Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Kenneth W. Regan
University at Buffalo (SUNY)

University of Calcutta, 3 August 2016
Breadth-First Search—Brief Review

- Solves search problem, “is node \(f \) reachable from \(s \)” (GAP)
Breadth-First Search—Brief Review

- Solves search problem, “is node f reachable from s?” (GAP)
- BFS expands a set of FOUND nodes until no further change.
Breadth-First Search—Brief Review

- Solves search problem, “is node f reachable from s?” (GAP)
- BFS expands a set of FOUND nodes until no further change.
- Economizes time but FOUND takes up much space.
Breadth-First Search—Brief Review

- Solves search problem, “is node f reachable from s?” (GAP)
- BFS expands a set of FOUND nodes until no further change.
- Economizes time but FOUND takes up much space.
- Needs random access to look up whether $v \in$ FOUND.
Breadth-First Search—Brief Review

- Solves search problem, “is node f reachable from s?” (GAP)
- BFS expands a set of FOUND nodes until no further change.
- Economizes time but FOUND takes up much space.
- Needs random access to look up whether $v \in$ FOUND.
- Theoretical distinction: the search problem is can be “solved” by NTM in $O(\log n)$ space,
Breadth-First Search—Brief Review

- Solves search problem, “is node \(f \) reachable from \(s \)?” (GAP)
- BFS expands a set of FOUND nodes until no further change.
- Economizes time but FOUND takes up much space.
- Needs random access to look up whether \(v \in \) FOUND.
- Theoretical distinction: the search problem is can be “solved” by NTM in \(O(\log n) \) space, meaning with finitely many pointers (“fingers”) into a read-only data structure where they move at-will.
Breadth-First Search—Brief Review

- Solves search problem, “is node f reachable from s?” (GAP)
- BFS expands a set of FOUND nodes until no further change.
- Economizes time but FOUND takes up much space.
- Needs random access to look up whether $v \in$ FOUND.
- Theoretical distinction: the search problem is can be “solved” by NTM in $O(\log n)$ space, meaning with finitely many pointers (“fingers”) into a read-only data structure where they move at-will. Shows NL \subseteq P.
Breadth-First Search—Brief Review

- Solves search problem, “is node f reachable from s?” (GAP)
- BFS expands a set of FOUND nodes until no further change.
- Economizes time but FOUND takes up much space.
- Needs random access to look up whether $v \in$ FOUND.
- Theoretical distinction: the search problem is can be “solved” by NTM in $O(\log n)$ space, meaning with finitely many pointers (“fingers”) into a read-only data structure where they move at-will. Shows NL \subseteq P.
- Example: Maze “dungeon” problem (and string-matching problem) looked more complex but obeyed this distinction so in the same “class” of algorithms.
Breadth-First Search—Brief Review

- Solves search problem, “is node \(f \) reachable from \(s \)?” (GAP)
- BFS expands a set of FOUND nodes until no further change.
- Economizes time but FOUND takes up much space.
- Needs random access to look up whether \(v \in \) FOUND.
- Theoretical distinction: the search problem is can be “solved” by NTM in \(O(\log n) \) space, meaning with finitely many pointers (“fingers”) into a read-only data structure where they move at-will. Shows \(\text{NL} \subseteq \text{P} \).
- Example: Maze “dungeon” problem (and string-matching problem) looked more complex but obeyed this distinction so in the same “class” of algorithms.

And Depth-First Search economizes memory but not time, shows \(\text{NP} \subseteq \text{PSPACE} \).
Is this problem in the “BFS class”?

- Given a graph G and a node h deemed a “health risk,”
Is this problem in the “BFS class”?

- Given a graph G and a node h deemed a “health risk,”
- If v is a health risk and $u \rightarrow v$ then u is a health risk.
Is this problem in the “BFS class”?

- Given a graph G and a node h deemed a “health risk,”
- If v is a health risk and $u \rightarrow v$ then u is a health risk.
- Is the start node s a health risk?
Is this problem in the “BFS class”?

- Given a graph G and a node h deemed a “health risk,"
- If v is a health risk and $u \rightarrow v$ then u is a health risk.
- Is the start node s a health risk?

Yes, problem is in BFS class. It is the same as GAP but “thinking backwards.” Answer is still yes iff there is a path from s to h.
Is this problem in the “BFS class”?

- Given a graph G and a node h deemed a “health risk,”
- If v is a health risk and $u \rightarrow v$ then u is a health risk.
- Is the start node s a health risk?

Yes, problem is in BFS class. It is the same as GAP but “thinking backwards.” Answer is still yes iff there is a path from s to h.

Solved by BFS working forwards from s—or more intuitively, by working backwards from h and expanding the set nodes known to be “health risks.” In the latter case it is BFS in the “reversed graph.”
A much harder example

- A 2-clause is a logical formula \((x \lor y)\) or \(((\neg x) \lor y)\) or \((x \lor (\neg y))\) or \((\neg x) \lor (\neg y))\).
A much harder example

- A 2-clause is a logical formula \((x \lor y)\) or \(((\neg x) \lor y)\) or \((x \lor (\neg y))\) or \((\neg x) \lor (\neg y))\).

- We can write the four possible 2-clauses more economically as \((x \lor y)\) or \((\bar{x} \lor y)\) or \((x \lor \bar{y})\) or \((\bar{x} \lor \bar{y})\).
A much harder example

- A 2-clause is a logical formula \((x \lor y)\) or \(((\neg x) \lor y)\) or \((x \lor (\neg y))\) or \((\neg x) \lor (\neg y))\).

- We can write the four possible 2-clauses more economically as \((x \lor y)\) or \((\bar{x} \lor y)\) or \((x \lor \bar{y})\) or \((\bar{x} \lor \bar{y})\).

- Consider logical formulas \(f\) that are ANDs of such clauses.
A much harder example

- A 2-clause is a logical formula \((x \lor y)\) or \(((\neg x) \lor y)\) or \((x \lor (\neg y))\) or \((\neg x) \lor (\neg y)\).

- We can write the four possible 2-clauses more economically as \((x \lor y)\) or \((\bar{x} \lor y)\) or \((x \lor \bar{y})\) or \((\bar{x} \lor \bar{y})\).

- Consider logical formulas \(f\) that are ANDs of such clauses. Called “2-Conjunctive Normal Form” (2CNF).
A much harder example

- A \textit{2-clause} is a logical formula \((x \lor y) \text{ or } ((\neg x) \lor y) \text{ or } (x \lor (\neg y)) \text{ or } (\neg x) \lor (\neg y))\).

- We can write the four possible 2-clauses more economically as \((x \lor y) \text{ or } (\bar{x} \lor y) \text{ or } (x \lor \bar{y}) \text{ or } (\bar{x} \lor \bar{y})\).

- Consider logical formulas \(f\) that are ANDs of such clauses. Called "2-Conjunctive Normal Form" (2CNF).

- The \textit{problem} is, given an \(f\), is there a way to make it true—or must it always be false?
A much harder example

- A 2-clause is a logical formula \((x \lor y)\) or \(((\neg x) \lor y)\) or \((x \lor (\neg y))\) or \((\neg x) \lor (\neg y))\).

- We can write the four possible 2-clauses more economically as \((x \lor y)\) or \((\bar{x} \lor y)\) or \((x \lor \bar{y})\) or \((\bar{x} \lor \bar{y})\).

- Consider logical formulas \(f\) that are ANDs of such clauses. Called “2-Conjunctive Normal Form” (2CNF).

- The problem is, given an \(f\), is there a way to make it true—or must it always be false?

Example:

\[f = (u \lor v) \land (\bar{u} \lor w) \land (\bar{u} \lor x) \land (\bar{w} \lor \bar{x}).\]
A much harder example

- A 2-clause is a logical formula \((x \lor y)\) or \(((\neg x) \lor y)\) or \((x \lor (\neg y))\) or \((\neg x) \lor (\neg y))\).

- We can write the four possible 2-clauses more economically as \((x \lor y)\) or \((\bar{x} \lor y)\) or \((x \lor \bar{y})\) or \((\bar{x} \lor \bar{y})\).

- Consider logical formulas \(f\) that are ANDs of such clauses. Called “2-Conjunctive Normal Form” (2CNF).

- The problem is, given an \(f\), is there a way to make it true—or must it always be false?

Example:

\[f = (u \lor v) \land (\bar{u} \lor w) \land (\bar{u} \lor x) \land (\bar{w} \lor \bar{x}). \]

If we set \(u = \text{true}\) then we must set \(w, x = \text{true}\) as well, but then the last clause fails.
A much harder example

- A 2-clause is a logical formula \((x \lor y)\) or \(((\neg x) \lor y)\) or \((x \lor (\neg y))\) or \((\neg x) \lor (\neg y))\).
- We can write the four possible 2-clauses more economically as \((x \lor y)\) or \((\bar{x} \lor y)\) or \((x \lor \bar{y})\) or \((\bar{x} \lor \bar{y})\).
- Consider logical formulas \(f\) that are ANDs of such clauses. Called “2-Conjunctive Normal Form” (2CNF).
- The problem is, given an \(f\), is there a way to make it true—or must it always be false?

