Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving

Kenneth W. Regan
University at Buffalo (SUNY)

University of Calcutta, 3 August 2016
Given a list of n words—figure the list is very long—how time does it take to determine whether there are two or more occurrences of the very same word?

Comparing every pair of words would take time of order n^2.

Sorting the list can be done in $O(n \log n)$ time—e.g. by Heapsort as described—then any duplicates will be adjacent. So overall time is $O(n \log n)$. Recall that n times any power of $\log n$ gives quasilinear time.

A second substantial efficiency of sorting is that its work can be distributed. One sense of this is that sorting is streamable, especially Mergesort. Another is that sorting has Boolean circuits a power of $\log n$ in depth.
Given a list of \(n \) words—figure the list is very long—how time does it take to determine whether there are two or more occurrences of the very same word?

Comparing every pair of words would take time of order \(n^2 \).
Given a list of n words—figure the list is very long—how time does it take to determine whether there are two or more occurrences of the very same word?

Comparing every pair of words would take time of order n^2.

Sorting the list can be done in $O(n \log n)$ time—e.g. by Heapsort as described—then any duplicates will be adjacent.
Given a list of n words—figure the list is very long—how time does it take to determine whether there are two or more occurrences of the very same word?

Comparing every pair of words would take time of order n^2.

Sorting the list can be done in $O(n \log n)$ time—e.g. by Heapsort as described—then any duplicates will be adjacent.

So overall time is $O(n \log n)$. Recall that n times any power of $\log n$ gives quasilinear time.
Given a list of n words—figure the list is very long—how time does it take to determine whether there are two or more occurrences of the very same word?

Comparing every pair of words would take time of order n^2.

Sorting the list can be done in $O(n \log n)$ time—e.g. by Heapsort as described—then any duplicates will be adjacent.

So overall time is $O(n \log n)$. Recall that n times any power of $\log n$ gives quasilinear time.

A second substantial efficiency of sorting is that its work can be distributed.
Given a list of n words—figure the list is very long—how time does it take to determine whether there are two or more occurrences of the very same word?

Comparing every pair of words would take time of order n^2.

Sorting the list can be done in $O(n \log n)$ time—e.g. by Heapsort as described—then any duplicates will be adjacent.

So overall time is $O(n \log n)$. Recall that n times any power of $\log n$ gives quasilinear time.

A second substantial efficiency of sorting is that its work can be distributed.

One sense of this is that sorting is streamable, especially Mergesort.
Given a list of n words—figure the list is very long—how time does it take to determine whether there are two or more occurrences of the very same word?

Comparing every pair of words would take time of order n^2.

Sorting the list can be done in $O(n \log n)$ time—e.g. by Heapsort as described—then any duplicates will be adjacent.

So overall time is $O(n \log n)$. Recall that n times any power of $\log n$ gives quasilinear time.

A second substantial efficiency of sorting is that its work can be distributed.

One sense of this is that sorting is streamable, especially Mergesort.

Another is that sorting has Boolean circuits a power of $\log n$ in depth.
Parallel Prefix Sum (PPS): Depth $2 \log n$
Generalization

- Looking top-to-bottom, we have $O(\log n)$-delay parallel processing.
Generalization

- Looking top-to-bottom, we have $O(\log n)$-delay parallel processing.
- Looking left-to-right, we have an $O(\log n)$-width stream.
Generalization

- Looking top-to-bottom, we have $O(\log n)$-delay parallel processing.
- Looking left-to-right, we have an $O(\log n)$-width stream.
- The same algorithm works for any binary associative operation \circ.

Wikipedia says this "inspired" the much more general "MapReduce" architecture for cloud computing, which retains the idea of a poly-$O(\log n)$-width stream.

What it must avoid is (n)-width random access.

Sorting and PPS give a toolkit.
Generalization

- Looking top-to-bottom, we have $O(\log n)$-delay parallel processing.
- Looking left-to-right, we we have an $O(\log n)$-width stream.
- The same algorithm works for any binary associative operation \odot.
- The act of computing a list (a_1, a_2, \ldots, a_n) into a value $a_1 \odot a_2 \odot \cdots \odot a_n$ is called reduce.
Generalization

- Looking top-to-bottom, we have $O(\log n)$-delay parallel processing.
- Looking left-to-right, we we have an $O(\log n)$-width stream.
- The same algorithm works for any binary associative operation \odot.
- The act of computing a list (a_1, a_2, \ldots, a_n) into a value $a_1 \odot a_2 \odot \cdots \odot a_n$ is called reduce.
- Applying an operation at every point in a list is called map.
Generalization

- Looking top-to-bottom, we have $O(\log n)$-delay parallel processing.
- Looking left-to-right, we have an $O(\log n)$-width stream.
- The same algorithm works for any binary associative operation \odot.
- The act of computing a list (a_1, a_2, \ldots, a_n) into a value $a_1 \odot a_2 \odot \cdots \odot a_n$ is called reduce.
- Applying an operation at every point in a list is called map.
- Thus $(a_1, a_1 \odot a_2, a_1 \odot a_2 \odot a_3, \ldots, a_1 \odot a_2 \odot \cdots \odot a_n)$ is the “Map-Reduce” of the list.
Generalization

- Looking top-to-bottom, we have $O(\log n)$-delay parallel processing.
- Looking left-to-right, we we have an $O(\log n)$-width stream.
- The same algorithm works for any binary associative operation \odot.
- The act of computing a list (a_1, a_2, \ldots, a_n) into a value $a_1 \odot a_2 \odot \cdots \odot a_n$ is called reduce.
- Applying an operation at every point in a list is called map.
- Thus $(a_1, a_1 \odot a_2, a_1 \odot a_2 \odot a_3, \ldots, a_1 \odot a_2 \odot \cdots \odot a_n)$ is the “Map-Reduce” of the list.
- Wikipedia says this “inspired” the much more general “MapReduce” architecture for cloud computing, which retains the idea of a poly-log(n)-width stream.
Generalization

- Looking top-to-bottom, we have $O(\log n)$-delay parallel processing.
- Looking left-to-right, we have an $O(\log n)$-width stream.
- The same algorithm works for any binary associative operation \odot.
- The act of computing a list (a_1, a_2, \ldots, a_n) into a value $a_1 \odot a_2 \odot \cdots \odot a_n$ is called reduce.
- Applying an operation at every point in a list is called map.
- Thus $(a_1, a_1 \odot a_2, a_1 \odot a_2 \odot a_3, \ldots, a_1 \odot a_2 \odot \cdots \odot a_n)$ is the “Map-Reduce” of the list.
- Wikipedia says this “inspired” the much more general “MapReduce” architecture for cloud computing, which retains the idea of a poly-log(n)-width stream. What it must avoid is $\Omega(n)$-width random access.
Generalization

