Quantum Circuit Polynomials In Search of Invariants and Physical Meaning Open problem session, OCIT workshop 2018, Princeton IAS

Kenneth W. Regan¹ University at Buffalo (SUNY)

8 June, 2018

¹Joint with Amlan Chakrabarti, U. Calcutta, and Chaowen Guan, UB:

More-general forms of a known relation

- Assume all nonzero entries $re^{i\theta}$ of gate matrices in quantum circuits C have equal magnitude |r| and θ an integer multiple of $2\pi/K$.
- Suppose C has h nondeterministic gates H, $X^{1/2}$, and/or $Y^{1/2}$.
- Let G be a field or ring such that G^* embeds the K-th roots of unity ω^j by a multiplicative homomorphism $\iota(\omega^j)$.

Theorem (multiplicative form, case $G = \mathbb{F}_2$ is Dawson et al. (2004) + ...)

Any QC C of n qubits can be quickly transformed into a polynomial P_C of the form $\prod_g P_g$ and a constant R > 0 such that for all $x, z \in \{0, 1\}^n$:

$$\langle z \mid C \mid x \rangle = \frac{1}{R} \sum_{j=0}^{K-1} \omega^j (\# y : P_C(x, y, z) = \iota(\omega^j)) = \frac{1}{R} \sum_y P_C(x, y, z).$$

Here g ranges over all gates and outputs of C and y ranges over $\{0,1\}^h$.

Degree is $\Theta(s)$ where s is the number of gates in C.

Additive Case

Theorem (RCG (2017), RC (2007-9), cf. Bacon-van Dam-Russell (2008))

Given C and K, we can efficiently compute a polynomial $Q_C(x_1, \ldots, x_n, y_1, \ldots, y_h, z_1, \ldots, z_n, w_1, \ldots, w_t)$ of degree O(1) over \mathbb{Z}_K and a constant R' such that for all $x, z \in \{0, 1\}^n$:

$$\langle z \mid C \mid x \rangle = \frac{1}{R'} \sum_{j=0}^{K-1} \omega^j (\#y, w : Q_C(x, y, z, w) = j) = \frac{1}{R'} \sum_{y, w} \omega^{Q_C(x, y, z, w)},$$

where Q_C has the form $\sum_{gates g} q_g + \sum_{constraints c} q_c$.

- Gives a particularly efficient reduction from BQP to $\#\mathsf{P}$.
- In P_C , illegal paths that violate some constraint incur the value 0.
- In Q_C , any violation creates an additive term $T = w_1 \cdots w_{\log_2 K}$ using fresh variables whose assignments give all values in 0...K-1, which *cancel*. (This trick is my main truly original contribution.)

Constructing the Polynomials

- Initially $P_C = 1, Q_C = 0.$
- For Hadamard on line i (u_i —H–), allocate new variable y_j and do:

$$P_C *= (1-u_i y_j)$$

 $Q_C += 2^{k-1} u_i y_j.$

- CNOT with incoming terms u_i on control, u_j on target: u_i stays, $u_j := 2u_iu_j - u_i - u_j$. No change to P_C or Q_C .
- In characteristic 2, linearity is preserved.
- TOF: controls u_i, u_j stay, target u_k changes to $2u_iu_ju_k u_iu_j u_k$.
- Linearity not preserved. Similar considerations in [BvDR08].
- Phase and Twist gates change both P_C and Q_C with terms that use higher K... Details in [RCG17], also earlier draft linked from 2012 post "Grilling Quantum Circuits" on the *Gödel's Lost Letter* blog.

The Polynomials Are Natural — An Example

- The expression for $\langle z \mid C \mid x \rangle$ is the *partition function* of the circuit.
- For Clifford C, Q_C is quadratic over \mathbb{Z}_4 and every term has form

$$x^2$$
 or $2xy$.

So Q_C is invariant under $x \mapsto x + 2$ and there is a fixed 1-to- 2^m correspondence between solutions over \mathbb{Z}_4 and solutions over $\{0, 1\}$. Hence "yet another" Gottesman-Knill proof follows from:

Theorem (Cai-Chen-Lipton-Lu 2010, cf. Ehrenfeucht-Karpinski (+ ...))

For quadratic $p(x_1, \ldots, x_m)$ over \mathbb{Z}_K , and all a < K, the function $N_a(p) = \#(x \in \mathbb{Z}_K^m) : p(x) = a$ is computable in poly(mK) time.

- Also noted by Cai-Guo-Williams (2017).
- Open: replace K by $\log K$ in the time?

A Sharp 'Dichotomy' Phenomenon / What Else?

- Adding the controlled-phase gate CS makes a universal set.
- Then Q_C is *still quadratic over* \mathbb{Z}_4 but now has terms of the form

xy,

which are not invariant under $x \mapsto x + 2$. So the correspondence between $\{0,1\}^m$ and \mathbb{Z}_4^m breaks down.

- A nicely sharp example of the P vs. $\#\mathsf{P}$ dichotomy phenomenon.
- So the polynomials are natural and "have bite." Thus reasonable to ask:

What else are the polynomials P_C and Q_C expressing about C?

• In particular, can they supplement the simple gate count s regarding the "effort" needed to operate C, and/or help to measure the "entangling capacity" e(C)?

Analogies, Ideas and Open Questions

- Invariants based on Strassen's geometric degree $\gamma(f)$ concept?
- Baur-Strassen showed that $\Omega(\log_2 \gamma(f))$ lower-bounds the arithmetical complexity of f, indeed the number of binary multiplication gates. Apply similar to quantum circuits?
- Already hard to formulate *n*-partite entanglement of (pure or mixed) *states*. How to define for *circuits*? Plausible axioms:

$$e(C^*) = e(C),$$

$$e(C_1 \otimes C_2) = e(C_1) + e(C_2),$$

$$e(C; measure) \leq e(C),$$

$$e(C + \text{LOCC}) =? e(C)$$

$$C \equiv C' \implies ?? e(C) = e(C')?$$

- Are there natural candidates for e(C) in terms of geometric properties of varieties associated to P_C and/or Q_C ?
- Study actions that leave P_C or Q_C invariant (modulo some \equiv).