Example:

\[
f = (u \lor \nu) \land (\bar{u} \lor w) \land (\bar{u} \lor x) \land (\bar{w} \lor \bar{x}).
\]

If we set \(u = \text{true}\) then we must set \(w, x = \text{true}\) as well, but then the last clause fails. However, we can set \(u = 0, \nu = 1, \) and either \(w\) or \(x\) false—then we satisfy \(f\).
Second Example and Key Idea

\[f' = (u \lor v) \land (\bar{u} \lor w) \land (\bar{u} \lor x) \land (\bar{w} \lor \bar{x}) \land (\bar{v} \lor w) \land (\bar{v} \lor x). \]

This burdens \(f \) with two more clauses.
Second Example and Key Idea

\[f' = (u \lor v) \land (\overline{u} \lor w) \land (\overline{u} \lor x) \land (\overline{w} \lor \overline{x}) \land (\overline{v} \lor w) \land (\overline{v} \lor x). \]

This burdens \(f \) with two more clauses. Now if we set \(u = 0 \) and \(v = 1 \), the two new clauses force us to make \(w = x = 1 \).
Second Example and Key Idea

\[f' = (u \lor v) \land (\bar{u} \lor w) \land (\bar{u} \lor x) \land (\bar{w} \lor \bar{x}) \land (\bar{v} \lor w) \land (\bar{v} \lor x). \]

This burdens \(f \) with two more clauses. Now if we set \(u = 0 \) and \(v = 1 \), the two new clauses force us to make \(w = x = 1 \). But then the fourth clause \((\bar{w} \lor \bar{x}) \) fails.

- So there is no way. But how can we convincingly prove it?
Second Example and Key Idea

\[f' = (u \lor v) \land (\bar{u} \lor w) \land (\bar{u} \lor x) \land (\bar{w} \lor \bar{x}) \land (\bar{v} \lor w) \land (\bar{v} \lor x). \]

This burdens \(f \) with two more clauses. Now if we set \(u = 0 \) and \(v = 1 \), the two new clauses force us to make \(w = x = 1 \). But then the fourth clause \((\bar{w} \lor \bar{x}) \) fails.

- So there is no way. But how can we convincingly prove it?
- **Idea**: \(x \rightarrow y \) is equivalent to \(((\neg x) \lor y) \).
Second Example and Key Idea

\[f' = (u \lor v) \land (\overline{u} \lor w) \land (\overline{u} \lor x) \land (\overline{w} \lor \overline{x}) \land (\overline{v} \lor w) \land (\overline{v} \lor x). \]

This burdens \(f \) with two more clauses. Now if we set \(u = 0 \) and \(v = 1 \), the two new clauses force us to make \(w = x = 1 \). But then the fourth clause \((\overline{w} \lor \overline{x})\) fails.

- So there is no way. But how can we convincingly prove it?
- **Idea:** \(x \rightarrow y \) is equivalent to \((\neg x) \lor y\).
- So \((x \lor y) \equiv \overline{x} \rightarrow y\) and \((\overline{x} \lor y) \equiv x \rightarrow y\).
Second Example and Key Idea

\[f' = (u \lor v) \land (\bar{u} \lor w) \land (\bar{u} \lor x) \land (\bar{w} \lor \bar{x}) \land (\bar{v} \lor w) \land (\bar{v} \lor x). \]

This burdens \(f \) with two more clauses. Now if we set \(u = 0 \) and \(v = 1 \), the two new clauses force us to make \(w = x = 1 \). But then the fourth clause \((\bar{w} \lor \bar{x}) \) fails.

- So there is no way. But how can we convincingly prove it?
- **Idea:** \(x \rightarrow y \) is equivalent to \(((\neg x) \lor y) \).
- So \((x \lor y) \equiv \bar{x} \rightarrow y \) and \((\bar{x} \lor y) \equiv x \rightarrow y \).
- And \((x \lor \bar{y}) \equiv \bar{x} \rightarrow \bar{y} \) and \((\bar{x} \lor \bar{y}) \equiv x \rightarrow \bar{y} \).
Second Example and Key Idea

\[f' = (u \lor v) \land (\bar{u} \lor w) \land (\bar{u} \lor x) \land (\bar{w} \lor \bar{x}) \land (\bar{v} \lor w) \land (\bar{v} \lor x). \]

This burdens \(f \) with two more clauses. Now if we set \(u = 0 \) and \(v = 1 \), the two new clauses force us to make \(w = x = 1 \). But then the fourth clause \((\bar{w} \lor \bar{x}) \) fails.

- So there is no way. But how can we convincingly prove it?
- **Idea:** \(x \rightarrow y \) is equivalent to \((\neg x) \lor y\).
- So \((x \lor y) \equiv \bar{x} \rightarrow y \) and \((\bar{x} \lor y) \equiv x \rightarrow y\).
- And \((x \lor \bar{y}) \equiv \bar{x} \rightarrow \bar{y} \) and \((\bar{x} \lor \bar{y}) \equiv x \rightarrow \bar{y}\).
- Also \((x \lor y) \equiv (y \lor x) \) so include \(\bar{y} \rightarrow x \) etc.
Second Example and Key Idea

\[f' = (u \lor v) \land (\bar{u} \lor w) \land (\bar{u} \lor x) \land (\bar{w} \lor \bar{x}) \land (\bar{v} \lor w) \land (\bar{v} \lor x). \]

This burdens \(f \) with two more clauses. Now if we set \(u = 0 \) and \(v = 1 \), the two new clauses force us to make \(w = x = 1 \). But then the fourth clause \((\bar{w} \lor \bar{x}) \) fails.

- So there is no way. But how can we convincingly prove it?
- Idea: \(x \rightarrow y \) is equivalent to \(((\neg x) \lor y) \).
- So \((x \lor y) \equiv \bar{x} \rightarrow y \) and \((\bar{x} \lor y) \equiv x \rightarrow y \).
- And \((x \lor \bar{y}) \equiv \bar{x} \rightarrow \bar{y} \) and \((\bar{x} \lor \bar{y}) \equiv x \rightarrow \bar{y} \).
- Also \((x \lor y) \equiv (y \lor x) \) so include \(\bar{y} \rightarrow x \) etc.
- Make a graph \(G_f \) with these nodes and all these edges.
Second Example and Key Idea

\[f' = (u \lor v) \land (\bar{u} \lor w) \land (\bar{u} \lor x) \land (\bar{w} \lor \bar{x}) \land (\bar{v} \lor w) \land (\bar{v} \lor x). \]

This burdens \(f \) with two more clauses. Now if we set \(u = 0 \) and \(v = 1 \), the two new clauses force us to make \(w = x = 1 \). But then the fourth clause \((\bar{w} \lor \bar{x})\) fails.

- So there is no way. But how can we convincingly prove it?
- **Idea:** \(x \rightarrow y \) is equivalent to \((\neg x) \lor y\).
- So \((x \lor y) \equiv \bar{x} \rightarrow y\) and \((\bar{x} \lor y) \equiv x \rightarrow y\).
- And \((x \lor \bar{y}) \equiv \bar{x} \rightarrow \bar{y}\) and \((\bar{x} \lor \bar{y}) \equiv x \rightarrow \bar{y}\).
- Also \((x \lor y) \equiv (y \lor x)\) so include \(\bar{y} \rightarrow x\) etc.
- Make a graph \(G_f \) with these nodes and all these edges.
- **Lemma:** \(f \) is unsatisfiable \(\iff \) \(G_f \) has a “vicious cycle” involving some node \(u \) and its negation \(\bar{u} \). [Draw \(G_f \), show example.]
If there is a path from u to w in G_f, then $u \implies w$ logically.
Analysis and Algorithm

- If there is a path from \(u \) to \(w \) in \(G_f \), then \(u \rightarrow w \) logically.
- Same for any combination of \(u, \bar{u} \) and \(w, \bar{w} \).
Analysis and Algorithm

- If there is a path from u to w in G_f, then $u \leftrightarrow w$ logically.
- Same for any combination of u, \bar{u} and w, \bar{w}.
- So if u and \bar{u} are on a cycle, then $u \leftrightarrow \neg u$ and $\neg u \leftrightarrow u$.

This contradiction means there is no consistent truth assignment, so f is unsatisfiable.

If there is no cycle involving both u and \bar{u}, for any u, then how can we satisfy f and prove the Lemma?

