option at turn t. Computer values of moves m_i
A Predictive Analytic Model

1. **Domain:** A set of decision-making situations t.
 Chess game turns

2. **Inputs:** Values v_i for every option at turn t.
 Computer values of moves m_i

3. **Parameters:** s, c, \ldots denoting skills and levels.
 Trained correspondence to chess Elo rating E
A Predictive Analytic Model

1. **Domain**: A set of decision-making situations t. Chess game turns

2. **Inputs**: Values v_i for every option at turn t. Computer values of moves m_i

3. **Parameters**: s, c, \ldots denoting skills and levels. Trained correspondence to chess Elo rating E

4. **Defines** fallible agent $P(s, c, \ldots)$.

Main Output: Probabilities $p_t; i$ for $P(s, c, \ldots)$ to select option i at time t.

A Predictive Analytic Model

1. Domain: A set of decision-making situations t. Chess game turns
2. Inputs: Values v_i for every option at turn t. Computer values of moves m_i
3. Parameters: s, c, \ldots denoting skills and levels. Trained correspondence to chess Elo rating E
4. Defines fallible agent $P(s, c, \ldots)$.
5. Main Output: Probabilities $p_{t,i}$ for $P(s, c, \ldots)$ to select option i at time t.

A Predictive Analytic Model

1. Domain: A set of decision-making situations t. Chess game turns

2. Inputs: Values v_i for every option at turn t. Computer values of moves m_i

3. Parameters: s, c, \ldots denoting skills and levels. Trained correspondence to chess Elo rating E

4. Defines fallible agent $P(s, c, \ldots)$.

5. Main Output: Probabilities $p_{t,i}$ for $P(s, c, \ldots)$ to select option i at time t.

6. Derived Outputs:
 - Aggregate statistics: move-match MM, average error AE, \ldots
 - Projected confidence intervals for those statistics.
 - “Intrinsic Performance Ratings” (IPR’s).
Main Principle and Schematic Equation

The probability $\Pr(m_i \mid s, c, \ldots)$ depends on the value of move m_i in relation to the values of other moves.

- Too Simple:

 $$\Pr(m_i \mid s, c, \ldots) \sim g(s, c, \text{val}(m_i)).$$

 Doesn’t take values of the other moves into account.
Main Principle and Schematic Equation

The probability $\Pr(m_i \mid s, c, \ldots)$ depends on the value of move m_i in relation to the values of other moves.

- Too Simple:

$$\Pr(m_i \mid s, c, \ldots) \sim g(s, c, \text{val}(m_i)).$$

Doesn’t take values of the other moves into account.

- Cogent answer—let m_1 be the engine’s top-valued move:

$$\frac{\Pr(m_i)}{\Pr(m_1)} \sim g(s, c, \text{val}(m_1) - \text{val}(m_i)).$$

That and $\sum_i \Pr(m_i) = 1$ minimally give the Main Principle.
Main Principle and Schematic Equation

The probability $\Pr(m_i \mid s, c, \ldots)$ depends on the value of move m_i in relation to the values of other moves.

- **Too Simple:**

 $$\Pr(m_i \mid s, c, \ldots) \sim g(s, c, val(m_i)).$$

 Doesn’t take values of the other moves into account.

- **Cogent answer**—let m_1 be the engine’s top-valued move:

 $$\frac{\Pr(m_i)}{\Pr(m_1)} \sim g(s, c, val(m_1) - val(m_i)).$$

 That and $\sum_i \Pr(m_i) = 1$ minimally give the **Main Principle**.

- **Much Better answer** (best?): Use $\frac{\log(1/\Pr(m_1))}{\log(1/\Pr(m_i))}$ on LHS.
Main Principle and Schematic Equation

The probability $Pr(m_i \mid s, c, \ldots)$ depends on the value of move m_i in relation to the values of other moves.

- **Too Simple:**

 $$Pr(m_i \mid s, c, \ldots) \sim g(s, c, val(m_i)).$$

 Doesn’t take values of the other moves into account.

- **Cogent answer**—let m_1 be the engine’s top-valued move:

 $$\frac{Pr(m_i)}{Pr(m_1)} \sim g(s, c, val(m_1) - val(m_i)).$$

 That and $\sum_i Pr(m_i) = 1$ minimally give the Main Principle.

- **Much Better answer** (best?): Use $\log(1/Pr(m_1))$ on LHS.