- Looking top-to-bottom, we have $O(\log n)$-delay parallel processing.
- Looking left-to-right, we have an $O(\log n)$-width stream.
- The same algorithm works for any binary associative operation \odot.
- The act of computing a list (a_1, a_2, \ldots, a_n) into a value $a_1 \odot a_2 \odot \cdots \odot a_n$ is called reduce.
- Applying an operation at every point in a list is called map.
- Thus $(a_1, a_1 \odot a_2, a_1 \odot a_2 \odot a_3, \ldots, a_1 \odot a_2 \odot \cdots \odot a_n)$ is the “Map-Reduce” of the list.
- Wikipedia says this “inspired” the much more general “MapReduce” architecture for cloud computing, which retains the idea of a poly-log(n)-width stream. What it must avoid is $\Omega(n)$-width random access. Sorting and PPS give a toolkit.
Finite State Machine Example

A finite state transducer (FST) is a Turing machine $T = (Q, \Sigma, \delta, \rho, s, \phi)$ with a read-only input tape and a write-only output tape.
Finite State Machine Example

- A *finite state transducer* (FST) is a Turing machine $T = (Q, \Sigma, \delta, \rho, s, \phi)$ with a read-only input tape and a write-only output tape.
- Besides $\delta : Q \times \Sigma \to Q$ we have the output function $\rho : Q \times \Sigma \to \Sigma^*$ and a final-output function $\phi : Q \to \Sigma^*$.

Output can be more than one character or can be empty; it is fixed into the code of T. At end when machine halts in a state q the machine appends (q) to its output; if q is not an accepting state then $(q) =$ "Cancel!"
Finite State Machine Example

- A finite state transducer (FST) is a Turing machine $T = (Q, \Sigma, \delta, \rho, s, \phi)$ with a read-only input tape and a write-only output tape.
- Besides $\delta : Q \times \Sigma \to Q$ we have the output function $\rho : Q \times \Sigma \to \Sigma^*$ and a final-output function $\phi : Q \to \Sigma^*$.
- Output can be more than one char or can be empty; it is fixed into the code of T.
Finite State Machine Example

- A finite state transducer (FST) is a Turing machine $T = (Q, \Sigma, \delta, \rho, s, \phi)$ with a read-only input tape and a write-only output tape.
- Besides $\delta : Q \times \Sigma \rightarrow Q$ we have the output function $\rho : Q \times \Sigma \rightarrow \Sigma^*$ and a final-output function $\phi : Q \rightarrow \Sigma^*$.
- Output can be more than one char or can be empty; it is fixed into the code of T.
- At end when machine halts in a state q the machine appends $\phi(q)$ to its output; if q is not an accepting state then $\phi(q) = \text{“Cancel!”}$
Finite State Machine Example

- A finite state transducer (FST) is a Turing machine $T = (Q, \Sigma, \delta, \rho, s, \phi)$ with a read-only input tape and a write-only output tape.
- Besides $\delta : Q \times \Sigma \rightarrow Q$ we have the output function $\rho : Q \times \Sigma \rightarrow \Sigma^*$ and a final-output function $\phi : Q \rightarrow \Sigma^*$.
- Output can be more than one char or can be empty; it is fixed into the code of T.
- At end when machine halts in a state q the machine appends $\phi(q)$ to its output; if q is not an accepting state then $\phi(q) =$ “Cancel!”
- Examples: “zoom in,” “zoom out,” parity check, running sums...
Finite State Machine Example

- A finite state transducer (FST) is a Turing machine $T = (Q, \Sigma, \delta, \rho, s, \phi)$ with a read-only input tape and a write-only output tape.
- Besides $\delta : Q \times \Sigma \to Q$ we have the output function $\rho : Q \times \Sigma \to \Sigma^*$ and a final-output function $\phi : Q \to \Sigma^*$.
- Output can be more than one char or can be empty; it is fixed into the code of T.
- At end when machine halts in a state q the machine appends $\phi(q)$ to its output; if q is not an accepting state then $\phi(q) = \text{"Cancel!"}$
- Examples: “zoom in,” “zoom out,” parity check, running sums...
- Execution problem: given a string x, compute $T(x)$.
Finite State Machine Example

- A finite state transducer (FST) is a Turing machine $T = (Q, \Sigma, \delta, \rho, s, \phi)$ with a read-only input tape and a write-only output tape.
- Besides $\delta : Q \times \Sigma \to Q$ we have the output function $\rho : Q \times \Sigma \to \Sigma^*$ and a final-output function $\phi : Q \to \Sigma^*$.
- Output can be more than one char or can be empty; it is fixed into the code of T.
- At end when machine halts in a state q the machine appends $\phi(q)$ to its output; if q is not an accepting state then $\phi(q) = “\text{Cancel!”}$
- Examples: “zoom in,” “zoom out,” parity check, running sums…
- Execution problem: given a string x, compute $T(x)$.
- Streaming is easy, but parallel execution is harder: how do we know ahead of time what state T will be in toward the end?
Finite State Machine Example

- A *finite state transducer* (FST) is a Turing machine $T = (Q, \Sigma, \delta, \rho, s, \phi)$ with a read-only input tape and a write-only output tape.
- Besides $\delta : Q \times \Sigma \rightarrow Q$ we have the *output function* $\rho : Q \times \Sigma \rightarrow \Sigma^*$ and a *final-output function* $\phi : Q \rightarrow \Sigma^*$.
- Output can be more than one char or can be empty; it is fixed into the code of T.
- At end when machine halts in a state q the machine appends $\phi(q)$ to its output; if q is not an accepting state then $\phi(q) = \text{"Cancel!"}$
- Examples: “zoom in,” “zoom out,” parity check, running sums...
- Execution problem: given a string x, compute $T(x)$.
- Streaming is easy, but parallel execution is harder: how do we know ahead of time what state T will be in toward the end?
- Answer: use PPS to compose the maps $g_c(q) = \delta(q, c)$ for each character; $g_c \odot g_d = \text{take } q \text{ to } g_d(g_c(q))$ [show on board].
Batcher’s Bitonic Merge and Sort

- Given two already-sorted lists $A = a_1 \leq a_2 \leq \cdots \leq a_n$ and $B = b_1 \leq b_2 \leq \cdots \leq b_n$ of equal length n, you want to merge them into one sorted list.
Batcher's Bitonic Merge and Sort

- Given two already-sorted lists $A = a_1 \leq a_2 \leq \cdots \leq a_n$ and
 $B = b_1 \leq b_2 \leq \cdots \leq b_n$ of equal length n, you want to merge them into one sorted list.
- A comparator gate g maps $g(a, b) = (b, a)$ if $b < a$, else (a, b).
Batcher’s Bitonic Merge and Sort

- Given two already-sorted lists $A = a_1 \leq a_2 \leq \cdots \leq a_n$ and $B = b_1 \leq b_2 \leq \cdots \leq b_n$ of equal length n, you want to merge them into one sorted list.
- A *comparator gate* g maps $g(a, b) = (b, a)$ if $b < a$, else (a, b).
- Stream is easy if you can “pause” the flow of one of the lists—in case the other list has many lesser items in a row.
Batcher’s Bitonic Merge and Sort

- Given two already-sorted lists $A = a_1 \leq a_2 \leq \cdots \leq a_n$ and $B = b_1 \leq b_2 \leq \cdots \leq b_n$ of equal length n, you want to merge them into one sorted list.

