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Entscheidungsproblem

The rigorous foundation of Computability Theory was established in the
1930s, ...

Turing, A. M. (1937), “On Computable Numbers, with an Application to
the Entscheidungsproblem”, Proceedings of the London Mathematical
Society, (Ser. 2, Vol. 42)

Answering a question of Hilbert
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Hilbert
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Godel
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Church
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Von Neumann
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Computable Yet Not Efficiently Computable

Given N, how fast can one factor it?

N = 5772072129697183320378579117282724317
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Computable Yet Not Efficiently Computable

N’ = 13756295877065550723286378713930120642244218835580062
5186902271294765416798340629392379444118675259?



Computable Yet Not Efficiently Computable

N’ = 13756295877065550723286378713930120642244218835580062
5186902271294765416798340629392379444118675259?

N = 9361973132609 x 61654440233248340616559
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Computable Yet Not Efficiently Computable

N’ = 13756295877065550723286378713930120642244218835580062
5186902271294765416798340629392379444118675259?

N = 9361973132609 x 61654440233248340616559

N’ = 1471865453993855302660887614137521979 x
93461639715357977769163558199606896584051237541638188580280321
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Counting Problems

For every problem in NP, one can think of a counting version of the
problem.

12 /78



Counting Problems
For every problem in NP, one can think of a counting version of the
problem.

E.g., #SAT: Count the number of satisfying assignments to a Boolean
formula.

#VertexCover
#VertexColoring
#EdgeColoring
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Counting Problems
For every problem in NP, one can think of a counting version of the
problem.

E.g., #SAT: Count the number of satisfying assignments to a Boolean
formula.

#VertexCover
#VertexColoring
#EdgeColoring

Valiant introduced the class #P.
Toda's theorem: PH C P#P.
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Ladner's Theorem

Ladner’s theorem: If P # NP, then there are problems in NP that are
neither in P nor NP-complete.

15/78



Ladner's Theorem

Ladner’s theorem: If P # NP, then there are problems in NP that are
neither in P nor NP-complete.

Can be adapted to #P.
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Ladner's Theorem

Ladner’s theorem: If P # NP, then there are problems in NP that are
neither in P nor NP-complete.

Can be adapted to #P.

Sum-of-Product computations.
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The Classification Program

We aim to achieve complete classifications for various classes of
Sum-of-Product computations.
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The Classification Program

We aim to achieve complete classifications for various classes of
Sum-of-Product computations.

For example we want to give a classification theorem for all counting
constraint satisfaction problems (#CSP).
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Partition Functions

Coming from statistical physics, the sum-of-product are not merely 0-1
valued products, but have arbitrary weights.
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Coming from statistical physics, the sum-of-product are not merely 0-1
valued products, but have arbitrary weights.

This form is also becoming increasingly used in CS like in Al, Machine
Learning ...
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Partition Functions

Coming from statistical physics, the sum-of-product are not merely 0-1
valued products, but have arbitrary weights.

This form is also becoming increasingly used in CS like in Al, Machine
Learning ...

Message passing algorithms.



Dichotomy Theorems

For a broad class of counting problems expressible as sum-of-product
computations with arbitrary complex-valued constraint functions, we want
to classify every problem within the class to be either solvable in

polynomial time, or #P-hard.
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Dichotomy Theorems

For a broad class of counting problems expressible as sum-of-product
computations with arbitrary complex-valued constraint functions, we want
to classify every problem within the class to be either solvable in
polynomial time, or #P-hard.

Often we also wish to take into account of the interesting case where a
problem is #P-hard in general, but becomes in P when restricted to planar
graphs.
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Dichotomy Theorems

For a broad class of counting problems expressible as sum-of-product
computations with arbitrary complex-valued constraint functions, we want
to classify every problem within the class to be either solvable in
polynomial time, or #P-hard.

Often we also wish to take into account of the interesting case where a
problem is #P-hard in general, but becomes in P when restricted to planar
graphs.

Kasteleyn's algorithm, and the power of Valiant's holographic algorithms.

