Quantum Circuit Polynomials In Search of Invariants and Physical Meaning

Open problem session, OCIT workshop 2018, Princeton IAS

Kenneth W. Regan ${ }^{1}$
University at Buffalo (SUNY)

$$
8 \text { June, } 2018
$$

${ }^{1}$ Joint with Amlan Chakrabarti, U. Calcutta, and Chaowen Guan, UB.

More-general forms of a known relation

- Assume all nonzero entries $r e^{i \theta}$ of gate matrices in quantum circuits C have equal magnitude $|r|$ and θ an integer multiple of $2 \pi / K$.
- Suppose C has h nondeterministic gates $\mathrm{H}, \mathrm{X}^{1 / 2}$, and/or $\mathrm{Y}^{1 / 2}$.
- Let G be a field or ring such that G^{*} embeds the K-th roots of unity ω^{j} by a multiplicative homomorphism $\iota\left(\omega^{j}\right)$.

Theorem (multiplicative form, case $G=\mathbb{F}_{2}$ is Dawson et al. (2004) $+\ldots$)
Any $Q C C$ of n qubits can be quickly transformed into a polynomial P_{C} of the form $\prod_{g} P_{g}$ and a constant $R>0$ such that for all $x, z \in\{0,1\}^{n}$:

$$
\langle z| C|x\rangle=\frac{1}{R} \sum_{j=0}^{K-1} \omega^{j}\left(\# y: P_{C}(x, y, z)=\iota\left(\omega^{j}\right)\right)=\frac{1}{R} \sum_{y} P_{C}(x, y, z)
$$

Here g ranges over all gates and outputs of C and y ranges over $\{0,1\}^{h}$.
Degree is $\Theta(s)$ where s is the number of gates in C.

Additive Case

Theorem (RCG (2017), RC (2007-9), cf. Bacon-van Dam-Russell (2008))

Given C and K, we can efficiently compute a polynomial $Q_{C}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{h}, z_{1}, \ldots, z_{n}, w_{1}, \ldots, w_{t}\right)$ of degree $O(1)$ over \mathbb{Z}_{K} and a constant R^{\prime} such that for all $x, z \in\{0,1\}^{n}$:
$\langle z| C|x\rangle=\frac{1}{R^{\prime}} \sum_{j=0}^{K-1} \omega^{j}\left(\# y, w: Q_{C}(x, y, z, w)=j\right)=\frac{1}{R^{\prime}} \sum_{y, w} \omega^{Q_{C}(x, y, z, w)}$, where Q_{C} has the form $\sum_{\text {gates } g} q_{g}+\sum_{\text {constraints } c} q_{c}$.

- Gives a particularly efficient reduction from BQP to \#P.
- In P_{C}, illegal paths that violate some constraint incur the value 0.
- In Q_{C}, any violation creates an additive term $T=w_{1} \cdots w_{\log _{2} K}$ using fresh variables whose assignments give all values in $0 . . K-1$, which cancel. (This trick is my main truly original contribution.)

Constructing the Polynomials

- Initially $P_{C}=1, Q_{C}=0$.
- For Hadamard on line $i\left(u_{i}-\mathrm{H}-\right)$, allocate new variable y_{j} and do:

$$
\begin{array}{rl}
P_{C} & *=\left(1-u_{i} y_{j}\right) \\
Q_{C} & +=2^{k-1} u_{i} y_{j}
\end{array}
$$

- CNOT with incoming terms u_{i} on control, u_{j} on target: u_{i} stays, $u_{j}:=2 u_{i} u_{j}-u_{i}-u_{j}$. No change to P_{C} or Q_{C}.
- In characteristic 2, linearity is preserved.
- TOF: controls u_{i}, u_{j} stay, target u_{k} changes to $2 u_{i} u_{j} u_{k}-u_{i} u_{j}-u_{k}$.
- Linearity not preserved. Similar considerations in [BvDR08].
- Phase and Twist gates change both P_{C} and Q_{C} with terms that use higher $K \ldots$ Details in [RCG17], also earlier draft linked from 2012 post "Grilling Quantum Circuits" on the Gödel's Lost Letter blog.

The Polynomials Are Natural - An Example

- The expression for $\langle z| C|x\rangle$ is the partition function of the circuit.
- For Clifford C, Q_{C} is quadratic over \mathbb{Z}_{4} and every term has form

$$
x^{2} \quad \text { or } \quad 2 x y .
$$

So Q_{C} is invariant under $x \mapsto x+2$ and there is a fixed 1-to- 2^{m} correspondence between solutions over \mathbb{Z}_{4} and solutions over $\{0,1\}$. Hence "yet another" Gottesman-Knill proof follows from:

Theorem (Cai-Chen-Lipton-Lu 2010, cf. Ehrenfeucht-Karpinski (+ ...))

For quadratic $p\left(x_{1}, \ldots, x_{m}\right)$ over \mathbb{Z}_{K}, and all $a<K$, the function $N_{a}(p)=\#\left(x \in \mathbb{Z}_{K}^{m}\right): p(x)=a$ is computable in poly $(m K)$ time.

- Also noted by Cai-Guo-Williams (2017).
- Open: replace K by $\log K$ in the time?

A Sharp 'Dichotomy' Phenomenon / What Else?

- Adding the controlled-phase gate $C S$ makes a universal set.
- Then Q_{C} is still quadratic over \mathbb{Z}_{4} but now has terms of the form

$$
x y
$$

which are not invariant under $x \mapsto x+2$. So the correspondence between $\{0,1\}^{m}$ and \mathbb{Z}_{4}^{m} breaks down.

- A nicely sharp example of the P vs. \#P dichotomy phenomenon.
- So the polynomials are natural and "have bite." Thus reasonable to ask:

What else are the polynomials P_{C} and Q_{C} expressing about C ?

- In particular, can they supplement the simple gate count s regarding the "effort" needed to operate C, and/or help to measure the "entangling capacity" $e(C)$?

Analogies, Ideas and Open Questions

- Invariants based on Strassen's geometric degree $\gamma(f)$ concept?
- Baur-Strassen showed that $\Omega\left(\log _{2} \gamma(f)\right)$ lower-bounds the arithmetical complexity of f, indeed the number of binary multiplication gates. Apply similar to quantum circuits?
- Already hard to formulate n-partite entanglement of (pure or mixed) states. How to define for circuits? Plausible axioms:

$$
\begin{array}{rll}
e\left(C^{*}\right) & = & e(C), \\
e\left(C_{1} \otimes C_{2}\right) & = & e\left(C_{1}\right)+e\left(C_{2}\right), \\
e(C ; \text { measure }) & \leq & e(C), \\
e(C+\mathrm{LOCC}) & =? & e(C) \\
C \equiv C^{\prime} & \Longrightarrow ? ? & e(C)=e\left(C^{\prime}\right) ?
\end{array}
$$

- Are there natural candidates for $e(C)$ in terms of geometric properties of varieties associated to P_{C} and/or Q_{C} ?
- Study actions that leave P_{C} or Q_{C} invariant (modulo some \equiv).