- A *comparator gate* g maps $g(a, b) = (b, a)$ if $b < a$, else (a, b).

- Stream is easy if you can “pause” the flow of one of the lists—in case the other list has many lesser items in a row. But what if not, and what about parallel?
Batcher’s Bitonic Merge and Sort

- Given two already-sorted lists $A = a_1 \leq a_2 \leq \cdots \leq a_n$ and $B = b_1 \leq b_2 \leq \cdots \leq b_n$ of equal length n, you want to merge them into one sorted list.
- A comparator gate g maps $g(a, b) = (b, a)$ if $b < a$, else (a, b).
- Stream is easy if you can “pause” the flow of one of the lists—in case the other list has many lesser items in a row. But what if not, and what about parallel?
- We will do $O(\log n)$ recursive passes over the lists.
Batcher’s Bitonic Merge and Sort

- Given two already-sorted lists \(A = a_1 \leq a_2 \leq \cdots \leq a_n \) and \(B = b_1 \leq b_2 \leq \cdots \leq b_n \) of equal length \(n \), you want to merge them into one sorted list.
- A comparator gate \(g \) maps \(g(a, b) = (b, a) \) if \(b < a \), else \((a, b) \).
- Stream is easy if you can “pause” the flow of one of the lists—in case the other list has many lesser items in a row. But what if not, and what about parallel?
- We will do \(O(\log n) \) recursive passes over the lists.
- Key idea is that if you reverse \(B \) into \(B' \), then the list \(A, B' \) is *bitonic*—like a valley.
Batcher’s Bitonic Merge and Sort

Given two already-sorted lists \(A = a_1 \leq a_2 \leq \cdots \leq a_n \) and \(B = b_1 \leq b_2 \leq \cdots \leq b_n \) of equal length \(n \), you want to merge them into one sorted list.

A comparator gate \(g \) maps \(g(a, b) = (b, a) \) if \(b < a \), else \((a, b) \).

Stream is easy if you can “pause” the flow of one of the lists—in case the other list has many lesser items in a row. But what if not, and what about parallel?

We will do \(O(\log n) \) recursive passes over the lists.

Key idea is that if you reverse \(B \) into \(B' \), then the list \(A, B' \) is bitonic—like a valley.

Strangely, compare first half of \(A \) with first half of \(B' \) not \(B \), then second halves.
Batcher’s Bitonic Merge and Sort

- Given two already-sorted lists \(A = a_1 \leq a_2 \leq \cdots \leq a_n \) and \(B = b_1 \leq b_2 \leq \cdots \leq b_n \) of equal length \(n \), you want to merge them into one sorted list.
- A \emph{comparator gate} \(g \) maps \((a, b) = (b, a)\) if \(b < a \), else \((a, b)\).
- Stream is easy if you can “pause” the flow of one of the lists—in case the other list has many lesser items in a row. But what if not, and what about parallel?
- We will do \(O(\log n) \) recursive passes over the lists.
- Key idea is that if you reverse \(B \) into \(B' \), then the list \(A, B' \) is \emph{bitonic}—like a valley.
- Strangely, compare first half of \(A \) with first half of \(B' \) not \(B \), then second halves.
- The four outputs of size \(n/2 \) are bitonic so we can recurse.
Batcher’s Bitonic Merge and Sort

- Given two already-sorted lists $A = a_1 \leq a_2 \leq \cdots \leq a_n$ and $B = b_1 \leq b_2 \leq \cdots \leq b_n$ of equal length n, you want to merge them into one sorted list.
- A *comparator gate* g maps $g(a, b) = (b, a)$ if $b < a$, else (a, b).
- Stream is easy if you can “pause” the flow of one of the lists—in case the other list has many lesser items in a row. But what if not, and what about parallel?
- We will do $O(\log n)$ recursive passes over the lists.
- Key idea is that if you reverse B into B', then the list A, B' is *bitonic*—like a valley.
- Strangely, compare first half of A with first half of B' not B, then second halves.
- The four outputs of size $n/2$ are bitonic so we can recurse.
- Gives Mergesort in $O(n \log n)$ time with $O((\log n)^2)$ depth.
def bitonic_merge(up, x): # assume input x is bitonic
 if len(x) == 1:
 return x
 else:
 bitonic_compare(up, x)
 first = bitonic_merge(up, x[:len(x) / 2])
 second = bitonic_merge(up, x[len(x) / 2:]
 return first + second

def bitonic_compare(up, x):
 dist = len(x) / 2
 for i in range(dist):
 if (x[i] > x[i+dist]) == up:
 x[i], x[i+dist] = x[i+dist], x[i] #swap
Theorem: Every decision problem or function in nondeterministic logspace can be processed in parallel by circuits of $n^{O(1)}$ size and $O((\log n)^2)$ depth.
Theorem: Every decision problem or function in nondeterministic logspace can be processed in parallel by circuits of \(n^{O(1)} \) size and \(O((\log n)^2) \) depth.

Thus one reason to care about the theoretical distinction of the “BFS class” is being able to make better parallel/cloud-friendly algorithms.
Solving Arithmetical Equations

A famous example:

\[z = x^3 + y^3; \]
\[z = u^3 + v^3; \]
\[w \cdot (x - u) \cdot (x - v) = 1. \]
Solving Arithmetical Equations

A famous example:

\[
\begin{align*}
 z &= x^3 + y^3; \\
 z &= u^3 + v^3; \\
 w \cdot (x - u) \cdot (x - v) &= 1.
\end{align*}
\]

About 100 years ago, the English mathematician G.H. Hardy hailed a taxicab with Srinivasa Ramanujan that had the number \(z = 1, 729 \).
Solving Arithmetical Equations

A famous example:

\[z = x^3 + y^3; \]
\[z = u^3 + v^3; \]
\[w \times (x - u) \times (x - v) = 1. \]

- About 100 years ago, the English mathematician G.H. Hardy hailed a taxicab with Srinivasa Ramanujan that had the number \(z = 1,729 \).
- Ramanujan solved it instantly with \(x = 1, y = 12, u = 9, v = 10 \).
Solving Arithmetical Equations

A famous example:

\[z = x^3 + y^3; \]
\[z = u^3 + v^3; \]
\[w \times (x - u) \times (x - v) = 1. \]

- About 100 years ago, the English mathematician G.H. Hardy hailed a taxicab with Srinivasa Ramanujan that had the number \(z = 1,729 \).
- Ramanujan solved it instantly with \(x = 1, y = 12, u = 9, v = 10 \).
- The \(w \) clause prevents just taking \(x = u \) or \(x = v \) so the answers are different.
Solving Arithmetical Equations