Granting the Lemma, a nondeterministic TM N can "solve" f being unsatisfiable by guessing a contradictory $u; \bar{u}$, putting two fingers there ("batsmen") and walking each in G_f. If and when the "batsmen" change places, we have the cycle. So this is BFS class. We can get clean BFS by converting N to its "ID graph." Can you find a more efficient algorithm directly?
Analysis and Algorithm

- If there is a path from \(u \) to \(w \) in \(G_f \), then \(u \equiv w \) logically.
- Same for any combination of \(u, \bar{u} \) and \(w, \bar{w} \).
- So if \(u \) and \(\bar{u} \) are on a cycle, then \(u \equiv \neg u \) and \(\neg u \equiv u \).
- This *contradiction* means there is no consistent truth assignment, so \(f \) is *unsatisfiable*.
Analysis and Algorithm

- If there is a path from \(u \) to \(w \) in \(G_f \), then \(u \leftrightarrow w \) logically.
- Same for any combination of \(u, \bar{u} \) and \(w, \bar{w} \).
- So if \(u \) and \(\bar{u} \) are on a cycle, then \(u \leftrightarrow \neg u \) and \(\neg u \leftrightarrow u \).
- This *contradiction* means there is no consistent truth assignment, so \(f \) is *unsatisfiable*.
- If there is no cycle involving both \(u \) and \(\bar{u} \), for any \(u \), then how can we satisfy \(f \) and prove the Lemma?
Analysis and Algorithm

- If there is a path from \(u \) to \(w \) in \(G_f \), then \(u \implies w \) logically.
- Same for any combination of \(u, \bar{u} \) and \(w, \bar{w} \).
- So if \(u \) and \(\bar{u} \) are on a cycle, then \(u \implies \neg u \) and \(\neg u \implies u \).
- This *contradiction* means there is no consistent truth assignment, so \(f \) is *unsatisfiable*.
- If there is no cycle involving both \(u \) and \(\bar{u} \), for any \(u \), then how can we satisfy \(f \) and prove the Lemma?
- Granting the Lemma, a *nondeterministic* TM \(N \) can “solve” \(f \) being unsatisfiable by *guessing* a contradictory \(u, \bar{u} \),
If there is a path from u to w in G_f, then $u \implies w$ logically.

Same for any combination of u, \bar{u} and w, \bar{w}.

So if u and \bar{u} are on a cycle, then $u \implies \neg u$ and $\neg u \implies u$.

This contradiction means there is no consistent truth assignment, so f is unsatisfiable.

If there is no cycle involving both u and \bar{u}, for any u, then how can we satisfy f and prove the Lemma?

Granting the Lemma, a nondeterministic TM N can “solve” f being unsatisfiable by guessing a contradictory u, \bar{u}, putting two fingers there (“batsmen”) and walking each in G_f. If and when the “batsmen” change places, we have the cycle.
If there is a path from \(u \) to \(w \) in \(G_f \), then \(u \equiv w \) logically.

Same for any combination of \(u, \bar{u} \) and \(w, \bar{w} \).

So if \(u \) and \(\bar{u} \) are on a cycle, then \(u \equiv \neg u \) and \(\neg u \equiv u \).

This contradiction means there is no consistent truth assignment, so \(f \) is unsatisfiable.

If there is no cycle involving both \(u \) and \(\bar{u} \), for any \(u \), then how can we satisfy \(f \) and prove the Lemma?

Granting the Lemma, a nondeterministic TM \(N \) can “solve” \(f \) being unsatisfiable by guessing a contradictory \(u, \bar{u} \), putting two fingers there (“batsmen”) and walking each in \(G_f \). If and when the “batsmen” change places, we have the cycle.

So this is BFS class. We can get clean BFS by converting \(N \) to its “ID graph.”
Analysis and Algorithm

- If there is a path from u to w in G_f, then $u \implies w$ logically.
- Same for any combination of u, \bar{u} and w, \bar{w}.
- So if u and \bar{u} are on a cycle, then $u \implies \neg u$ and $\neg u \implies u$.
- This contradiction means there is no consistent truth assignment, so f is unsatisfiable.
- If there is no cycle involving both u and \bar{u}, for any u, then how can we satisfy f and prove the Lemma?
- Granting the Lemma, a nondeterministic TM N can “solve” f being unsatisfiable by guessing a contradictory u, \bar{u}, putting two fingers there (“batsmen”) and walking each in G_f. If and when the “batsmen” change places, we have the cycle.
- So this is BFS class. We can get clean BFS by converting N to its “ID graph.”
- Can you find a more efficient algorithm directly?
Another Example

Let’s picture BFS as “conquest” or “occupation” or “invasion”:
- If we have occupied u and $u \rightarrow v$ is an edge and v is undefended, then we conquer v.
Another Example

Let’s picture BFS as “conquest” or “occupation” or “invasion”:

- If we have occupied \(u \) and \(u \to v \) is an edge and \(v \) is undefended, then we conquer \(v \).
- But if \(v \) is a “Fort,” say we conquer \(v \) only if we have occupied all “supply lines” \(u \) such that \(u \to v \).
Another Example

Let’s picture BFS as “conquest” or “occupation” or “invasion”:

- If we have occupied \(u \) and \(u \to v \) is an edge and \(v \) is undefended, then we conquer \(v \).
- But if \(v \) is a “Fort,” say we conquer \(v \) only if we have occupied \(\text{all} \)
 “supply lines” \(u \) such that \(u \to v \).

- Now given a graph \(G \) where we occupy \(s \), and a node \(t \) with some
 forts in-between, the question is, can we conquer \(t \)?
Another Example

Let’s picture BFS as “conquest” or “occupation” or “invasion”:

- If we have occupied u and $u \rightarrow v$ is an edge and v is undefended, then we conquer v.
- But if v is a “Fort,” say we conquer v only if we have occupied all “supply lines” u such that $u \rightarrow v$.
- Now given a graph G where we occupy s, and a node t with some forts in-between, the question is, can we conquer t?
- [Show examples on board.]
Another Example

Let’s picture BFS as “conquest” or “occupation” or “invasion”:

- If we have occupied \(u \) and \(u \rightarrow v \) is an edge and \(v \) is undefended, then we conquer \(v \).
- But if \(v \) is a “Fort,” say we conquer \(v \) only if we have occupied all “supply lines” \(u \) such that \(u \rightarrow v \).
- Now given a graph \(G \) where we occupy \(s \), and a node \(t \) with some forts in-between, the question is, can we conquer \(t \)?
- [Show examples on board.]
- We can straightforwardly modify the previous BFS algorithm to solve this. So everything the same?
Another Example

Let’s picture BFS as “conquest” or “occupation” or “invasion”:
- If we have occupied \(u \) and \(u \rightarrow v \) is an edge and \(v \) is undefended, then we conquer \(v \).
- But if \(v \) is a “Fort,” say we conquer \(v \) only if we have occupied all “supply lines” \(u \) such that \(u \rightarrow v \).
- Now given a graph \(G \) where we occupy \(s \), and a node \(t \) with some forts in-between, the question is, can we conquer \(t \)?
- [Show examples on board.]
- We can straightforwardly modify the previous BFS algorithm to solve this. So everything the same?
- The kind of question where you gain insight from theory is:
Another Example

Let’s picture BFS as “conquest” or “occupation” or “invasion”:

- If we have occupied \(u \) and \(u \to v \) is an edge and \(v \) is undefended, then we conquer \(v \).
- But if \(v \) is a “Fort,” say we conquer \(v \) only if we have occupied *all* “supply lines” \(u \) such that \(u \to v \).
- Now given a graph \(G \) where we occupy \(s \), and a node \(t \) with some forts in-between, the question is, can we conquer \(t \)?

[Show examples on board.]

We can straightforwardly modify the previous BFS algorithm to solve this. So everything the same?

The kind of question where you gain insight from *theory* is:

Does this problem belong to the BFS class?
set<Node> CONQUERED = {s}, POPPED = {};
bool novel = true; //fort: v_strength = indeg(v)
while (novel) {
 novel = false;
 foreach (u in CONQUERED \ POPPED) {
 foreach (v: u→v) {
 if (v not in CONQUERED) {
 novel = true;
 v_hits++;
 if (v_hits >= v_strength) {
 CONQUERED += {v};
 }
 }
 }
 }
 POPPED += {u}; //Can you ‘‘ND-do’’ this
} //using O(1)—many fingers?
Conquering Boolean Logic

- Let’s say we merely want to evaluate a Boolean formula f on a given 0-1 truth assignment.
Conquering Boolean Logic

- Let’s say we merely want to *evaluate* a Boolean formula \(f \) on a given 0-1 truth assignment.
- Much easier in general than trying to tell whether \(f \) is satisfiable.
Let’s say we merely want to *evaluate* a Boolean formula f on a given 0-1 truth assignment.

