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More-general forms of a known relation

Assume all nonzero entries reiθ of gate matrices in quantum circuits
C have equal magnitude |r| and θ an integer multiple of 2π/K.
Suppose C has h nondeterministic gates H, X1/2, and/or Y1/2.
Let G be a field or ring such that G∗ embeds the K-th roots of
unity ωj by a multiplicative homomorphism ι(ωj).

Theorem (multiplicative form, case G = F2 is Dawson et al. (2004) + ...)

Any QC C of n qubits can be quickly transformed into a polynomial PC
of the form

∏
g Pg and a constant R > 0 such that for all x, z ∈ {0, 1}n:

〈z | C | x〉 =
1

R

K−1∑
j=0

ωj(#y : PC(x, y, z) = ι(ωj)) =
1

R

∑
y

PC(x, y, z).

Here g ranges over all gates and outputs of C and y ranges over {0, 1}h.

Degree is Θ(s) where s is the number of gates in C.
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Additive Case

Theorem (RCG (2017), RC (2007-9), cf. Bacon-van Dam-Russell (2008))

Given C and K, we can efficiently compute a polynomial
QC(x1, . . . , xn, y1, . . . , yh, z1, . . . , zn, w1, . . . , wt) of degree O(1) over ZK
and a constant R′ such that for all x, z ∈ {0, 1}n:

〈z | C | x〉 =
1

R′

K−1∑
j=0

ωj(#y, w : QC(x, y, z, w) = j) =
1

R′

∑
y,w

ωQC(x,y,z,w),

where QC has the form
∑

gates g qg +
∑

constraints c qc.

Gives a particularly efficient reduction from BQP to #P.
In PC , illegal paths that violate some constraint incur the value 0.
In QC , any violation creates an additive term T = w1 · · ·wlog2K

using fresh variables whose assignments give all values in 0 .. K−1,
which cancel. (This trick is my main truly original contribution.)
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Constructing the Polynomials

Initially PC = 1, QC = 0.

For Hadamard on line i (ui—H–), allocate new variable yj and do:

PC ∗ = (1− uiyj)
QC + = 2k−1uiyj .

CNOT with incoming terms ui on control, uj on target: ui stays,
uj := 2uiuj − ui − uj . No change to PC or QC .

In characteristic 2, linearity is preserved.

TOF: controls ui, uj stay, target uk changes to 2uiujuk− uiuj −uk.
Linearity not preserved. Similar considerations in [BvDR08].

Phase and Twist gates change both PC and QC with terms that use
higher K... Details in [RCG17], also earlier draft linked from 2012
post “Grilling Quantum Circuits” on the Gödel’s Lost Letter blog.
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The Polynomials Are Natural — An Example

The expression for 〈z | C | x〉 is the partition function of the circuit.

For Clifford C, QC is quadratic over Z4 and every term has form

x2 or 2xy.

So QC is invariant under x 7→ x+ 2 and there is a fixed 1-to-2m

correspondence between solutions over Z4 and solutions over {0, 1}.
Hence “yet another” Gottesman-Knill proof follows from:

Theorem (Cai-Chen-Lipton-Lu 2010, cf. Ehrenfeucht-Karpinski (+ ...))

For quadratic p(x1, . . . , xm) over ZK , and all a < K, the function
Na(p) = #(x ∈ ZmK) : p(x) = a is computable in poly(mK) time.

Also noted by Cai-Guo-Williams (2017).

Open: replace K by logK in the time?
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A Sharp ‘Dichotomy’ Phenomenon / What Else?

Adding the controlled-phase gate CS makes a universal set.

Then QC is still quadratic over Z4 but now has terms of the form

xy,

which are not invariant under x 7→ x+ 2. So the correspondence
between {0, 1}m and Zm4 breaks down.

A nicely sharp example of the P vs. #P dichotomy phenomenon.

So the polynomials are natural and “have bite.” Thus reasonable to
ask:

What else are the polynomials PC and QC expressing about C?

In particular, can they supplement the simple gate count s
regarding the “effort” needed to operate C, and/or help to measure
the “entangling capacity” e(C)?
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Analogies, Ideas and Open Questions

Invariants based on Strassen’s geometric degree γ(f) concept?
Baur-Strassen showed that Ω(log2 γ(f)) lower-bounds the
arithmetical complexity of f , indeed the number of binary
multiplication gates. Apply similar to quantum circuits?
Already hard to formulate n-partite entanglement of (pure or
mixed) states. How to define for circuits? Plausible axioms:

e(C∗) = e(C),

e(C1 ⊗ C2) = e(C1) + e(C2),

e(C; measure) ≤ e(C),

e(C + LOCC) =? e(C)

C ≡ C ′ =⇒ ?? e(C) = e(C ′)?

Are there natural candidates for e(C) in terms of geometric
properties of varieties associated to PC and/or QC?
Study actions that leave PC or QC invariant (modulo some ≡).