A famous example:

\[
\begin{align*}
z &= x^3 + y^3; \\
z &= u^3 + v^3; \\
w \times (x - u) \times (x - v) &= 1.
\end{align*}
\]

- About 100 years ago, the English mathematician G.H. Hardy hailed a taxicab with Srinivasa Ramanujan that had the number \(z = 1,729 \).
- Ramanujan solved it instantly with \(x = 1, y = 12, u = 9, v = 10 \).
- The \(w \) clause prevents just taking \(x = u \) or \(x = v \) so the answers ae different.
- But it goes away from integers...
Solving Arithmetical Equations

A famous example:

\[
\begin{align*}
 z &= x^3 + y^3; \\
 z &= u^3 + v^3; \\
 w \cdot (x - u) \cdot (x - v) &= 1.
\end{align*}
\]

- About 100 years ago, the English mathematician G.H. Hardy hailed a taxicab with Srinivasa Ramanujan that had the number \(z = 1,729 \).
- Ramanujan solved it instantly with \(x = 1, y = 12, u = 9, v = 10 \).
- The \(w \) clause prevents just taking \(x = u \) or \(x = v \) so the answers are different.
- But it goes away from integers...
- *General question:* When are equations solvable?
Solving Arithmetical Equations

A famous example:

\[z = x^3 + y^3; \]
\[z = u^3 + v^3; \]
\[w \times (x - u) \times (x - v) = 1. \]

- About 100 years ago, the English mathematician G.H. Hardy hailed a taxicab with Srinivasa Ramanujan that had the number \(z = 1,729. \)
- Ramanujan solved it instantly with \(x = 1, y = 12, u = 9, v = 10. \)
- The \(w \) clause prevents just taking \(x = u \) or \(x = v \) so the answers are different.
- But it goes away from integers...
- **General question:** When are equations solvable? in reals or integers?
Solving Arithmetical Equations

A famous example:

\[z = x^3 + y^3; \]
\[z = u^3 + v^3; \]
\[w \times (x - u) \times (x - v) = 1. \]

- About 100 years ago, the English mathematician G.H. Hardy hailed a taxicab with Srinivasa Ramanujan that had the number \(z = 1,729 \).
- Ramanujan solved it instantly with \(x = 1, y = 12, u = 9, v = 10 \).
- The \(w \) clause prevents just taking \(x = u \) or \(x = v \) so the answers are different.
- But it goes away from integers...
- General question: When are equations solvable? in reals or integers? or in 0-1 values only?
A Big Obstacle!—?

- Let’s recall the logical *Satisfiability* problem from Day 2, only this time for 3CNF formulas not 2CNF.
A Big Obstacle!—?

- Let’s recall the logical *Satisfiability* problem from Day 2, only this time for 3CNF formulas not 2CNF.
- We showed *2SAT* is easy to solve—indeed in the BFS class.
A Big Obstacle!—?

- Let’s recall the logical *Satisfiability* problem from Day 2, only this time for 3CNF formulas not 2CNF.
- We showed *2SAT* is easy to solve—indeed in the BFS class. But *3SAT* is NP-complete.
Let’s recall the logical *Satisfiability* problem from Day 2, only this time for 3CNF formulas not 2CNF.

We showed *2SAT* is easy to solve—indeed in the BFS class. But *3SAT* is NP-complete.

Typical 3CNF formula: \((u \lor w) \land (v \lor w) \land (\bar{u} \lor \bar{v} \lor \bar{w})\).
A Big Obstacle!—?

- Let’s recall the logical *Satisfiability* problem from Day 2, only this time for 3CNF formulas not 2CNF.
- We showed 2SAT is easy to solve—indeed in the BFS class. But 3SAT is NP-complete.
- Typical 3CNF formula: \((u \lor w) \land (v \lor w) \land (\bar{u} \lor \bar{v} \lor \bar{w})\).
- Expresses the correct behavior of a NAND gate: \(w = u \text{ NAND } v\).
A Big Obstacle!—?

- Let’s recall the logical *Satisfiability* problem from Day 2, only this time for 3CNF formulas not 2CNF.
- We showed *2SAT* is easy to solve—indeed in the BFS class. But *3SAT* is NP-complete.
- Typical 3CNF formula: \((u \lor w) \land (v \lor w) \land (\bar{u} \lor \bar{v} \lor \bar{w})\).
- Expresses the correct behavior of a NAND gate: \(w = u \text{ NAND } v\).
- Equation form: \(w = 1 - uv\).
A Big Obstacle!—?

- Let’s recall the logical *Satisfiability* problem from Day 2, only this time for 3CNF formulas not 2CNF.
- We showed *2SAT* is easy to solve—indeed in the BFS class. But *3SAT* is *NP-complete*.
- Typical 3CNF formula: \((u \lor w) \land (v \lor w) \land (\overline{u} \lor \overline{v} \lor \overline{w})\).
- Expresses the correct behavior of a NAND gate: \(w = u \text{ NAND } v\).
- Equation form: \(w = 1 - uv\).
- If the NAND gate has multiple outgoing wires \(w_i\), add equations \(w_i = w\).
A Big Obstacle!—?

- Let’s recall the logical *Satisfiability* problem from Day 2, only this time for 3CNF formulas not 2CNF.
- We showed *2SAT* is easy to solve—indeed in the BFS class. But *3SAT* is NP-complete.
- Typical 3CNF formula: \((u \lor w) \land (v \lor w) \land (\bar{u} \lor \bar{v} \lor \bar{w})\).
- Expresses the correct behavior of a NAND gate: \(w = u \text{ NAND } v\).
- Equation form: \(w = 1 - uv\).
- If the NAND gate has multiple outgoing wires \(w_i\), add equations \(w_i = w\).
- General 3-clause \((u \lor \bar{v} \lor w)\) becomes equation \((1 - u)v(1 - w) = 0\).
A Big Obstacle!—?

- Let’s recall the logical *Satisfiability* problem from Day 2, only this time for 3CNF formulas not 2CNF.
- We showed 2SAT is easy to solve—indeed in the BFS class. But 3SAT is NP-complete.
- Typical 3CNF formula: \((u \lor w) \land (v \lor w) \land (\bar{u} \lor \bar{v} \lor \bar{w})\).
- Expresses the correct behavior of a NAND gate: \(w = u \text{ NAND } v\).
- Equation form: \(w = 1 - uv\).
- If the NAND gate has multiple outgoing wires \(w_i\), add equations \(w_i = w\).
- General 3-clause \((u \lor \bar{v} \lor w)\) becomes equation \((1 - u)v(1 - w) = 0\).
- Add equations \(u^2 - u = 0\), \(v^2 - v = 0\), and \(w^2 - w = 0\) to limit to 0-1 solutions.
A Big Obstacle!—?