Much easier in general than trying to tell whether f is satisfiable.

We may suppose f uses AND, OR, and NOT gates only, and has variables x_1, \ldots, x_n. We think of n as the “rough size” of f.

Further, using DeMorgan’s Laws, we may suppose all negations are pushed inside:

\[
\neg (g \land h) = \neg g \lor \neg h, \\
\neg (g \lor h) = \neg g \land \neg h.
\]

So we make f use \land, \lor only with 2^n literals $x_1, \ldots, x_n, \neg x_1, \ldots, \neg x_n$.

Conquering Boolean Logic
Let’s say we merely want to evaluate a Boolean formula f on a given 0-1 truth assignment.

Much easier in general than trying to tell whether f is satisfiable.

We may suppose f uses AND, OR, and NOT gates only, and has variables x_1, \ldots, x_n. We think of n as the “rough size” of f.

Further, using DeMorgan’s Laws, we may suppose all negations are pushed inside: $\neg (g \land h) = (\neg g) \lor (\neg h)$; $\neg (g \lor h) = (\neg g) \land (\neg h)$.
Let’s say we merely want to *evaluate* a Boolean formula f on a given 0-1 truth assignment.

Much easier in general than trying to tell whether f is satisfiable.

We may suppose f uses AND, OR, and NOT gates only, and has variables x_1, \ldots, x_n. We think of n as the “rough size” of f.

Further, using DeMorgan’s Laws, we may suppose all negations are pushed inside: $\neg(g \land h) = (\neg g) \lor (\neg h)$; $\neg(g \lor h) = (\neg g) \land (\neg h)$.

So we make f use \land, \lor only with $2n$ literals $x_1, \ldots, x_n, \overline{x}_1, \ldots, \overline{x}_n$.

From Formula (or Circuit) to a Graph

- Given f using \land, \lor and $x_1, \ldots, x_n, \bar{x}_1, \ldots, \bar{x}_n$;
From Formula (or Circuit) to a Graph

- Given f using \land, \lor and $x_1, \ldots, x_n, \overline{x}_1, \ldots, \overline{x}_n$;
- Any given truth assignment $a = (a_1, \ldots, a_n) \in \{0, 1\}^n$ sets n literals true and n of them false. They are $2n$ nodes in our graph.
From Formula (or Circuit) to a Graph

- Given f using \land, \lor and $x_1, \ldots, x_n, \overline{x}_1, \ldots, \overline{x}_n$;
- Any given truth assignment $a = (a_1, \ldots, a_n) \in \{0, 1\}^n$ sets n literals true and n of them false. They are $2n$ nodes in our graph.
- Conceptually we connect our start node to the n made true—each is “conquered.”
From Formula (or Circuit) to a Graph

- Given f using \land, \lor and $x_1, \ldots, x_n, \overline{x}_1, \ldots, \overline{x}_n$;
- Any given truth assignment $a = (a_1, \ldots, a_n) \in \{0, 1\}^n$ sets n literals true and n of them false. They are $2n$ nodes in our graph.
- Conceptually we connect our start node to the n made true—each is “conquered.”
- Now each \land, \lor gate in f is also a node, and has in-edges from its two arguments. [Show examples on board.]
From Formula (or Circuit) to a Graph

- Given f using \land, \lor and $x_1, \ldots, x_n, \overline{x}_1, \ldots, \overline{x}_n$;
- Any given truth assignment $a = (a_1, \ldots, a_n) \in \{0, 1\}^n$ sets n literals true and n of them false. They are $2n$ nodes in our graph.
- Conceptually we connect our start node to the n made true—each is “conquered.”
- Now each \land, \lor gate in f is also a node, and has in-edges from its two arguments. [Show examples on board.]
- An AND gate is a fort—conquered iff both of its arguments are.
From Formula (or Circuit) to a Graph

- Given f using \land, \lor and $x_1, \ldots, x_n, \overline{x}_1, \ldots, \overline{x}_n$;
- Any given truth assignment $a = (a_1, \ldots, a_n) \in \{0, 1\}^n$ sets n literals true and n of them false. They are $2n$ nodes in our graph.
- Conceptually we connect our start node to the n made true—each is “conquered.”
- Now each \land, \lor gate in f is also a node, and has in-edges from its two arguments. [Show examples on board.]
- An AND gate is a fort—conquered iff both of its arguments are.
- An OR gate is an undefended node—one “truth invader” suffices.
From Formula (or Circuit) to a Graph

- Given f using \land, \lor and $x_1, \ldots, x_n, \overline{x}_1, \ldots, \overline{x}_n$;
- Any given truth assignment $a = (a_1, \ldots, a_n) \in \{0, 1\}^n$ sets n literals true and n of them false. They are $2n$ nodes in our graph.
- Conceptually we connect our start node to the n made true—each is “conquered.”
- Now each \land, \lor gate in f is also a node, and has in-edges from its two arguments. [Show examples on board.]
- An AND gate is a fort—conquered iff both of its arguments are.
- An OR gate is an undefended node—one “truth invader” suffices.
- $f(a) = \text{true} \iff$ we conquer the output gate of f.
From Formula (or Circuit) to a Graph

- Given f using \land, \lor and $x_1, \ldots, x_n, \overline{x}_1, \ldots, \overline{x}_n$;
- Any given truth assignment $a = (a_1, \ldots, a_n) \in \{0, 1\}^n$ sets n literals true and n of them false. They are $2n$ nodes in our graph.
- Conceptually we connect our start node to the n made true—each is “conquered.”
- Now each \land, \lor gate in f is also a node, and has in-edges from its two arguments. [Show examples on board.]
- An AND gate is a fort—conquered iff both of its arguments are.
- An OR gate is an undefended node—one “truth invader” suffices.
- $f(a) = \text{true} \iff$ we conquer the output gate of f.
- In a formula, each gate is argument to at most 1 other gate. Literals can be used as often as desired.
From Formula (or Circuit) to a Graph

- Given f using \land, \lor and $x_1, \ldots, x_n, \bar{x}_1, \ldots, \bar{x}_n$;
- Any given truth assignment $a = (a_1, \ldots, a_n) \in \{0, 1\}^n$ sets n literals true and n of them false. They are $2n$ nodes in our graph.
- Conceptually we connect our start node to the n made true—each is “conquered.”
- Now each \land, \lor gate in f is also a node, and has in-edges from its two arguments. [Show examples on board.]
- An AND gate is a fort—conquered iff both of its arguments are.
- An OR gate is an undefended node—one “truth invader” suffices.
- $f(a) = \text{true} \iff$ we conquer the output gate of f.
- In a formula, each gate is argument to at most 1 other gate. Literals can be used as often as desired.
- In a (proper) circuit, some gates fan out to 2 or more other gates.
Theorem: Let M be any deterministic Turing machine that runs in time $t(n)$ and space $s(n)$. Then for any n, we can build a Boolean logic circuit C of size $O(t(n) \times s(n))$ with input nodes x_1, \ldots, x_n (and their negations $\overline{x}_1, \ldots, \overline{x}_n$) such that for all inputs $x \in \{0, 1\}^n$,

$$M \text{ accepts } x \iff C(x) = 1.$$
Circuit Evaluation “Conquers” All of P

Theorem: Let M be any deterministic Turing machine that runs in time $t(n)$ and space $s(n)$. Then for any n, we can build a Boolean logic circuit C of size $O(t(n) \times s(n))$ with input nodes x_1, \ldots, x_n (and their negations $\bar{x}_1, \ldots, \bar{x}_n$) such that for all inputs $x \in \{0, 1\}^n$,

$$M \text{ accepts } x \iff C(x) = 1.$$

[Show on board.] This embodies the slogan:

“Software Can be Efficiently Burned Into Hardware.”
Circuit Evaluation “Conquers” All of P

Theorem: Let M be any deterministic Turing machine that runs in time $t(n)$ and space $s(n)$. Then for any n, we can build a Boolean logic circuit C of size $O(t(n) \times s(n))$ with input nodes x_1, \ldots, x_n (and their negations $\bar{x}_1, \ldots, \bar{x}_n$) such that for all inputs $x \in \{0, 1\}^n$,

$$M \text{ accepts } x \iff C(x) = 1.$$

[Show on board.] This embodies the slogan:

“Software Can be Efficiently Burned Into Hardware.”

Consequence: “Graph Conquest” is in the BFS class only if $P = NL$.