An overview of the Classification Program.
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COMPLEXITY
DICHOTOMIES
FOR COUNTING
PROBLEMS

VOLUME 1: BOOLEAN DOMAIN

JIN-YI CAI
XI CHEN
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Three Frameworks for Counting Problems

The following three frameworks are in increasing order of strength.
@ Graph Homomorphisms
e Counting Constraint Satisfaction Problems (#CSP)

@ Holant Problems
In each framework, there has been remarkable progress in the classification
program.
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Graph Homomorphisms

Graph Homomorphisms or H-Coloring was defined by Lovasz in 1967.
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Graph Homomorphisms

Graph Homomorphisms or H-Coloring was defined by Lovasz in 1967.

Let

011
H=1(1 01
110
be a Triangle.

A graph homomorphism from G to H, is a mapping £ from V(G) to V(H)
such that

(u,v) € E(G) = (&(v),€(v)) € E(H).

l.e., £ is a THREE-COLORING of G.
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Partition Function of Graph Homomorphism

Fix a matrix A = (A;j) € C9*9.

Think of it as defining a binary edge function on an input graph

G =(V,E).

Consider all vertex assignments £ : V — [q] = {1,2,--- ,q}.

For each (u,v) € E, an assignment £ gives an evaluation

H(u,v)eE A¢(u),(v)- Then the partition function of Graph Homomorphism

IS
ZaG) = > I Aqwew

§:V—lq] (u,v)eE

31/78



Partition Function of Graph Homomorphism

Fix a matrix A = (A;j) € C9*9.

Think of it as defining a binary edge function on an input graph

G =(V,E).

Consider all vertex assignments £ : V — [q] = {1,2,--- ,q}.

For each (u,v) € E, an assignment £ gives an evaluation

H(u,v)eE A¢(u),(v)- Then the partition function of Graph Homomorphism

IS
ZaG) = > I Aqwew

§:V—lq] (u,v)eE

Graph Vertex Coloring
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Partition Function of Graph Homomorphism

Fix a matrix A = (A;j) € C9*9.

Think of it as defining a binary edge function on an input graph

G =(V,E).

Consider all vertex assignments £ : V — [q] = {1,2,--- ,q}.

For each (u,v) € E, an assignment £ gives an evaluation

H(u,v)eE A¢(u),(v)- Then the partition function of Graph Homomorphism

IS
ZaG) = > I Aqwew

§:V—lq] (u,v)eE

Graph Vertex Coloring

Take binary DISEQUALITY function on each edge.
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More Examples

=

then Z4(G) counts the number of VERTEX COVERS in G.

Let
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More Examples

i

then Z4(G) counts the number of VERTEX COVERS in G.

Let

Let
1 1
S
then Z4(G) is equivalent to counting the number of induced subgraphs of
G with an even number of edges.
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Dichotomy Theorems for Graph Homomorphism

@ Dyer, Greenhill: {0,1}-valued;

@ Bulatov, Grohe: Non-negative valued;

@ Goldberg, Grohe, Jerrum, Thurley : real-valued;
@ C., Pinyan Lu, Xi Chen: complex-valued.

Theorem

There is a complexity dichotomy for Za(-) :
For any symmetric complex valued matrix A € C9*9, the problem of
computing Za(G), for any input G, is either in P or #P-hard.

The dichotomy criterion is explicit: Given A, whether Za(-) is in P or
#P-hard can be decided in polynomial time in the size of A.
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Dichotomy Theorems for Graph Homomorphism

@ Dyer, Greenhill: {0, 1}-valued;
@ Bulatov, Grohe: Non-negative valued;
@ Goldberg, Grohe, Jerrum, Thurley : real-valued;

@ C., Pinyan Lu, Xi Chen: complex-valued.

Theorem

There is a complexity dichotomy for Z(-) :

For any symmetric complex valued matrix A € C9*9, the problem of
computing Zx(G), for any input G, is either in P or #P-hard.

The dichotomy criterion is explicit: Given A, whether Za(-) is in P or
#P-hard can be decided in polynomial time in the size of A.

SIAM J. Comput. 42(3):924-1029 (2013) [C., Xi Chen, Pinyan Lu] (106
pages)
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Counting Constraint Satisfaction Problems (#CSP)

Let F = {f1,...,fy} be a finite set of constraint functions:

fiilql" » C
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Counting Constraint Satisfaction Problems (#CSP)

Let F = {f1,...,fy} be a finite set of constraint functions:
fi:lq]" — C
@ An instance of #CSP(F) consists of variables x, - - - , x, over [g] and

a finite sequence of constraint functions from F, each applied to a
sequence of these variables.
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Counting Constraint Satisfaction Problems (#CSP)

Let F = {f1,...,fy} be a finite set of constraint functions:
fi:lq]" — C
@ An instance of #CSP(F) consists of variables x, - - - , x, over [g] and

a finite sequence of constraint functions from F, each applied to a
sequence of these variables.