Let’s recall the logical *Satisfiability* problem from Day 2, only this time for 3CNF formulas not 2CNF.

We showed *2SAT* is easy to solve—indeed in the BFS class. But *3SAT* is NP-complete.

Typical 3CNF formula: \((u \lor w) \land (v \lor w) \land (\bar{u} \lor \bar{v} \lor \bar{w})\).

Expresses the correct behavior of a NAND gate: \(w = u \text{ NAND } v\).

Equation form: \(w = 1 - uv\).

If the NAND gate has multiple outgoing wires \(w_i\), add equations \(w_i = w\).

General 3-clause \((u \lor \bar{v} \lor w)\) becomes equation \((1 - u)v(1 - w) = 0\).

Add equations \(u^2 - u = 0\), \(v^2 - v = 0\), and \(w^2 - w = 0\) to limit to 0-1 solutions.

Thus equation solving is NP-hard.
Recall we defined $\text{NP} = \text{NTIME}[n^{O(1)}]$.

What does this mean? It means you have a yes/no problem where if the answer is yes, an inspired guess will give an answer that you can easily prove. If the answer is no, there may be no short proof—that's OK.

For 3SAT the inspired guess is an assignment $a_2 f_0; a_1 g_n$ making $(a) = \text{true}$. For equations the inspired guess is a solution; it is easy to check unless the math is too complex.

So 3SAT is in NP and basically so is equation solving—over $f_0; a_1 g_n$-solutions anyway.

Definition. A decision problem B is NP-hard if for all problems A in NP there is a polynomial-time computable translation function f such that for all inputs x of problem A, the string $y = f(x)$ is an equivalent input of problem B. And B is NP-complete if also B is in NP.
Recall we defined $\text{NP} = \text{NTIME}[n^{O(1)}]$. What does this mean?

- It means you have a yes/no problem where if the answer is yes, an inspired guess will give an answer that you can easily prove.
- If the answer is no, there may be no short proof—that's OK.
- For 3SAT the inspired guess is an assignment $x_1 \neq 0$ or 1 making $(x) = \text{true}$.
- For equations the inspired guess is a solution; it is easy to check unless the math is too complex.
- So 3SAT is in NP and basically so is equation solving—over f_0; f_1-solutions anyway.
Recall we defined $\text{NP} = \text{NTIME}[n^{O(1)}]$. What does this mean?

It means you have a yes/no problem where if the answer is yes, an inspired guess will give an answer that you can easily prove.
Recall we defined $\text{NP} = \text{NTIME}[n^{O(1)}]$. What does this mean?

- It means you have a yes/no problem where if the answer is yes, an inspired guess will give an answer that you can easily prove.
- If the answer is no, there may be no short proof—that’s OK.
NP-Hard and Complete

- Recall we defined $\text{NP} = \text{NTIME}[n^{O(1)}]$. What does this mean?
- It means you have a yes/no problem where if the answer is yes, an inspired guess will give an answer that you can easily prove.
- If the answer is no, there may be no short proof—that’s OK.
- For 3SAT the inspired guess is an assignment $a \in \{0, 1\}^n$ making $\phi(a) = \text{true}$.
NP-Hard and Complete

- Recall we defined \(\text{NP} = \text{NTIME}[n^O(1)] \). What does this mean?
- It means you have a yes/no problem where if the answer is yes, an inspired guess will give an answer that you can easily prove.
- If the answer is no, there may be no short proof—that’s OK.
- For 3SAT the inspired guess is an assignment \(a \in \{0, 1\}^n \) making \(\phi(a) = \text{true} \).
- For equations the inspired guess is a solution; it is easy to check unless the math is too complex.
NP-Hard and Complete

- Recall we defined $\text{NP} = \text{NTIME}[n^{O(1)}]$. What does this mean?
- It means you have a yes/no problem where if the answer is yes, an inspired guess will give an answer that you can easily prove.
- If the answer is no, there may be no short proof—that’s OK.
- For 3SAT the inspired guess is an assignment $a \in \{0, 1\}^n$ making $\phi(a) = \text{true}$.
- For equations the inspired guess is a solution; it is easy to check unless the math is too Complex.
- So 3SAT is in NP and basically so is equation solving—over $\{0, 1\}$-solutions anyway.

Definition. A decision problem B is *NP-hard* if for all problems A in NP there is a polynomial-time computable translation function f such that for all inputs x of problem A, the string $y = f(x)$ is an equivalent input of problem B. And B is *NP-complete* if also B is in NP.
Cook-Levin Theorem: 3SAT is NP-Complete

- Given $A \in \text{NP}$ there is a deterministic TM M that verifies the relation “y is a lucky guess for $x \in A$” in polynomial time.
Cook-Levin Theorem: 3SAT is NP-Complete

- Given $A \in \text{NP}$ there is a *deterministic* TM M that verifies the relation “y is a lucky guess for $x \in A$” in polynomial time.
- The memory map for M includes the bits x_1, \ldots, x_n of x and y_1, \ldots, y_m of potential verifying strings y, where $m = n^{O(1)}$.

Cook-Levin Theorem: 3SAT is NP-Complete

- Given $A \in \text{NP}$ there is a deterministic TM M that verifies the relation “y is a lucky guess for $x \in A$” in polynomial time.
- The memory map for M includes the bits x_1, \ldots, x_n of x and y_1, \ldots, y_m of potential verifying strings y, where $m = n^{O(1)}$.
- The function $f(x)$ will produce a 3CNF formula ϕ such that $x \in A$ (meaning the answer for x is ‘yes’) if and only if ϕ is satisfiable.
Cook-Levin Theorem: 3SAT is NP-Complete

- Given $A \in \text{NP}$ there is a deterministic TM M that verifies the relation “y is a lucky guess for $x \in A$” in polynomial time.
- The memory map for M includes the bits x_1, \ldots, x_n of x and y_1, \ldots, y_m of potential verifying strings y, where $m = n^{O(1)}$.
- The function $f(x)$ will produce a 3CNF formula ϕ such that $x \in A$ (meaning the answer for x is ‘yes’) if and only if ϕ is satisfiable.
- Most of ϕ doesn’t involve x—only at the end we will substitute the actual bits of x for the variables x_1, \ldots, x_n.