More Non-BFS “Expanding” Algorithms

- Minimum Spanning Tree.
- Shortest Paths.
- Edit Distance and Other Dynamic Programming.
- How (Not) to Compute Fibonacci Numbers.
Minimum Spanning Tree

- Given an undirected G and weights $w_e \geq 0$ on each edge e, find a spanning tree T to minimize $w(T) = \sum_{e \in T} w_e$.
Minimum Spanning Tree

- Given an *undirected* \(G \) and weights \(w_e \geq 0 \) on each edge \(e \), find a spanning tree \(T \) to minimize \(w(T) = \sum_{e \in T} w_e \).
- Motivating example: \(V(G) = \text{hubs } u, v, \ldots \) for electrification, \(w(u, v) = \text{cost of building electric lines between } u \text{ and } v \).
Minimum Spanning Tree

- Given an undirected G and weights $w_e \geq 0$ on each edge e, find a spanning tree T to minimize $w(T) = \sum_{e \in T} w_e$.
- Motivating example: $V(G) =$ hubs u, v, \ldots for electrification, $w(u, v) =$ cost of building electric lines between u and v.
- A useful idea: If $C \subset E(G)$ is a cutset, meaning a set of edges whose removal creates two (or more) islands—like bridges over a river—then T must include a minimum-weight edge from C.

[Show diagram of why on board.]

Repeat until T is built: add a minimum-weight edge e that does not cause a cycle.

[Show example on board. Why is this correct? If “add” means “add to T” then we get Prim’s algorithm; if we allow e to start a new tree and choose the minimum-available edge overall then Kruskal’s algorithm.]
Minimum Spanning Tree—new idea?

- In Prim’s algorithm we can choose any vertex v to start building T.
Minimum Spanning Tree—new idea?

- In Prim’s algorithm we can choose any vertex v to start building T.
- With Kruskal’s the (or some) minimum-weight edge begins a first tree, but we may build up separate trees before joining them.
Minimum Spanning Tree—new idea?

- In Prim’s algorithm we can choose any vertex \(v \) to start building \(T \).
- With Kruskal’s the (or some) minimum-weight edge begins a first tree, but we may build up separate trees before joining them.
- Indeed Kruskal can regard the start as a forest of \(n \) trivial trees, each consisting of just one isolated node, then every good choice of edge joins two trees.
Minimum Spanning Tree—new idea?

- In Prim’s algorithm we can choose any vertex v to start building T.
- With Kruskal’s the (or some) minimum-weight edge begins a first tree, but we may build up separate trees before joining them.
- Indeed Kruskal can regard the start as a forest of n trivial trees, each consisting of just one isolated node, then every good choice of edge joins two trees.
- Idea (new?): Can we blend the two algorithms? Is that still correct?
Minimum Spanning Tree—new idea?

- In Prim’s algorithm we can choose any vertex v to start building T.
- With Kruskal’s the (or some) minimum-weight edge begins a first tree, but we may build up separate trees before joining them.
- Indeed Kruskal can regard the start as a forest of n trivial trees, each consisting of just one isolated node, then every good choice of edge joins two trees.
- Idea (new?): Can we blend the two algorithms? Is that still correct?
- That is, say we do a “Kruskal step” if we choose a least edge that has not already been used or rejected (because it causes a cycle).
Minimum Spanning Tree—new idea?

- In Prim’s algorithm we can choose any vertex \(v \) to start building \(T \).
- With Kruskal’s the (or some) minimum-weight edge begins a first tree, but we may build up separate trees before joining them.
- Indeed Kruskal can regard the start as a forest of \(n \) trivial trees, each consisting of just one isolated node, then every good choice of edge joins two trees.
- **Idea (new?):** Can we blend the two algorithms? Is that still correct?
- That is, say we do a “Kruskal step” if we choose a least edge that has not already been used or rejected (because it causes a cycle).
- In a “Prim step” we choose one (any) tree \(U \) from the forest and then add a least edge that touches \(U \).
Minimum Spanning Tree—new idea?

- In Prim’s algorithm we can choose any vertex v to start building T.
- With Kruskal’s the (or some) minimum-weight edge begins a first tree, but we may build up separate trees before joining them.
- Indeed Kruskal can regard the start as a forest of n trivial trees, each consisting of just one isolated node. Then every good choice of edge joins two trees.
- **Idea (new?):** Can we blend the two algorithms? Is that still correct?
- That is, say we do a “Kruskal step” if we choose a least edge that has not already been used or rejected (because it causes a cycle).
- In a “Prim step” we choose one (any) tree U from the forest and then add a least edge that touches U.
- **Challenge:** Can this ‘liberal’ mix of the algorithms make a mistake?
In our code for BFS we iterated over FOUND nodes that were not yet POPPED in the graph-label order.

Instead, let us maintain for each node v its currently-known distance $d(v)$ from s. Initially $d(s) = 0$; $d(v) = 1$ for all other v. At each step, choose u from FOUND not yet POPPED with least $d(u)$. For each edge e from u to a neighbor v—even if v already visited (but not popped)—if $d(u) + w(e) < d(v)$ then update $d(v) := d(u) + w(e)$, and make a pointer from v point to u. Then pop u. Choose new u with least $d(u)$; repeat until done. Following pointers back from t then gives a shortest path P from s. To prove correct, think of the first e where a supposedly shorter path P_0 differs from P...
In our code for BFS we iterated over FOUND nodes that were not yet POPPED in the graph-label order.

Instead, let us maintain for each node \(v \) its currently-known distance \(d(v) \) from \(s \).
BFS and Shortest Paths (Dijkstra’s Algorithm)

- In our code for BFS we iterated over FOUND nodes that were not yet POPPED in the graph-label order.
- Instead, let us maintain for each node v its currently-known distance $d(v)$ from s.
- Initially $d(s) = 0$; $d(v) = \infty$ for all other v.

To prove correct, think of the first e where a supposedly shorter path P_0 differs from P...[Show on board, note use of heaps.]
BFS and Shortest Paths (Dijkstra’s Algorithm)

- In our code for BFS we iterated over FOUND nodes that were not yet POPPED in the graph-label order.
- Instead, let us maintain for each node \(v \) its currently-known distance \(d(v) \) from \(s \).
- Initially \(d(s) = 0; \) \(d(v) = \infty \) for all other \(v \).
- At each step, choose \(u \in \text{FOUND} \setminus \text{POPPED} \) with least \(d(u) \).
BFS and Shortest Paths (Dijkstra’s Algorithm)

- In our code for BFS we iterated over FOUND nodes that were not yet POPPED in the graph-label order.
- Instead, let us maintain for each node v its currently-known distance $d(v)$ from s.
- Initially $d(s) = 0$; $d(v) = \infty$ for all other v.
- At each step, choose $u \in \text{FOUND} \setminus \text{POPPED}$ with least $d(u)$.
- For each edge e from u to a neighbor v—even if v already visited (but not popped)—if $d(u) + w(e) < d(v)$ then update $d(v) := d(u) + w(e)$, and make a pointer from v point to u.

Following pointers back from t then gives a shortest path P from s. To prove correct, think of the first e where a supposedly shorter path P_0 differs from P...[Show on board, note use of heaps.]
BFS and Shortest Paths (Dijkstra’s Algorithm)

- In our code for BFS we iterated over FOUND nodes that were not yet POPPED in the graph-label order.
- Instead, let us maintain for each node v its currently-known distance $d(v)$ from s.
- Initially $d(s) = 0$; $d(v) = \infty$ for all other v.
- At each step, choose $u \in \text{FOUND} \setminus \text{POPPED}$ with least $d(u)$.
- For each edge e from u to a neighbor v—even if v already visited (but not popped)—if $d(u) + w(e) < d(v)$ then update $d(v) := d(u) + w(e)$, and make a pointer from v point to u.
- Then pop u. Choose new u' with least $d(u')$; repeat until done.

Following pointers back from t then gives a shortest path P from s.

To prove correct, think of the first e where a supposedly shorter path P_0 differs from P...[Show on board, note use of heaps.]
In our code for BFS we iterated over FOUND nodes that were not yet POPPED in the graph-label order.

Instead, let us maintain for each node v its currently-known distance $d(v)$ from s.

Initially $d(s) = 0$; $d(v) = \infty$ for all other v.

At each step, choose $u \in \text{FOUND} \setminus \text{POPPED}$ with least $d(u)$.

For each edge e from u to a neighbor v—even if v already visited (but not popped)—if $d(u) + w(e) < d(v)$ then update $d(v) := d(u) + w(e)$, and make a pointer from v point to u.

Then pop u. Choose new u' with least $d(u')$; repeat until done.