For any assignment x = (x1,- -+, xn) € [q]", let F(x) be the product
of the constraint function evaluations.

@ Given an input instance, compute the partition function:

> F(®)

x€[q]"
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Dichotomy Theorem for #CSP

Creignou, Hermann: Boolean domain and {0, 1}-valued;

Dyer, Goldberg, Jerrum: Boolean domain and non-negative valued;
C., Pinyan Lu, Mingji Xia: Boolean domain and complex-valued,
Bulatov: General domain and {0, 1}-valued;

Dyer, Richerby: General domain, {0, 1}-valued and decidable;

C., Xi Chen, Pinyan Lu: General domain and Non-negative valued;

C., Xi Chen: General domain and complex-valued (not known to be
decidable).

41/78



Dichotomy Theorem for #CSP

Creignou, Hermann: Boolean domain and {0, 1}-valued;

Dyer, Goldberg, Jerrum: Boolean domain and non-negative valued;
C., Pinyan Lu, Mingji Xia: Boolean domain and complex-valued,
Bulatov: General domain and {0, 1}-valued;

Dyer, Richerby: General domain, {0, 1}-valued and decidable;

C., Xi Chen, Pinyan Lu: General domain and Non-negative valued;

C., Xi Chen: General domain and complex-valued (not known to be
decidable).

For any domain [q] and any finite set F of complex-valued constraint
functions, #CSP(F) is either solvable in polynomial time (if F satisfies
some tractability conditions), or #P-hard (if F fails these conditions).

J. ACM 64(3): 19:1-19:39 (2017) [C., Xi Chen]
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Holant Problems

A signature grid Q = (G, F,m) is a tuple, where G = (V, E) is a graph, 7
labels each v € V with a function f, € F, and f, : [q]?¢&(V) — C.

Holantg = Z HfV(U‘E(v))'

o:E—[q] veV

where
@ E(v) denotes the incident edges of v

@ 0|g(y) denotes the restriction of o to E(v).
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Holant Problems

A signature grid Q = (G, F,m) is a tuple, where G = (V, E) is a graph, 7
labels each v € V with a function f, € F, and f, : [q]?¢&(V) — C.

Holantg = Z HfV(U‘E(v))'

o:E—[q] veV

where
@ E(v) denotes the incident edges of v

@ 0|g(y) denotes the restriction of o to E(v).

Here we assume the Boolean domain: g = 2.
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Holant Problems

A signature grid Q = (G, F,m) is a tuple, where G = (V, E) is a graph, 7
labels each v € V with a function f, € F, and f, : [q]?¢&(V) — C.

Holanto = Y ] flolew)).
o:E—[q]lveV

where
@ E(v) denotes the incident edges of v
@ 0|g(y) denotes the restriction of o to E(v).

Here we assume the Boolean domain: g = 2.

Very natural ..., MATCHING, EDGE COLORING, ...,
#CSP is a special case.
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Dichotomy Theorem for Holant Problems

@ Sangxia Huang, Pinyan Lu: Symmetric real-valued functions on
Boolean domain;

@ C., Heng Guo, Tyson Williams: Symmetric complex-valued functions
on Boolean domain.
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Dichotomy Theorem for Holant Problems

Sangxia Huang, Pinyan Lu: Symmetric real-valued functions on
Boolean domain;

C., Heng Guo, Tyson Williams: Symmetric complex-valued functions
on Boolean domain.

C., Pinyan Lu, Mingji Xia: Domain 3, and a single ternary symmetric
constraint.

C., Heng Guo, Tyson Williams: EDGE COLORING, ..., Siegel's
Theorem, Galois Theory, ...,
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Matching as Holant
Holantg = Z H fv(U’E(v))'
o:E—{0,1} veV

The problem of counting Perfect Matchings on G corresponds to attaching
the Exact-One function at every vertex of G.
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Matching as Holant
Holantg = Z H fv(U’E(v))'
o:E—{0,1} veV

The problem of counting Perfect Matchings on G corresponds to attaching
the Exact-One function at every vertex of G.