Kolkata Algorithms Short Course: III-IV Parallel/Streamable Algorithms and Equation Solving
Cook-Levin Theorem: 3SAT is NP-Complete

- Given \(A \in \text{NP} \) there is a deterministic TM \(M \) that verifies the relation “\(y \) is a lucky guess for \(x \in A \)” in polynomial time.
- The memory map for \(M \) includes the bits \(x_1, \ldots, x_n \) of \(x \) and \(y_1, \ldots, y_m \) of potential verifying strings \(y \), where \(m = n^{O(1)} \).
- The function \(f(x) \) will produce a 3CNF formula \(\phi \) such that \(x \in A \) (meaning the answer for \(x \) is ‘yes’) if and only if \(\phi \) is satisfiable.
- Most of \(\phi \) doesn’t involve \(x \)—only at the end we will substitute the actual bits of \(x \) for the variables \(x_1, \ldots, x_n \).
- The left-over variables in \(\phi \) will be \(y_1, \ldots, y_m \) and extra wire variables \(u, v, w, \ldots \) including a variable \(w_o \) for the output value.
Cook-Levin Theorem: 3SAT is NP-Complete

- Given $A \in \text{NP}$ there is a deterministic TM M that verifies the relation “y is a lucky guess for $x \in A$” in polynomial time.
- The memory map for M includes the bits x_1, \ldots, x_n of x and y_1, \ldots, y_m of potential verifying strings y, where $m = n^{O(1)}$.
- The function $f(x)$ will produce a 3CNF formula ϕ such that $x \in A$ (meaning the answer for x is ‘yes’) if and only if ϕ is satisfiable.
- Most of ϕ doesn’t involve x—only at the end we will substitute the actual bits of x for the variables x_1, \ldots, x_n.
- The left-over variables in ϕ will be y_1, \ldots, y_m and extra wire variables u, v, w, \ldots including a variable w_o for the output value.
- Each of these variables can appear negated: $\bar{y}_1, \ldots, \bar{y}_m, \bar{u}, \bar{v}, \bar{w}$ etc.
Cook-Levin Theorem: 3SAT is NP-Complete

- Given $A \in \text{NP}$ there is a \textit{deterministic} TM M that verifies the relation “y is a lucky guess for $x \in A$” in polynomial time.
- The memory map for M includes the bits x_1, \ldots, x_n of x and y_1, \ldots, y_m of potential verifying strings y, where $m = n^{O(1)}$.
- The function $f(x)$ will produce a 3CNF formula ϕ such that $x \in A$ (meaning the answer for x is ‘yes’) if and only if ϕ is satisfiable.
- Most of ϕ doesn’t involve x—only at the end we will substitute the actual bits of x for the variables x_1, \ldots, x_n.
- The left-over variables in ϕ will be y_1, \ldots, y_m and extra \textit{wire variables} u, v, w, \ldots including a variable w_o for the output value.
- Each of these variables can appear negated: $\bar{y}_1, \ldots, \bar{y}_m, \bar{u}, \bar{v}, \bar{w}$ etc.
- The key is what we covered in day 2: the memory map of M can be converted into Boolean circuits C_n, one for each n (and the corresponding m) such that M accepts (x, y) if and only if $C_n(x, y) = 1$. We can build C_n using only NAND gates.
For each NAND gate g, let u_g and v_g be its two incoming wires (these can be inputs x_i or y_j) and w_1, \ldots, w_ℓ its output wires.
Finishing the Proof

- For each NAND gate g, let u_g and v_g be its two incoming wires (these can be inputs x_i or y_j) and w_1, \ldots, w_ℓ its output wires.
- Add to ϕ the clauses $(u_g \lor w_k) \land (v_g \lor w_k) \land (\bar{u}_g \lor \bar{v}_g \lor \bar{w}_g)$ for each $k, 1 \leq k \leq \ell$.

Then ϕ is satisfiable (there is a setting of y_1, \ldots, y_m and all other u_g, v_g, w_k variables that satisfies ϕ). This means that M verifies for ϕ there is a y that ϕ is (x_{2A}).

Since the memory map has size at worst quadratic in the time and space by M, which are both $O((1))$, and since the rules for building ϕ are so regular, $f(x) = \phi$ is computed in polynomial time.

So 3SAT is NP-hard, and since it is in NP, it is NP-complete. \square
Finishing the Proof

- For each NAND gate g, let u_g and v_g be its two incoming wires (these can be inputs x_i or y_j) and w_1, \ldots, w_ℓ its output wires.
- Add to ϕ the clauses $(u_g \lor w_k) \land (v_g \lor w_k) \land (\bar{u}_g \lor \bar{v}_g \lor \bar{w}_g)$ for each k, $1 \leq k \leq \ell$.
- And add to ϕ the “singleton clause” (w_o) for the output wire—to satisfy ϕ, this must have value 1.
Finishing the Proof

- For each NAND gate g, let u_g and v_g be its two incoming wires (these can be inputs x_i or y_j) and w_1, \ldots, w_ℓ its output wires.
- Add to ϕ the clauses $(u_g \lor w_k) \land (v_g \lor w_k) \land (\overline{u}_g \lor \overline{v}_g \lor \overline{w}_g)$ for each $k, 1 \leq k \leq \ell$.
- And add to ϕ the “singleton clause” (w_o) for the output wire—to satisfy ϕ, this must have value 1.
- Finally substitute the bits of x for x_1, \ldots, x_n. This finishes $\phi = f(x)$.

Then ϕ is satisfiable () there is a setting of $y_1; : : : ; y_m$ and all other $u_g; v_g; w_k$ variables that satisfies ϕ there is a y that M verifies for $x \in A$.

Since the memory map has size at worst quadratic in the time and space by M, which are both $n = O(1)$, and since the rules for building $f(x)$ are so regular, $f(x)$ is computed in polynomial time. So 3SAT is NP-hard, and since it is in NP, it is NP-complete. □
Finishing the Proof

- For each NAND gate g, let u_g and v_g be its two incoming wires (these can be inputs x_i or y_j) and w_1, \ldots, w_ℓ its output wires.
- Add to ϕ the clauses $(u_g \lor w_k) \land (v_g \lor w_k) \land (\overline{u}_g \lor \overline{v}_g \lor \overline{w}_g)$ for each $k, 1 \leq k \leq \ell$.
- And add to ϕ the “singleton clause” (w_o) for the output wire—to satisfy ϕ, this must have value 1.
- Finally substitute the bits of x for x_1, \ldots, x_n. This finishes $\phi = f(x)$.
- Then ϕ is satisfiable \iff there is a setting of y_1, \ldots, y_m and all other u_g, v_g, w_k variables that satisfies ϕ \iff there is a y that M verifies for x \iff $x \in A$.
For each NAND gate \(g \), let \(u_g \) and \(v_g \) be its two incoming wires (these can be inputs \(x_i \) or \(y_j \)) and \(w_1, \ldots, w_\ell \) its output wires.

Add to \(\phi \) the clauses \((u_g \lor w_k) \land (v_g \lor w_k) \land (\bar{u_g} \lor \bar{v_g} \lor \bar{w_g})\) for each \(k, 1 \leq k \leq \ell \).

And add to \(\phi \) the “singleton clause” \((w_o)\) for the output wire—to satisfy \(\phi \), this must have value 1.

Finally substitute the bits of \(x \) for \(x_1, \ldots, x_n \). This finishes \(\phi = f(x) \).

Then \(\phi \) is satisfiable \(\iff \) there is a setting of \(y_1, \ldots, y_m \) and all other \(u_g, v_g, w_k \) variables that satisfies \(\phi \) \(\iff \) there is a \(y \) that \(M \) verifies for \(x \) \(\iff \) \(x \in A \).