Following pointers back from t then gives a shortest path P from s.
BFS and Shortest Paths (Dijkstra’s Algorithm)

- In our code for BFS we iterated over FOUND nodes that were not yet POPPED in the graph-label order.
- Instead, let us maintain for each node \(v \) its currently-known distance \(d(v) \) from \(s \).
- Initially \(d(s) = 0 \); \(d(v) = \infty \) for all other \(v \).
- At each step, choose \(u \in \text{FOUND} \setminus \text{POPPED} \) with least \(d(u) \).
- For each edge \(e \) from \(u \) to a neighbor \(v \)—even if \(v \) already visited (but not popped)—if \(d(u) + w(e) < d(v) \) then update \(d(v) := d(u) + w(e) \), and make a pointer from \(v \) point to \(u \).
- Then pop \(u \). Choose new \(u' \) with least \(d(u') \); repeat until done.
- Following pointers back from \(t \) then gives a shortest path \(P \) from \(s \).
- To prove correct, think of the first \(e \) where a supposedly shorter path \(P' \) differs from \(P \)… [Show on board, note use of heaps.]
Edit Distance and Dynamic Programming

The term *dynamic programming* (DP) is IMHO misleading [tell story of 1950s “political correctness”].
The term *dynamic programming* (DP) is IMHO misleading [tell story of 1950s “political correctness”].
Really it means cleverly finding a way to compute a global function by incrementally building and updating a localized table.
Edit Distance and Dynamic Programming

- The term *dynamic programming* (DP) is IMHO misleading [tell story of 1950s “political correctness”].
- Really it means cleverly finding a way to compute a global function by incrementally building and updating a localized table.
- The size of the table is most important to the running time.
The term *dynamic programming* (DP) is IMHO misleading [tell story of 1950s “political correctness”].

Really it means cleverly finding a way to compute a global function by incrementally building and updating a localized table.

The size of the table is most important to the running time.

Dijkstra’s algorithm updates the table $d(v)$, but is more direct than what is usually called DP and the table has only $O(n)$ size (unless you want *all-pairs shortest paths*).
Edit Distance and Dynamic Programming

- The term *dynamic programming* (DP) is IMHO misleading [tell story of 1950s “political correctness”].
- Really it means cleverly finding a way to compute a global function by incrementally building and updating a localized table.
- The size of the table is most important to the running time.
- Dijkstra’s algorithm updates the table $d(v)$, but is more direct than what is usually called DP and the table has only $O(n)$ size (unless you want *all-pairs shortest paths*).
- In the *edit distance* problem, we wish to compute a certain distance $d(x, y)$ between a string x of some length m and y of length n.

We will build a table D of size $O(mn)$—indeed dimension $(m+1)(n+1)$. If we number chars $x = x_1 \ldots x_m$ from 1, then we conveniently number the “fenceposts” between and around them by $0; \ldots; m$. The “dynamic” idea is $D(i; j) = d(x_1 \ldots x_i; y_1 \ldots y_j)$.
Edit Distance and Dynamic Programming

- The term *dynamic programming* (DP) is IMHO misleading [tell story of 1950s “political correctness”].
- Really it means cleverly finding a way to compute a global function by incrementally building and updating a localized table.
- The size of the table is most important to the running time.
- Dijkstra’s algorithm updates the table $d(v)$, but is more direct than what is usually called DP and the table has only $O(n)$ size (unless you want *all-pairs shortest paths*).
- In the *edit distance* problem, we wish to compute a certain distance $d(x, y)$ between a string x of some length m and y of length n.
- We will build a table D of size $O(mn)$—indeed dimension $(m + 1) \times (n + 1)$.
The term *dynamic programming* (DP) is IMHO misleading [tell story of 1950s “political correctness”].

Really it means cleverly finding a way to compute a global function by incrementally building and updating a localized table.

The size of the table is most important to the running time.

Dijkstra’s algorithm updates the table $d(v)$, but is more direct than what is usually called DP and the table has only $O(n)$ size (unless you want *all-pairs shortest paths*).

In the *edit distance* problem, we wish to compute a certain distance $d(x, y)$ between a string x of some length m and y of length n.

We will build a table D of size $O(mn)$—indeed dimension $(m + 1) \times (n + 1)$.

If we number chars $x = x_1 \ldots x_m$ from 1, then we conveniently number the “fenceposts” between and around them by 0, \ldots, m.
The term *dynamic programming* (DP) is IMHO misleading [tell story of 1950s “political correctness”].

Really it means cleverly finding a way to compute a global function by incrementally building and updating a localized table.

The size of the table is most important to the running time.

Dijkstra’s algorithm updates the table $d(v)$, but is more direct than what is usually called DP and the table has only $O(n)$ size (unless you want *all-pairs shortest paths*).

In the *edit distance* problem, we wish to compute a certain distance $d(x, y)$ between a string x of some length m and y of length n.

We will build a table D of size $O(mn)$—indeed dimension $(m + 1) \times (n + 1)$.

If we number chars $x = x_1 \cdots x_m$ from 1, then we conveniently number the “fenceposts” between and around them by 0, \ldots, m.

The “dynamic” idea is $D(i, j) = d(x_1 \cdots x_i, y_1 \cdots y_j)$.
Example: editing Calcutta to Kolkata

The edits we are allowed to make are:

- Delete any character;

One way to do this is

\[\text{Calcutta} \rightarrow \text{Kalcutta} \rightarrow \text{Kolcutta} \rightarrow \text{Kolkutta} \rightarrow \text{Kolkatta} \rightarrow \text{Kolkata} \]

This takes 5 steps. Is that minimum?

Well, think of building the city up from scratch...

\[d(0; \text{Kolkata}) = 7 \] clearly 7 inserts needed.

Similarly \[d(\text{Calcutta}; 0) = 8 \].

Thus for any strings we always initialize \[D(0; j) = j \] and \[D(i; 0) = i \].

A "Northeast" recurrence then expands the whole table.
Example: editing Calcutta to Kolkata

The edits we are allowed to make are:

- Delete any character;
- Insert any character (in a “fencepost”);

One way to do this is Calcutta -> Kalcutta -> Kolcutta -> Kolkutta -> Kolkatta -> Kolkata. This takes 5 steps. Is that minimum?

Well, think of building the city up from scratch... $d(\text{Kolkata};) = 7$: clearly 7 inserts needed. Similarly $d(\text{Calcutta};) = 8$.

Thus for any strings we always initialize $D(0; j) = j$ and $D(i; 0) = i$. A “Northeast” recurrence then expands the whole table.
Example: editing Calcutta to Kolkata

The edits we are allowed to make are:

- Delete any character;
- Insert any character (in a “fencepost”);
- Substitute any character c by any letter d.
Example: editing Calcutta to Kolkata

The edits we are allowed to make are:

- Delete any character;
- Insert any character (in a “fencepost”);
- Substitute any character \(c \) by any letter \(d \).
- (The last is 1 step, rather than the 2 steps of deleting \(c \) and inserting \(d \).)

One way to do this is Calcutta -> Kalcutta -> Kolcutta -> Kolkutta -> Kolkatta -> Kolkata.
Example: editing Calcutta to Kolkata

The edits we are allowed to make are:

- Delete any character;
- Insert any character (in a “fencepost”);
- Substitute any character c by any letter d.
- (The last is 1 step, rather than the 2 steps of deleting c and inserting d.)

One way to do this is Calcutta \rightarrow Kalcutta \rightarrow Kolcutta \rightarrow Kolkutta \rightarrow Kolkatta \rightarrow Kolkata. This takes 5 steps. Is that minimum?
Example: editing Calcutta to Kolkata

The edits we are allowed to make are:

- Delete any character;
- Insert any character (in a “fencepost”);
- Substitute any character c by any letter d.
- (The last is 1 step, rather than the 2 steps of deleting c and inserting d.)

One way to do this is Calcutta \rightarrow Kalcutta \rightarrow Kolcutta \rightarrow Kolkutta \rightarrow Kolkatta \rightarrow Kolkata. This takes 5 steps. Is that minimum? Well, think of building the city up from scratch...
Example: editing Calcutta to Kolkata

The edits we are allowed to make are:

- Delete any character;
- Insert any character (in a “fencepost”);
- Substitute any character c by any letter d.

(The last is 1 step, rather than the 2 steps of deleting c and inserting d.)

One way to do this is Calcutta \rightarrow Kalcutta \rightarrow Kolcutta \rightarrow Kolkutta \rightarrow Kolkatta \rightarrow Kolkata. This takes 5 steps. Is that minimum? Well, think of building the city up from scratch...

- $d(\lambda, \text{Kolkata}) = 7$: clearly 7 inserts needed.
Example: editing Calcutta to Kolkata

The edits we are allowed to make are:

- Delete any character;
- Insert any character (in a “fencepost”);
- Substitute any character c by any letter d.

(The last is 1 step, rather than the 2 steps of deleting c and inserting d.)

One way to do this is Calcutta -> Kalcutta -> Kolcutta -> Kolkutta -> Kolkatta -> Kolkata. This takes 5 steps. Is that minimum? Well, think of building the city up from scratch...

- $d(\lambda, \text{Kolkata}) = 7$: clearly 7 inserts needed.
- Similarly $d(\text{Calcutta}, \lambda) = 8$.