- Needs Multi-PV analysis—already beyond Guid-Bratko work.

- **Single-PV** data on millions of moves shows other improvements.
The Data

- Over 2 million moves of 50-PV data: > 120 GB.
The Data

- Over 2 million moves of 50-PV data: > 120 GB.
- Over 30 million moves of Single-PV data: > 30 GB
The Data

- Over 2 million moves of 50-PV data: > 120 GB.
- Over 30 million moves of Single-PV data: > 30 GB
- = 75 million pages of text data at 2k/page.
- All taken on two quad-core home-style PC’s. Is this “Big Data”?
The Data

- Over 2 million moves of 50-PV data: > 120 GB.
- Over 30 million moves of Single-PV data: > 30 GB
- = 75 million pages of text data at 2k/page.
- All taken on two quad-core home-style PC’s. Is this “Big Data”?
“Big-Data” Aspects
“Big-Data” Aspects

1. **Synthesis of two different kinds of data.**
 - Single-PV data acts as scientific control for Multi-PV data.
 - Covers almost entire history of chess.
 - Shows large-scale regularities.
“Big-Data” Aspects

1 Synthesis of two different kinds of data.
 - Single-PV data acts as scientific control for Multi-PV data.
 - Covers almost entire history of chess.
 - Shows large-scale regularities.

2 Model design decisions based on large data.
 - Logarithmic scaling law
 - “58%-42% Law” for probability of equal-value moves
 - Choice of fitting methods
“Big-Data” Aspects

1. Synthesis of two different kinds of data.
 - Single-PV data acts as scientific control for Multi-PV data.
 - Covers almost entire history of chess.
 - Shows large-scale regularities.

2. Model design decisions based on large data.
 - Logarithmic scaling law
 - “58%-42% Law” for probability of equal-value moves
 - Choice of fitting methods

3. Scientific discovery beyond original intent of model.
 - Human tendencies (different from machine tendencies?)
 - Follow simple laws...
Better, and Best?

Need a general function \(f \) and a function \(\delta(i) \) giving a *scaled-down* difference in value from \(m_1 \) to \(m_i \).

\[
\frac{f(Pr_E(m_i))}{f(Pr_E(m_1))} = g(E, \delta(i)).
\]

Implemented with \(f = \log \) and log-log scaling, as guided by the data.

Best model? Let *weights* \(w_d \) at different *engine depths* \(d \) reflect a player’s depth of calculation. Apply above equation to evals at each depth \(d \) to define \(Pr_E(m_i, d) \). Then define:

\[
Pr_E(m_i) = \sum_d w_d \cdot Pr_E(m_i, d).
\]

This accounts for moves that *swing* in value and idea that weaker players prefer weaker moves. *In Process Now.*
Why Desire Probabilities?

- Allows to predict the # N of agreements with any sequence of moves m^*_t over game turns t, not just computer’s first choices:

$$N = \sum_t \Pr_E(m^*_t).$$

- and it gives confidence intervals for N.
- Also predicts aggregate error (AE, scaled) by

$$e = \sum_t \sum_i \delta(i) \cdot \Pr_E(m^*_t).$$

Comparing e with the actual error e' by a player over the same turns leads to a “virtual Elo rating” E' for those moves.

- IPR \equiv “Intrinsic Performance Rating.”
Bruce Pandolfini — played by Ben Kingsley in “Searching for Bobby Fischer.”

Now does “Solitaire Chess” for Chess Life magazine:
- Reader covers gamescore, tries to guess each move by one side.
- E.g. score 6 pts. if you found 15.Re1, 4 pts. for 15.h3, 1 pt. for premature 15.Ng5.
- Add points at end: say 150=GM, 140=IM, 120=Master, 80 = 1800 player, etc.

Is it scientific?

With my formulas, yes—using your games in real tournaments.