Since the memory map has size at worst quadratic in the time and space by \(M \), which are both \(n^{O(1)} \), and since the rules for building \(\phi \) are so regular, \(f(x) = \phi \) is computed in polynomial time.
For each NAND gate g, let u_g and v_g be its two incoming wires (these can be inputs x_i or y_j) and w_1, \ldots, w_ℓ its output wires.

Add to ϕ the clauses $(u_g \lor w_k) \land (v_g \lor w_k) \land (\overline{u}_g \lor \overline{v}_g \lor \overline{w}_g)$ for each $k, 1 \leq k \leq \ell$.

And add to ϕ the “singleton clause” (w_o) for the output wire—to satisfy ϕ, this must have value 1.

Finally substitute the bits of x for x_1, \ldots, x_n. This finishes $\phi = f(x)$.

Then ϕ is satisfiable \iff there is a setting of y_1, \ldots, y_m and all other u_g, v_g, w_k variables that satisfies ϕ. \iff there is a y that M verifies for $x \iff x \in A$.

Since the memory map has size at worst quadratic in the time and space by M, which are both $n^{O(1)}$, and since the rules for building ϕ are so regular, $f(x) = \phi$ is computed in polynomial time.

So 3SAT is NP-hard, and since it is in NP, it is NP-complete. □
And for Equation Solving...

- To finish that equation solving is NP-hard: for each NAND gate g with incoming wires u_g, v_g and outgoing wire w_g we give the equation

$$1 - u_g v_g - w_g = 0.$$

The equations in this proof are indeed very simple—degree 2 for the $u_g v_g$ terms and the Boolean equations. Does this really mean that solving them is hard in practice?
And for Equation Solving...

- To finish that equation solving is NP-hard: for each NAND gate g with incoming wires u_g, v_g and outgoing wire w_g we give the equation

$$1 - u_g v_g - w_g = 0.$$

- For any other outgoing wires w_k, use $w_g - w_k = 0$ to set them all equal.

This makes the solving problem for simple equations likewise NP-complete. □

The equations in this proof are indeed very simple—degree 2 for the $u_g v_g$ terms and the Boolean equations. Does this really mean that solving them is hard in practice?
And for Equation Solving...

- To finish that equation solving is NP-hard: for each NAND gate g with incoming wires u_g, v_g and outgoing wire w_g we give the equation

 $$1 - u_g v_g - w_g = 0.$$

- For any other outgoing wires w_k, use $w_g - w_k = 0$ to set them all equal.

- And we have $1 - w_o = 0$ for the output wire and the “Boolean equations” $u_g^2 - u_g = 0$ (etc.) for every variable. That’s it.
And for Equation Solving...

- To finish that equation solving is NP-hard: for each NAND gate g with incoming wires u_g, v_g and outgoing wire w_g we give the equation

$$1 - u_g v_g - w_g = 0.$$

- For any other outgoing wires w_k, use $w_g - w_k = 0$ to set them all equal.

- And we have $1 - w_o = 0$ for the output wire and the “Boolean equations” $u_g^2 - u_g = 0$ (etc.) for every variable. That’s it.

- This makes the solving problem for simple equations likewise NP-complete. □
And for Equation Solving...

- To finish that equation solving is NP-hard: for each NAND gate g with incoming wires u_g, v_g and outgoing wire w_g we give the equation

$$1 - u_g v_g - w_g = 0.$$

- For any other outgoing wires w_k, use $w_g - w_k = 0$ to set them all equal.

- And we have $1 - w_o = 0$ for the output wire and the “Boolean equations” $u_g^2 - u_g = 0$ (etc.) for every variable. That’s it.

- This makes the solving problem for simple equations likewise NP-complete. □

The equations in this proof are indeed very simple—degree 2 for the $u_g v_g$ terms and the Boolean equations.
And for Equation Solving...

- To finish that equation solving is NP-hard: for each NAND gate g with incoming wires u_g, v_g and outgoing wire w_g we give the equation

$$1 - u_g v_g - w_g = 0.$$

- For any other outgoing wires w_k, use $w_g - w_k = 0$ to set them all equal.
- And we have $1 - w_o = 0$ for the output wire and the “Boolean equations” $u_g^2 - u_g = 0$ (etc.) for every variable. That’s it.
- This makes the solving problem for simple equations likewise NP-complete. □

The equations in this proof are indeed very simple—degree 2 for the $u_g v_g$ terms and the Boolean equations. Does this really mean that solving them is hard in practice?
A Practical Sea-Change

- Classic course and attitude: reduce \textit{from} (3)SAT to other problems to show they are \textit{hard}.
A Practical Sea-Change

- Classic course and attitude: reduce *from* (3)SAT to other problems to show they are *hard*.
- Newer tide: reduce problems *to* SAT and *to* equation solving because many individual instances terminate acceptably quickly.
A Practical Sea-Change

- Classic course and attitude: reduce \textit{from} (3)SAT to other problems to show they are \textit{hard}.
- Newer tide: reduce problems \textit{to} SAT and \textit{to} equation solving because many individual instances terminate acceptably quickly.
- General reason: the formulas/equations used in the hardness proof are specialized enough that many real-world instances avoid their “region of hardness.”
A Practical Sea-Change

- Classic course and attitude: reduce \textit{from} (3)SAT to other problems to show they are \textit{hard}.
- Newer tide: reduce problems \textit{to} SAT and \textit{to} equation solving because many individual instances terminate acceptably quickly.
- General reason: the formulas/equations used in the hardness proof are specialized enough that many real-world instances avoid their “region of hardness.”
- Indeed, \textit{randomly} generated instances of 3SAT with n variables and m clauses tend to be easily solved.
A Practical Sea-Change

- Classic course and attitude: reduce *from* (3)SAT to other problems to show they are *hard*.
- Newer tide: reduce problems *to* SAT and *to* equation solving because many individual instances terminate acceptably quickly.
- General reason: the formulas/equations used in the hardness proof are specialized enough that many real-world instances avoid their “region of hardness.”
- Indeed, *randomly* generated instances of 3SAT with *n* variables and *m* clauses tend to be easily solved. If *m* is larger than a certain window the formula tends to have an easily-seen contradiction.
A Practical Sea-Change