The edits we are allowed to make are:

- Delete any character;
- Insert any character (in a “fencepost”);
- Substitute any character c by any letter d.

(The last is 1 step, rather than the 2 steps of deleting c and inserting d.)

One way to do this is Calcutta \rightarrow Kalcutta \rightarrow Kolcutta \rightarrow Kolkutta \rightarrow Kolkatta \rightarrow Kolkata. This takes 5 steps. Is that minimum? Well, think of building the city up from scratch...

- $d(\lambda, \text{Kolkata}) = 7$: clearly 7 inserts needed.
- Similarly $d(\text{Calcutta}, \lambda) = 8$.
- Thus for any strings we always initialize $D(0, j) = j$ and $D(i, 0) = i$.
Example: editing Calcutta to Kolkata

The edits we are allowed to make are:

- Delete any character;
- Insert any character (in a “fencepost”);
- Substitute any character c by any letter d.

(The last is 1 step, rather than the 2 steps of deleting c and inserting d.)

One way to do this is Calcutta -> Kalcutta -> Kolcutta -> Kolkutta -> Kolkatta -> Kolkata. This takes 5 steps. Is that minimum? Well, think of building the city up from scratch...

- $d(\lambda, \text{Kolkata}) = 7$: clearly 7 inserts needed.
- Similarly $d(\text{Calcutta}, \lambda) = 8$.
- Thus for any strings we always initialize $D(0, j) = j$ and $D(i, 0) = i$.
- A “Northeast” recurrence then expands the whole table.
The Edit Distance Recursion

Lemma: For any strings x, y and i, j with $1 \leq i \leq |x|$, $1 \leq j \leq |y|$: if $x_i = y_j$ then $D(i, j) = D(i - 1, j - 1)$, else

$$D(i, j) = 1 + \min\{D(i - 1, j - 1), D(i - 1, j), D(i, j - 1)\}.$$

- If $x_i = y_j$ then the least sequence converting $x_1 \cdots x_{i-1}$ to $y_1 \cdots y_{j-1}$ also converts $x_1 \cdots x_i$ to $y_1 \cdots y_j$ with no more edits.
The Edit Distance Recursion

Lemma: For any strings x, y and i, j with $1 \leq i \leq |x|$, $1 \leq j \leq |y|$: if $x_i = y_j$ then $D(i, j) = D(i - 1, j - 1)$, else

$$D(i, j) = 1 + \min\{D(i - 1, j - 1), D(i - 1, j), D(i, j - 1)\}.$$

- If $x_i = y_j$ then the least sequence converting $x_1 \cdots x_{i-1}$ to $y_1 \cdots y_{j-1}$ also converts $x_1 \cdots x_i$ to $y_1 \cdots y_j$ with no more edits.
- If not, then because x_i and y_j are the last chars in the respective (sub-)strings, at some point we have to change x_i either by (a) substituting it, (b) deleting it, or (c) inserting y_j someplace after it.
The Edit Distance Recursion

Lemma: For any strings x, y and i, j with $1 \leq i \leq |x|$, $1 \leq j \leq |y|$: if $x_i = y_j$ then $D(i, j) = D(i - 1, j - 1)$, else

$$D(i, j) = 1 + \min\{D(i - 1, j - 1), D(i - 1, j), D(i, j - 1)\}.$$

- If $x_i = y_j$ then the least sequence converting $x_1 \cdots x_{i-1}$ to $y_1 \cdots y_{j-1}$ also converts $x_1 \cdots x_i$ to $y_1 \cdots y_j$ with no more edits.
- If note, then because x_i and y_j are the last chars in the respective (sub-)strings, at some point we have to change x_i either by (a) substituting it, (b) deleting it, or (c) inserting y_j someplace after it.
- So let S be a minimum sequence of edits from $x' = x_1 \cdots x_i$ to $y' = y_1 \cdots y_j$.

The Edit Distance Recursion

Lemma: For any strings x, y and i, j with $1 \leq i \leq |x|$, $1 \leq j \leq |y|$: if $x_i = y_j$ then $D(i, j) = D(i - 1, j - 1)$, else

$$D(i, j) = 1 + \min\{D(i - 1, j - 1), D(i - 1, j), D(i, j - 1)\}.$$

- If $x_i = y_j$ then the least sequence converting $x_1 \cdots x_{i-1}$ to $y_1 \cdots y_{j-1}$ also converts $x_1 \cdots x_i$ to $y_1 \cdots y_j$ with no more edits.
- If not, then because x_i and y_j are the last chars in the respective (sub-)strings, at some point we have to change x_i either by (a) substituting it, (b) deleting it, or (c) inserting y_j someplace after it.
- So let S be a minimum sequence of edits from $x' = x_1 \cdots x_i$ to $y' = y_1 \cdots y_j$.
- If y_j is already in $x_1 \cdots x_{i-1}$ then S deletes x_i. We may as well do that first. So $D(i, j) \leq 1 + D(i - 1, j)$.
The Edit Distance Recursion

Lemma: For any strings x, y and i, j with $1 \leq i \leq |x|$, $1 \leq j \leq |y|$: if $x_i = y_j$ then $D(i, j) = D(i - 1, j - 1)$, else

$$D(i, j) = 1 + \min\{D(i - 1, j - 1), D(i - 1, j), D(i, j - 1)\}.$$

- If $x_i = y_j$ then the least sequence converting $x_1 \cdots x_{i-1}$ to $y_1 \cdots y_{j-1}$ also converts $x_1 \cdots x_i$ to $y_1 \cdots y_j$ with no more edits.
- If note, then because x_i and y_j are the last chars in the respective (sub-)strings, at some point we have to change x_i either by (a) substituting it, (b) deleting it, or (c) inserting y_j someplace after it.
- So let S be a minimum sequence of edits from $x' = x_1 \cdots x_i$ to $y' = y_1 \cdots y_j$.
- If y_j is already in $x_1 \cdots x_{i-1}$ then S deletes x_i. We may as well do that first. So $D(i, j) \leq 1 + D(i - 1, j)$.
- If not, and if S does not delete x_i, then either it substitutes x_i or inserts after x_i.
Proof, continued...

- If S does not delete x_i, then it substitutes x_i or inserts after x_i.
Proof, continued...

- If \(S \) does not delete \(x_i \), then it substitutes \(x_i \) or inserts after \(x_i \).
- If it substitutes \(x_i := y_j \) then we can do that first (or last), so
 \[D(i, j) \leq 1 + D(i - 1, j - 1). \]
If S does not delete x_i, then it substitutes x_i or inserts after x_i.

If it substitutes $x_i := y_j$ then we can do that first (or last), so
$D(i, j) \leq 1 + D(i-1, j-1)$.

Else, we insert y_j after the position occupied by x_i. Again we can
just as well do that last, having produced $y_1 \cdots y_{j-1}$. So
$D(i, j) \leq 1 + D(i, j-1)$ in that case.

Proof, continued...
Proof, continued...

- If S does not delete x_i, then it substitutes x_i or inserts after x_i.
- If it substitutes $x_i := y_j$ then we can do that first (or last), so $D(i, j) \leq 1 + D(i - 1, j - 1)$.
- Else, we insert y_j after the position occupied by x_i. Again we can just as well do that last, having produced $y_1 \cdots y_{j-1}$. So $D(i, j) \leq 1 + D(i, j - 1)$ in that case.
- One case must hold, so proved. □
Proof, continued...

- If S does not delete x_i, then it substitutes x_i or inserts after x_i.
- If it substitutes $x_i := y_j$ then we can do that first (or last), so $D(i, j) \leq 1 + D(i - 1, j - 1)$.
- Else, we insert y_j after the position occupied by x_i. Again we can just as well do that last, having produced $y_1 \cdots y_{j-1}$. So $D(i, j) \leq 1 + D(i, j - 1)$ in that case.
- One case must hold, so proved. □

"Calcutta Example": Clearly $D(1, 1) = d(C, K) = 1$. So

\[
D(2, 1) = d(Ca, K) = 1 + \min\{D(1, 0), D(1, 1), D(2, 0)\} \\
= 1 + \min\{d(C, \lambda), d(C, K), d(Ca, \lambda)\} = 2.
\]
Proof, continued...

- If S does not delete x_i, then it substitutes x_i or inserts after x_i.
- If it substitutes $x_i := y_j$ then we can do that first (or last), so $D(i, j) \leq 1 + D(i - 1, j - 1)$.
- Else, we insert y_j after the position occupied by x_i. Again we can just as well do that last, having produced $y_1 \cdots y_{j-1}$. So $D(i, j) \leq 1 + D(i, j - 1)$ in that case.
- One case must hold, so proved. □

“Calcutta Example”: Clearly $D(1, 1) = d(C, K) = 1$. So

$$D(2, 1) = d(Ca, K = 1 + \min\{D(1, 0), D(1, 1), D(2, 0)\}$$

$$= 1 + \min\{d(C, \lambda), d(C, K), d(Ca, \lambda)\} = 2.$$

Next $D(1, 2) = d(C, Ko) = 2$ and $D(2, 2) = d(Ca, Ko) = 2$ and

$$D(3, 3) = D(2, 2) = 2 \quad because \quad x_3 = y_3 = l.$$
Proof, continued...