Goal is natural scoring and distribution evaluation for multiple-choice tests, especially with partial-credit answers.
Training Sets: **Multi-PV** analyze games with both players rated:

- **2490–2510**, all three times
- **2390–2410**, (lower sets have over 20,000 moves)
- **2290–2310**, (all sets elim. moves 1–8, moves in repetitions,
- **2190–2210**, (and moves with one side > 3 pawns ahead)
- Down to **1590–1610** for years 2006–2009 only.
- **2600-level set done for all years since 1971.**
Training the Parameters

- Formula $g(E; \delta)$ is really
 \[g(s, c; \delta) = \frac{1}{e^{xc}} \text{ where } x = \frac{\delta}{s}. \]

- s for **Sensitivity**: smaller $s \equiv$ better ability to sense small differences in value.
- c for **Consistency**: higher c reduces probability of high-δ moves (i.e., blunders).
- Full model (in progress) adds parameter d for depth of calculation.
Training the Parameters

- Formula $g(E; \delta)$ is really

 $$g(s, c; \delta) = \frac{1}{e^{xc}} \quad \text{where} \quad x = \frac{\delta}{s}.$$

- s for *Sensitivity*: smaller $s \equiv$ better ability to sense small differences in value.

- c for *Consistency*: higher c reduces probability of high-δ moves (i.e., blunders).

- Full model (in progress) adds parameter d for depth of calculation.

- Needs large-scale approximation to handle 15–20x data increase and tuning conversions between different chess engines (all in progress).
Fitting and Fighting Parameters

- For each Elo E training set, find (s, c) giving best fit.
- Can use many different fitting methods...
 - Can compare methods...
 - Whole separate topic...
Fitting and Fighting Parameters

- For each Elo E training set, find (s, c) giving best fit.
- Can use many different fitting methods...
 - Can compare methods...
 - Whole separate topic...
 - Max-Likelihood does poorly.
- Often s and c trade off markedly, but $E' \sim e(s, c)$ condenses into one Elo.
- **Strong linear fit**—suggests Elo mainly influenced by error.
Some IPRs—Historical and Current

- Magnus Carlsen:
 - 2983 at London 2011 (Kramnik 2857, Aronian 2838, Nakamura only 2452).
 - 2855 at Biel 2012.

- Bobby Fischer:
 - 2921 over all 3 Candidates’ Matches in 1971.
 - 2650 vs. Spassky in 1972 (Spassky 2643).
 - 2724 vs. Spassky in 1992 (Spassky 2659).

- Paul Morphy: 2344 in 59 most imp. games, 2124 vs. Anderssen.

- Capablanca: 2936 at New York 1927.

- Alekhine: 2812 in 1927 WC match over Capa (2730).
Results and Implications for Human Thinking

1. Sensitivity to small changes in the value of moves.
2. Degrees of sensitivity to changes in value at different depths of search.
3. Tangibly greater error in positions where one side has even a slight advantage.
4. Natural variability in performance, which we argue is intrinsic and unavoidable.
5. Correspondences with results in item-response theory and psychometric test scoring.
6. Quality of human-computer teams compared to computers or humans playing separately.
1. Sensitivity—Still the Slime Mold Story?

Conditioned on one of the top two moves being played, if their values (Rybka 3, depth 13) differ by...:

- **0.01**, the higher move is played 53–55% of the time.
1. Sensitivity—Still the Slime Mold Story?

Conditioned on one of the top two moves being played, if their values (Rybka 3, depth 13) differ by...

1. **0.01**, the higher move is played 53–55% of the time.
2. **0.02**, the higher move is played 58–59% of the time.
Conditioned on one of the top two moves being played, if their values (Rybka 3, depth 13) differ by...:

1. **0.01**, the higher move is played 53–55% of the time.
2. **0.02**, the higher move is played 58–59% of the time.
3. **0.03**, the higher move is played 60–61% of the time.
1. Sensitivity—Still the Slime Mold Story?

Conditioned on one of the top two moves being played, if their values (Rybka 3, depth 13) differ by...

1. 0.01, the higher move is played 53–55% of the time.
2. 0.02, the higher move is played 58–59% of the time.
3. 0.03, the higher move is played 60–61% of the time.
4. 0.00, the higher move is played 57–59% of the time.
1. Sensitivity—Still the Slime Mold Story?

Conditioned on one of the top two moves being played, if their values (Rybka 3, depth 13) differ by...:

1. **0.01**, the higher move is played 53–55% of the time.
2. **0.02**, the higher move is played 58–59% of the time.
3. **0.03**, the higher move is played 60–61% of the time.
4. **0.00**, the higher move is played 57–59% of the time.

- Last is not a typo—see “When is a Law Natural?”
1. Sensitivity—Still the Slime Mold Story?

Conditioned on one of the top two moves being played, if their values (Rybkə 3, depth 13) differ by...