- Classic course and attitude: reduce from (3)SAT to other problems to show they are hard.
- Newer tide: reduce problems to SAT and to equation solving because many individual instances terminate acceptably quickly.
- General reason: the formulas/equations used in the hardness proof are specialized enough that many real-world instances avoid their “region of hardness.”
- Indeed, randomly generated instances of 3SAT with n variables and m clauses tend to be easily solved. If m is larger than a certain window the formula tends to have an easily-seen contradiction. If m is smaller than the window, then “standard greedy” tends to work.
A Standard Greedy Heuristic Algorithm

```cpp
set<Clause> TODO = clauses(phi);
set<Variable> FREE = \{x_1, \ldots, x_n\}
while (TODO and FREE are both nonempty) {
    Choose the x_i or \(-x_i\) in most clauses TODO;
    Set a_i = true or false accordingly;
    TODO \= \{newly satisfied clauses\};
    FREE \= \{x_i\};
}
if (empty TODO) {
    return satisfying assignment (a_1, \ldots, a_n);
} else {
    fail; maybe re-try with randomised x_i choices?
}
```
A Standard Greedy Heuristic Algorithm

set<Clause> TODO = clauses(\phi);
set<Variable> FREE = \{x_1, \ldots , x_n\}
while (TODO and FREE are both nonempty) {
 Choose the x_i or \neg x_i in most clauses TODO;
 Set a_i = true or false accordingly;
 TODO \= \{newly satisfied clauses\};
 FREE \= \{x_i\};
}
if (empty TODO) {
 return satisfying assignment (a_1, \ldots , a_n);
} else {
 fail; maybe re-try with randomised x_i choices?
}

Current “SAT Solvers” use more-sophisticated heuristics.
Represent a given set of pure-arithmetic equations abstractly as

\[
p_1(z_1, \ldots, z_n) = 0; \\
p_2(z_1, \ldots, z_n) = 0; \\
\vdots = 0; \\
p_s(z_1, \ldots, z_n) = 0;
\]

where each \(p_i \) is a multi-variable polynomial. Now observe:
Equation Solvers Use a Hammer

Represent a given set of pure-arithmetic equations abstractly as

\[
p_1(z_1, \ldots, z_n) = 0; \\
p_2(z_1, \ldots, z_n) = 0; \\
\vdots = 0; \\
p_s(z_1, \ldots, z_n) = 0;
\]

where each \(p_i \) is a multi-variable polynomial. Now observe:

For any polynomials \(q_1, \ldots, q_s \) in the same variables \(\bar{z} \), the polynomial

\[
r(\bar{z}) = q_1(\bar{z})p_1(\bar{z}) + q_2(\bar{z})p_2(\bar{z}) + \cdots + q_s(\bar{z})p_s(\bar{z})
\]

must also be equated to 0. Call it an “algebraic consequence.”
Idea of Buchberger’s Algorithm

- Technically the algebraic consequences form a *polynomial ideal*.
Idea of Buchberger’s Algorithm

- Technically the algebraic consequences form a *polynomial ideal*.
- Some $r(\tilde{z}$ have *cancellations* that make solutions easier to see.

Ditto the lack of a solution: David Hilbert proved in his *Nullstellensatz* (”Theorem About Zeroes”) that if the equations have no solution over the complex numbers, then the constant 1 (which would give the contradictory equation $1 = 0$) is an algebraic consequence!

Buchberger’s Algorithm (BA) compiles a certain exhaustive list of non-redundant consequence called a *Gröbner basis*. Often the basis finds simplified equations that allow solutions to be read off. Sometimes BA runs for time $2^d n$ where d is the max degree of the given polynomials p_1, \ldots, p_s, which in worst case is double-exponentially horrible. But in many cases it finishes quickly enough, so people use it…
Idea of Buchberger’s Algorithm

- Technically the algebraic consequences form a polynomial ideal.
- Some $r(z)$ have cancellations that make solutions easier to see.
- Ditto the lack of a solution: David Hilbert proved in his Nullstellensatz (“Theorem About Zeroes”) that if the equations have no solution over the complex numbers, then the constant 1 (which would give the contradictory equation $1 = 0$) is an algebraic consequence!
Idea of Buchberger’s Algorithm

- Technically the algebraic consequences form a *polynomial ideal*.
- Some $r(\vec{z})$ have *cancellations* that make solutions easier to see.
- Ditto the lack of a solution: David Hilbert proved in his *Nullstellensatz* (“Theorem About Zeroes”) that if the equations have *no solution over the complex numbers*, then the constant 1 (which would give the contradictory equation $1 = 0$) is an algebraic consequence!
- *Buchberger’s Algorithm* (BA) compiles a certain exhaustive list of non-redundant consequence called a *Gröbner basis*.
Idea of Buchberger’s Algorithm

- Technically the algebraic consequences form a *polynomial ideal*.
- Some \(r(z) \) have *cancellations* that make solutions easier to see.
- Ditto the lack of a solution: David Hilbert proved in his *Nullstellensatz* (“Theorem About Zeroes”) that if the equations have *no* solution *over the complex numbers*, then the constant 1 (which would give the contradictory equation \(1 = 0 \)) is an algebraic consequence!
- *Buchberger’s Algorithm* (BA) compiles a certain exhaustive list of non-redundant consequence called a *Gröbner basis*.
- Often the basis finds simplified equations that allow solutions to be read off.
Idea of Buchberger’s Algorithm

- Technically the algebraic consequences form a *polynomial ideal*.
- Some $r(\bar{z}$ have *cancellations* that make solutions easier to see.
- Ditto the lack of a solution: David Hilbert proved in his *Nullstellensatz* ("Theorem About Zeroes") that if the equations have *no* solution *over the complex numbers*, then the constant 1 (which would give the contradictory equation $1 = 0$) is an algebraic consequence!
- *Buchberger’s Algorithm* (BA) compiles a certain exhaustive list of non-redundant consequence called a *Gröbner basis*.
- Often the basis finds simplified equations that allow solutions to be read off.
- Sometimes BA runs for time $\approx 2^{dn}$ where d is the max degree of the given polynomials p_1, \ldots, p_s, which in worst case is double-exponentially horrible.
Idea of Buchberger’s Algorithm

- Technically the algebraic consequences form a *polynomial ideal*.
- Some $r(z)$ have *cancellations* that make solutions easier to see.
- Ditto the lack of a solution: David Hilbert proved in his *Nullstellensatz* (“Theorem About Zeroes”) that if the equations have *no* solution *over the complex numbers*, then the constant 1 (which would give the contradictory equation $1 = 0$) is an algebraic consequence!
- *Buchberger’s Algorithm* (BA) compiles a certain exhaustive list of non-redundant consequence called a *Gröbner basis*.
- Often the basis finds simplified equations that allow solutions to be read off.
- Sometimes BA runs for time $\approx 2^{dn}$ where d is the max degree of the given polynomials p_1, \ldots, p_s, which in worst case is double-exponentially horrible.
- But in many cases it finishes quickly enough, so people use it…
Example: Graph 3-Coloring to SAT and EQNs
Example: Graph 3-Coloring to SAT and EQNs

[show SAT on board, with “atoms” and then without.]
Example: Graph 3-Coloring to SAT and EQNs

[show SAT on board, with “atoms” and then without.]

[show equations on board, maybe run them?]
Example: Graph 3-Coloring to SAT and EQNs

[show SAT on board, with “atoms” and then without.]

[show equations on board, maybe run them?]

[show Buchberger’s notes]