- If S does not delete x_i, then it substitutes x_i or inserts after x_i.
- If it substitutes $x_i := y_j$ then we can do that first (or last), so $D(i, j) \leq 1 + D(i - 1, j - 1)$.
- Else, we insert y_j after the position occupied by x_i. Again we can just as well do that last, having produced $y_1 \cdots y_{j-1}$. So $D(i, j) \leq 1 + D(i, j - 1)$ in that case.
- One case must hold, so proved. □

"Calcutta Example": Clearly $D(1, 1) = d(C, K) = 1$. So
\[
D(2, 1) = d(Ca, K = 1 + \min\{D(1, 0), D(1, 1), D(2, 0)\}
\]
\[
= 1 + \min\{d(C, \lambda), d(C, K), d(Ca, \lambda)\} = 2.
\]
Next $D(1, 2) = d(C, Ko) = 2$ and $D(2, 2) = d(Ca, Ko) = 2$ and
\[
D(3, 3) = D(2, 2) = 2 \quad \text{because} \quad x_3 = y_3 = l.
\]
Building up, we eventually get $D(8, 7) = 5$ (exercise).
Big Issue: Can We Improve the Time?

Can we improve the \(\Theta(mn) \) running time to \(O(m + n) \)?
Big Issue: Can We Improve the Time?

Can we improve the $\Theta(mn)$ running time to $O(m + n)$? or to $\tilde{O}(m + n)$ ignoring any factors of $\log(m + n)$? or at least to $O((m + n)^{2-\epsilon})$ for some $\epsilon > 0$ so the time is better than quadratic?
Can we improve the $\Theta(mn)$ running time to $O(m+n)$? or to $
abla O(m+n)$ ignoring any factors of $\log(m+n)$? or at least to $O((m+n)^{2-\epsilon})$ for some $\epsilon > 0$ so the time is better than quadratic?

- Would have huge impact in gene sequencing, for instance.
Big Issue: Can We Improve the Time?

Can we improve the $\Theta(mn)$ running time to $O(m + n)$? or to $\tilde{O}(m + n)$ ignoring any factors of $\log(m + n)$? or at least to $O((m + n)^{2-\epsilon})$ for some $\epsilon > 0$ so the time is better than quadratic?

- Would have huge impact in gene sequencing, for instance.
- Can we “jump the table,” as for Fibonacci Numbers F_n?
Big Issue: Can We Improve the Time?

Can we improve the $\Theta(mn)$ running time to $O(m + n)$? or to $\tilde{O}(m + n)$ ignoring any factors of $\log(m + n)$? or at least to $O((m + n)^{2-\epsilon})$ for some $\epsilon > 0$ so the time is better than quadratic?

- Would have huge impact in gene sequencing, for instance.
- Can we “jump the table,” as for Fibonacci Numbers F_n?
- The formula $F_n = F_{n-1} + F_{n-2}$ is a great definition...
Big Issue: Can We Improve the Time?

Can we improve the $\Theta(mn)$ running time to $O(m + n)$? or to $\tilde{O}(m + n)$ ignoring any factors of $\log(m + n)$? or at least to $O((m + n)^{2-\epsilon})$ for some $\epsilon > 0$ so the time is better than quadratic?

- Would have huge impact in gene sequencing, for instance.
- Can we “jump the table,” as for Fibonacci Numbers F_n?
- The formula $F_n = F_{n-1} + F_{n-2}$ is a great definition... but a lousy recursion.
Big Issue: Can We Improve the Time?

Can we improve the $\Theta(mn)$ running time to $O(m + n)$? or to $\tilde{O}(m + n)$ ignoring any factors of $\log(m + n)$? or at least to $O((m + n)^{2-\epsilon})$ for some $\epsilon > 0$ so the time is better than quadratic?

- Would have huge impact in gene sequencing, for instance.
- Can we “jump the table,” as for Fibonacci Numbers F_n?
- The formula $F_n = F_{n-1} + F_{n-2}$ is a great definition... but a lousy recursion.
- Better is $(F_n, F_{n-1}) = (2F_{n-2} + F_{n-3}, F_{n-2} + F_{n-3})$: $O(n)$ time.
Big Issue: Can We Improve the Time?

Can we improve the $\Theta(mn)$ running time to $O(m + n)$? or to $\tilde{O}(m + n)$ ignoring any factors of $\log(m + n)$? or at least to $O((m + n)^{2-\epsilon})$ for some $\epsilon > 0$ so the time is better than quadratic?

- Would have huge impact in gene sequencing, for instance.
- Can we “jump the table,” as for Fibonacci Numbers F_n?
- The formula $F_n = F_{n-1} + F_{n-2}$ is a great definition... but a lousy recursion.
- Better is $(F_n, F_{n-1}) = (2F_{n-2} + F_{n-3}, F_{n-2} + F_{n-3})$: $O(n)$ time.
- Filling table iteratively not recursively is simple and good.
Big Issue: Can We Improve the Time?

Can we improve the $\Theta(mn)$ running time to $O(m + n)$? or to $\tilde{O}(m + n)$ ignoring any factors of $\log(m + n)$? or at least to $O((m + n)^{2-\varepsilon})$ for some $\varepsilon > 0$ so the time is better than quadratic?

- Would have huge impact in gene sequencing, for instance.
- Can we “jump the table,” as for Fibonacci Numbers F_n?
- The formula $F_n = F_{n-1} + F_{n-2}$ is a great definition... but a lousy recursion.
- Better is $(F_n, F_{n-1}) = (2F_{n-2} + F_{n-3}, F_{n-2} + F_{n-3})$: $O(n)$ time.
- Filling table iteratively not recursively is simple and good.
- But can we compute F_n without computing F_{n-1} or F_{n-2}—and without any fancy arithmetic like powers of the golden ratio?
Big Issue: Can We Improve the Time?

Can we improve the $\Theta(mn)$ running time to $O(m + n)$? or to $\tilde{O}(m + n)$ ignoring any factors of $\log(m + n)$? or at least to $O((m + n)^{2-\epsilon})$ for some $\epsilon > 0$ so the time is better than quadratic?

- Would have huge impact in gene sequencing, for instance.
- Can we “jump the table,” as for Fibonacci Numbers F_n?
- The formula $F_n = F_{n-1} + F_{n-2}$ is a great definition... but a lousy recursion.
- Better is $(F_n, F_{n-1}) = (2F_{n-2} + F_{n-3}, F_{n-2} + F_{n-3})$: $O(n)$ time.
- Filling table iteratively not recursively is simple and good.
- But can we compute F_n without computing F_{n-1} or F_{n-2}—and without any fancy arithmetic like powers of the golden ratio?

- Surprise(?) yes: keep squaring $M = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.
Big Issue: Can We Improve the Time?

Can we improve the $\Theta(mn)$ running time to $O(m + n)$? or to $\tilde{O}(m + n)$ ignoring any factors of $\log(m + n)$? or at least to $O((m + n)^{2-\epsilon})$ for some $\epsilon > 0$ so the time is better than quadratic?

- Would have huge impact in gene sequencing, for instance.
- Can we “jump the table,” as for Fibonacci Numbers F_n?
- The formula $F_n = F_{n-1} + F_{n-2}$ is a great definition... but a lousy recursion.
- Better is $(F_n, F_{n-1}) = (2F_{n-2} + F_{n-3}, F_{n-2} + F_{n-3})$: $O(n)$ time.
- Filling table iteratively not recursively is simple and good.
- But can we compute F_n without computing F_{n-1} or F_{n-2}—and without any fancy arithmetic like powers of the golden ratio?

- Surprise(?) yes: keep squaring $M = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.
- But for ED, new “Puzzling Evidence” that $\Theta(mn)$ cannot be avoided.
Original Third Lecture Day...

Shorter, done from board:

- Sorting is a “Good Guy.”
Original Third Lecture Day...

Shorter, done from board:

- Sorting is a “Good Guy.”
- Parallel Prefix Sum
Original Third Lecture Day...

Shorter, done from board:

- Sorting is a "Good Guy."
- Parallel Prefix Sum
- Map-Reduce in the Abstract.
Shorter, done from board:

- Sorting is a “Good Guy.”
- Parallel Prefix Sum
- Map-Reduce in the Abstract.
- Log-Depth Circuits and Cloud-Friendly Algorithms.