The problem of counting all Matchings on G is to attach the At-Most-One
function at every vertex of G.

49 /78



Perfect Matching

50/78



Counting Problems with Planar Restriction

If we restrict the input to be planar graphs, new tractable classes arise.
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Counting Problems with Planar Restriction

If we restrict the input to be planar graphs, new tractable classes arise.

Fisher, Kasteleyn, and Temperley (FKT) gave a (polynomial-time)
algorithm for counting PERFECT MATCHINGS on planar graphs.
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Counting Problems with Planar Restriction

If we restrict the input to be planar graphs, new tractable classes arise.

Fisher, Kasteleyn, and Temperley (FKT) gave a (polynomial-time)
algorithm for counting PERFECT MATCHINGS on planar graphs.

Pfaffian method.
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Counting Problems with Planar Restriction

If we restrict the input to be planar graphs, new tractable classes arise.

Fisher, Kasteleyn, and Temperley (FKT) gave a (polynomial-time)
algorithm for counting PERFECT MATCHINGS on planar graphs.

Pfaffian method.

Valiant introduced holographic algorithms which extended the reach of
FKT.
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Sample Problems Solved by Holographic Algorithms

#PL-3-NAE-ICE

Input: A planar graph G = (V, E) of maximum degree 3.

Output: The number of orientations such that no node has all edges
directed towards it or all edges directed away from it.

Ising problems are motivated by statistical physics.
Remarkable contributions by Ising, Onsager, Fisher, Temperley, Kasteleyn,
C.N.Yang, T.D.Lee, Baxter, Lieb, Wilson etc.
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What is the ultimate reach of Valiant's
holographic algorithms?
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A Matchgate
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Classification Theorem

Theorem

For any finite set F of constraint functions over Boolean variables, each
taking complex values and not necessarily symmetric, #CSP(F) belongs
to exactly one of the three categories according to F:
Q It is P-time solvable;
@ It is P-time solvable over planar graphs but #P-hard over general
graphs;
© It is #P-hard over planar graphs.

Moreover, category (2) consists precisely of those problems that are
holographically reducible to the FKT algorithm.

Extended abstract in STOC 2017 [C., Zhiguo Fu].
Full paper at
https://arxiv.org/abs/1603.07046.

94 pages.
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https://arxiv.org/abs/1603.07046

A Universality Claim

The theorem says:

Holographic algorithms with matchgates are universal for all
counting problems in #CSP on Boolean variables that are
#P-hard in general but solvable in P over planar structures.
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A Universality Claim

The theorem says:

Holographic algorithms with matchgates are universal for all
counting problems in #CSP on Boolean variables that are
#P-hard in general but solvable in P over planar structures.

This universality is NOT true for the broader class of Holant problems [C.,

Zhiguo Fu, Heng Guo, Tyson Williams, FOCS 2015].
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Thus, that this universality holds for planar #CSP is not self-evident.



A Universality Claim

The theorem says:

Holographic algorithms with matchgates are universal for all
counting problems in #CSP on Boolean variables that are
#P-hard in general but solvable in P over planar structures.

This universality is NOT true for the broader class of Holant problems [C.,
Zhiguo Fu, Heng Guo, Tyson Williams, FOCS 2015].

... even though the FKT algorithm for planar perfect macthings is more
properly for a Holant problem.
Thus, that this universality holds for planar #CSP is not self-evident.

Even without knowing that it is false for planar Holant problems, such a
sweeping claim should invite skepticism.
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A (Very) Rough Overview of Proof

Much of the proof is carried out in the Holant framework.
Dual perspective:

PI-#CSP(F) =7 Pl-Holant(£Q, F),

11]

where C denotes a holographic transformation by Ho = % [1 1
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A (Very) Rough Overview of Proof

Much of the proof is carried out in the Holant framework.
Dual perspective:

PI-#CSP(F) =7 Pl-Holant(£Q, F),
[T 4]

We want to show that either F C &, or F C &, or F C /Zf in which
case PI-#CSP(F) is in P, or else PI-#CSP(F) is #P-hard.