1. 0.01, the higher move is played 53–55\% of the time.
2. 0.02, the higher move is played 58–59\% of the time.
3. 0.03, the higher move is played 60–61\% of the time.
4. 0.00, the higher move is played 57–59\% of the time.

- Last is not a typo—see “When is a Law Natural?”
- Stockfish versions round evals to nearest 0.04 or 0.02.
1. Sensitivity—Still the Slime Mold Story?

Conditioned on one of the top two moves being played, if their values (Rybka 3, depth 13) differ by...:

1. 0.01, the higher move is played 53–55% of the time.
2. 0.02, the higher move is played 58–59% of the time.
3. 0.03, the higher move is played 60–61% of the time.
4. 0.00, the higher move is played 57–59% of the time.

- Last is not a typo—see “When is a Law Natural?”
- Stockfish versions round evals to nearest 0.04 or 0.02.
- Relation to slime molds and other “semi-Brownian” systems?
2. Depth-of-Phenomenon Effects (ongoing)

- Tied-top law extends to 3, 4, tied moves in similar 58% ratio of choice to the next.
2. Depth-of-Phenomenon Effects (ongoing)

- Tied-top law extends to 3, 4, tied moves in similar 58% ratio of choice to the next.
- Lead moves tend to have been higher at lower depths. Does this explain it?
2. Depth-of-Phenomenon Effects (ongoing)

- Tied-top law extends to 3, 4, tied moves in similar 58% ratio of choice to the next.

- Lead moves tend to have been higher at lower depths. Does this explain it?

- How less likely to be found is a move whose value “Swings Up” only at high depth, compared to one having the same value at all depths?
2. Depth-of-Phenomenon Effects (ongoing)

- Tied-top law extends to 3, 4, tied moves in similar 58% ratio of choice to the next.
- Lead moves tend to have been higher at lower depths. Does this explain it?
- How less likely to be found is a move whose value “Swings Up” only at high depth, compared to one having the same value at all depths?
- How more likely to be played is a “Swing Down” move—a trap?
2. Depth-of-Phenomenon Effects (ongoing)

- Tied-top law extends to 3, 4, tied moves in similar 58% ratio of choice to the next.
- Lead moves tend to have been higher at lower depths. Does this explain it?
- How less likely to be found is a move whose value “Swings Up” only at high depth, compared to one having the same value at all depths?
- How more likely to be played is a “Swing Down” move—a trap?
- Goal is to develop a Challenge Quotient based on how much trappy play a player sets for the opponent.
2. Depth-of-Phenomenon Effects (ongoing)

- Tied-top law extends to 3, 4, tied moves in similar 58% ratio of choice to the next.
- Lead moves tend to have been higher at lower depths. Does this explain it?
- How less likely to be found is a move whose value “Swings Up” only at high depth, compared to one having the same value at all depths?
- How more likely to be played is a “Swing Down” move—a trap?
- Goal is to develop a Challenge Quotient based on how much trappy play a player sets for the opponent—and emself.
2. Depth-of-Phenomenon Effects (ongoing)

- Tied-top law extends to 3, 4, tied moves in similar 58% ratio of choice to the next.
- Lead moves tend to have been higher at lower depths. Does this explain it?
- How less likely to be found is a move whose value “Swings Up” only at high depth, compared to one having the same value at all depths?
- How more likely to be played is a “Swing Down” move—a trap?
- Goal is to develop a **Challenge Quotient** based on how much trappy play a player sets for the opponent—and emself.
- Separates performance and prediction in the model.
3. The Imbalance-Error Phenomenon

- [show data]
- The metric correction

\[\int_{e^{-\delta}}^{e} d\mu \quad \text{with} \quad d\mu = \frac{c}{c + x} \, dx \]

balances evals well for Rybka, with \(c \) very near 1.0.
3. The Imbalance-Error Phenomenon

- [show data]
- The metric correction
 \[\int_{e^{-\delta}}^{e} d\mu \quad \text{with} \quad d\mu = \frac{c}{c + x} \, dx \]

 balances evals well for Rybka, with \(c \) very near 1.0.
- A mix of three factors?
3. The Imbalance-Error Phenomenon

- [show data]
- The metric correction

\[\int_{e^{-\delta}}^{e} d\mu \quad with \quad d\mu = \frac{c}{c + x} dx \]

balances evals well for Rybka, with \(c \) very near 1.0.

- A mix of three factors?

(A) Human perception of value as proportional to stakes, \(per \) Ariely-Kahneman-Tversky.
3. The Imbalance-Error Phenomenon

- [show data]
- The metric correction

\[
\int_{e^{-\delta}}^{e} d\mu \quad \text{with} \quad d\mu = \frac{c}{c + x} \, dx
\]

balances evals well for Rybka, with \(c \) very near 1.0.

- A mix of three factors?

(A) Human perception of value as proportional to stakes, \textit{per} Ariely-Kahneman-Tversky.

(B) Rationally playing less \textit{catenaccio} when marginal impact of evaluation on win probability is minimal. (Leo Stedile, working under Mark Braverman)
3. The Imbalance-Error Phenomenon

- [show data]
- The metric correction

\[
\int_{e^{-\delta}}^{e} d\mu \quad \text{with} \quad d\mu = \frac{c}{c + x} dx
\]

balances evals well for Rybka, with \(c \) very near 1.0.

- A mix of three factors?

(A) Human perception of value as proportional to stakes, *per* Ariely-Kahneman-Tversky.

(B) Rationally playing less *catenaccio* when marginal impact of evaluation on win probability is minimal. (Leo Stedile, working under Mark Braverman)

(C) Greater volatility intrinsic to chess as game progresses.
A. Perception Proportional to Benefit

How strongly do you perceive a difference of 10 dollars, if:

- You are buying lunch and a drink in a pub.
- You are buying dinner in a restaurant.
- You are buying an I-pad.
- You are buying a car.

For the car, maybe you don’t care. In other cases, would you be equally thrifty?

If you spend the way you play chess, you care maybe 4× as much in the pub!
B. Rational Risk-Taking

- Expectation curves according to position evaluation ν are sigmoidal, indeed close to a hyperbolic tangent

$$E = \frac{e^{av} - e^{-av}}{e^{av} + e^{-av}}.$$
B. Rational Risk-Taking

- Expectation curves according to position evaluation ν are sigmoidal, indeed close to a hyperbolic tangent

$$E = \frac{e^{av} - e^{-av}}{e^{av} + e^{-av}}.$$

- Here a gives pretty steep slope near 0, $a \approx 4.5$ for Rybka and Houdini.
B. Rational Risk-Taking

- Expectation curves according to position evaluation ν are sigmoidal, indeed close to a hyperbolic tangent

$$E = \frac{e^{av} - e^{-av}}{e^{av} + e^{-av}}.$$

- Here a gives pretty steep slope near 0, $a \approx 4.5$ for Rybka and Houdini.

- *How to test apart from cause A?*
B. Rational Risk-Taking

- Expectation curves according to position evaluation \(v \) are sigmoidal, indeed close to a hyperbolic tangent

\[
E = \frac{e^{av} - e^{-av}}{e^{av} + e^{-av}}.
\]

- Here \(a \) gives pretty steep slope near 0, \(a \approx 4.5 \) for Rybka and Houdini.

- *How to test apart from cause A?*

- Expect reval-error curve to shift in games between unequally-rated players.
B. Rational Risk-Taking

- Expectation curves according to position evaluation ν are sigmoidal, indeed close to a hyperbolic tangent

$$E = \frac{e^{av} - e^{-av}}{e^{av} + e^{-av}}.$$

- Here a gives pretty steep slope near 0, $a \approx 4.5$ for Rybka and Houdini.

- *How to test apart from cause A?*

- Expect reval-error curve to shift in games between unequally-rated players.

- *Will need many such games*, if not prevented by cause C.
C. Similar Phenomenon in Computer-Played Games

- [show data from new “Computer and Freestyle Study.”]
C. Similar Phenomenon in Computer-Played Games

- [show data from new “Computer and Freestyle Study.”]
- [Segue to item 6. in outline.]
4. Is Savielly Tartakover Right?

The winner is the player who makes the next-to-last blunder.

- We like to think chess is about Deep Strategy.
- This helps, but is it statistically dominated by blunders?
- Recent Examples:
 - USA-Russia and USA-China matches at 2012 Olympiad.
 - Gelfand-Anand 2012 Rapid playoff.
- My Average Error (AE) stat shows a tight linear fit to Elo rating.
- Full investigation will need ANOVA (analysis of variance).
5. Variance in Performance, and Motivation?