Sl

where C denotes a holographic transformation by H, =
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A (Very) Rough Overview of Proof

Much of the proof is carried out in the Holant framework.
Dual perspective:

PI-#CSP(F) =1 Pl-Holant(£Q, F),
where C denotes a holographic transformation by H, = % H ,11}

We want to show that either F C &, or F C &, or F C /Zf in which
case PI-#CSP(F) is in P, or else PI-#CSP(F) is #P-hard.

In the PI HoIant(SQ .7-") setting, the tractability condition is expressed as
F C 42% r F C @ or F C .

66
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A (Very) Rough Overview of Proof

We have o7 = <.
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A (Very) Rough Overview of Proof
We have &/ = /.

PI-#CSP(F) =1 Pl-Holant(£Q, F).

Fg%,orfgﬁ,orfgj/\vs. FCAd ot FC P, or FC .M.
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A (Very) Rough Overview of Proof
We have &/ = /.
PI-#CSP(F) =1 Pl-Holant(£Q, F).

Fg%,orfgﬁ,orfgj/\vs. ]?gsa/ftor]?ggz\,or]?g///.

ﬁis more difficult to reason about than &2, while .# is easier than .# to
handle.
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A (Very) Rough Overview of Proof

We have Q/i\: o .

PI-#CSP(F) =1 Pl-Holant(£Q, F).
Fg%,orfgﬁ,orfgj/\vs. ]?gsa/ftor]?ggz\,or]?g//[.

ﬁis more difficult to reason about than &2, while .# is easier than /Z/\to
handle.

One necessary condition for .# is the Parity Condition.
Case (1): F does not satisfy the Parity Condition.
Case (2): F satisfies the Parity Condition.
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A (Very) Rough Overview of Proof
We have &/ = /.

PI-#CSP(F) =1 Pl-Holant(£Q, F).
Fg%,orfgﬁ,orfgj/\vs. ﬁgm?,orfgﬁ,orfg///.

ﬁis more difficult to reason about than &2, while .# is easier than /Zl\to
handle.

One necessary condition for .# is the Parity Condition.
Case (1): F does not satisfy the Parity Condition.
Case (2): F satisfies the Parity Condition.

A lucky situation (Proposition 7.12 in paper): If F satisfies the Parity
Condition, then
FNZP C .

o~

So in this case we do not need to explicitly consider FC 2.
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Some Non-trivial Tractable Problems

Taxicab number 1729, anyone?

72/78



Some Non-trivial Tractable Problems

Taxicab number 1729, anyone? Hardy-Ramanujan number.
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Some Non-trivial Tractable Problems

Taxicab number 1729, anyone? Hardy-Ramanujan number.

Problem: PI-CrRAZYPELL
Let f be the constraint function on 4 variables:

669669112435114949

M(f) = 533639108484318913
—533639108484318909
—669669112435114945

—598015350142588611
—476540387460305851
476540387460305855
598015350142588607

598015350142588607
476540387460305855
—476540387460305851
—598015350142588611

—669669112435114945
—533639108484318909
533639108484318913
669669112435114949
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Some Non-trivial Tractable Problems

Taxicab number 1729, anyone? Hardy-Ramanujan number.

Problem: PI-CrRAZYPELL
Let f be the constraint function on 4 variables:

669669112435114949 —598015350142588611 598015350142588607 —669669112435114945

M(f) = 533639108484318913 —476540387460305851 476540387460305855 —533639108484318909
—533639108484318909 476540387460305855 —476540387460305851 533639108484318913
—669669112435114945 598015350142588607 —598015350142588611 669669112435114949

Input : A planar instance of #CSP(f).

Output : Z va(0|E(v))-

o:E—{0,1} veV
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CrazyPell
Let f = H2®4f, then f has the signature matrix

1 0 0

0 64376241658269698 3638760317128320

0 569465989630582080 32188120829134849
-1 0 0

4

— o o

One can verify that f € .#. Thus f € .4 and PI-#CSP(f) is tractable.
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CrazyPell
Let f = H2®4f, then f has the signature matrix

1 0 0

0 64376241658269698 3638760317128320

0 569465989630582080 32188120829134849
-1 0 0

4

— o o

One can verify that f € .#. Thus f € .4 and PI-#CSP(f) is tractable.

(32188120829134849, 1819380158564160)

is the smallest integer solution to the Pell’s equation x> — 313y? = 1.
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