- Let’s say I am 2400 facing 2600 player.
- My expectation is 25%. Maybe:
 - 60% win for stronger player.
 - 30% draw.
 - 10% chance of win for me.

- In 12-game match, maybe under 1% chance of winning if we are random.

- But my model’s intrinsic error bars are often 200 points wide over 9–12 games.

- Suggests to take event not game as the unit.

- How can we be motivated for events?
7. Procrastination...

- (Show graph of AE climbing to Move 40, then falling.)
 - King’s Indian: 12. Bf3!? then 13. Bg2 N (novelty)
 - “Grischuk was already in some time pressure.”
- IPR for Astana World Blitz (cat. 19, 2715) **2135**.
- IPR for Amber 2010+2011 (cat. 20+21): **2545**.
- Can players be coached to play like the young Anand?
8. Human Skill Increasing Over Time?

- In 1970s, **two** 2700+ players: Fischer and Karpov. In 1981: none!
- Sep. 2012 list, **44** 2700+ players. **Rating Inflation**?
- My results:
- **2600 level, 1971–present:**
 - Can argue 30-pt. IPR difference between 1980’s and now.
 - Difference measured at 16 pts. using 4-yr. moving averages, 10-year blocks.
 - Explainable by faster time controls, no adjournments?
- Single-PV AE stat in all Cat 11+ RR since 1971 hints at mild **deflation**.
- Moves 17–32 show similar results. Hence not just due to better opening prep?
- Increasing skill consistent with Olympics results.
9. Are We Reliable?

- One blunder in 200 moves can “ruin” a tournament.
- But we were reliable 99.5% of the time.
- Exponential $g(s, c)$ curve fits better than inverse-poly ones.
- Contrary to my “Black Swan” expectation.
- But we are even more reliable if we can use a computer...
- (show PAL/CSS Freestyle stats if time).
10. Not Just About Chess?

- *Only chess aspect of entire work is the evaluations coming from chess engines.*
- No special chess-knowledge, no “style” (except as reflected in fitted s, c, d).
- General Problem: Convert Utilities Into Probabilities for colorblind agents.
- Framework applies to multiple-choice tests, now prevalent in online courses.
- Alternative to current psychometric measures?
- Issue: Idea of “best move” at chess is the same for all human players, but “best move” in sports may depend on natural talent.
Conclusions

- Lots more potential for research and connections...
- Can use support—infrastucture, student helpers...
 - Run data with other engines Houdini, Stockfish, Komodo....
 - Run more tournaments.
 - Run to higher depths—how much does that matter?
- Spread word about general-scientific aspects, including public outreach over what isn’t (and is) cheating.
Conclusions

- Lots more potential for research and connections...
- Can use support—infrastructure, student helpers...
 - Run data with other engines Houdini, Stockfish, Komodo....
 - Run more tournaments.
 - Run to higher depths—how much does that matter?
- Spread word about general-scientific aspects, including public outreach over what isn’t (and is) cheating.
- Detect and deter cheating too—generally.
Conclusions

- Lots more potential for research and connections...
- Can use support—infrastructure, student helpers...
 - Run data with other engines Houdini, Stockfish, Komodo....
 - Run more tournaments.
 - Run to higher depths—how much does that matter?
- Spread word about general-scientific aspects, including public outreach over what isn’t (and is) cheating.
- Detect and deter cheating too—generally.
- Learn more about human decision making.
Conclusions

- Lots more potential for research and connections...
- Can use support—infrastructure, student helpers...
 - Run data with other engines Houdini, Stockfish, Komodo....
 - Run more tournaments.
 - Run to higher depths—how much does that matter?
- Spread word about general-scientific aspects, including public outreach over what isn’t (and is) cheating.
- Detect and deter cheating too—generally.
- Learn more about human decision making.
- Thus the Turing Tour comes back to the human mind.

Thank you very much for the invitation.
Conclusions

- Lots more potential for research and connections...
- Can use support—infrastructure, student helpers...
 - Run data with other engines Houdini, Stockfish, Komodo....
 - Run more tournaments.
 - Run to higher depths—how much does that matter?
- Spread word about general-scientific aspects, including public outreach over what isn’t (and is) cheating.
- Detect and deter cheating too—generally.
- Learn more about human decision making.
- Thus the Turing Tour comes back to the human mind.
- Thank you very much for the invitation.