Analyzing Quantum Circuits Via Polynomials

Kenneth W. Regan\(^1\)
University at Buffalo (SUNY)

15 November, 2013

\(^1\)Includes joint work with Amlan Chakrabarti and Robert Surówka
Quantum circuits look more constrained than Boolean circuits:

But Boolean circuits look similar if we do Savage’s TM-to-circuit simulation and call each *column* for each tape cell a “cue-bit.”
Quantum gates

single qubit operation: \[U \]

controlled-NOT:
control \hspace{1cm} \text{target}

unitary matrix = \[
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
\end{pmatrix}
\]

controlled-U:
control \hspace{1cm} \text{target} \hspace{1cm} \[U \]

unitary matrix = \[
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & U_{00} & U_{01} \\
0 & 0 & U_{10} & U_{11} \\
\end{pmatrix}
\]

measurement in the \[|0\rangle, |1\rangle \] basis:
Quantum gates: an example

controlled-gate (here controlled-H)

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
0 & 0 & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{pmatrix}$$

input: $$|\psi\rangle = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} = |11\rangle$$

output: $$|\psi\rangle = \begin{pmatrix} 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
0 & 0 & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \frac{1}{\sqrt{2}} (|10\rangle - |11\rangle)$$

compute: $$|1\rangle \begin{array}{c} \bullet \\ \bullet \end{array} \begin{pmatrix} 0 \\ 0 \\ \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix}$$

measure: $$|1\rangle \begin{array}{c} \bullet \\ \bullet \end{array} \begin{array}{c} \bullet \\ \bullet \end{array} |1\rangle \begin{array}{c} \bullet \\ \bullet \end{array} \begin{array}{c} \bullet \\ \bullet \end{array}$$

Probability of 10: $$\left| \frac{1}{\sqrt{2}} \right|^2 = \frac{1}{2}$$

Probability of 11: $$\left| -\frac{1}{\sqrt{2}} \right|^2 = \frac{1}{2}$$

Probability of 00 and 01: $$|0|^2 = 0$$
Quantum circuits

Quantum circuit diagrams to visualize a computation:

Quantum circuits are sequences of instructions. Describes a series of unitary evolutions (quantum gates) applied to a quantum state.
Quantum circuit example

\[H \otimes 1_2 = \frac{1}{\sqrt{2}} \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right) \otimes 1_2 \]

\[\text{Prob(meas. } |00\rangle) = 0.5 \]
\[\text{Prob(meas. } |11\rangle) = 0.5 \]

\[\frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) \otimes |0\rangle \]
\[\frac{1}{\sqrt{2}} (|00\rangle + |11\rangle) \]
\[\frac{1}{\sqrt{2}} (|00\rangle + |10\rangle) \]

|00\rangle \rightarrow |00\rangle
|01\rangle \rightarrow |01\rangle
|10\rangle \rightarrow |11\rangle
|11\rangle \rightarrow |10\rangle
The Toffoli gate “TOF”

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
<th>x'</th>
<th>y'</th>
<th>z'</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Theorem (Toffoli, 1981)

Any reversible computation can be realized by using TOF gates and ancilla (auxiliary) bits which are initialized to 0.

Slides by Martin Rötteler
A language A belongs to BQP if there are uniform poly-size quantum circuits C_n with n data qubits, plus some number $\alpha \geq 1$ of “ancilla qubits,” such that for all n and $x \in \{0, 1\}^n$,

\[
\begin{align*}
 x \in A & \implies \Pr[C_n \text{ given } \langle x0^\alpha \rangle \text{ measures 1 on line } n + 1] > 2/3; \\
 x \notin A & \implies \Pr[...] < 1/3.
\end{align*}
\]

One can pretend $\alpha = 0$ and/or measure line 1 instead. One can also represent the output as the “triple product” $\langle a \mid C \mid b \rangle$, with $a = x0^\alpha$, $b = 0^{n+\alpha}$.

Two major theorems about BQP are:

(a) C_n can be composed entirely of Hadamard and Toffoli gates [Y. Shi].

(b) Factoring is in BQP [P. Shor].
What is Known About BQP?

- \(\text{BPP} \subseteq \text{BQP} \).
- \(\text{BQP} \subseteq \text{PP} \) [Adleman-Demarrais-Huang, 1998]
- The acceptance probability \(p_x \) of a QC on input \(x \) can be written as
 \[
p_x = \frac{f(x) - g(x)}{\sqrt{2^m}}
 \]
 where \(f \) and \(g \) are \(\#P \) functions whose nondeterminism ranges over \(m = n^{O(1)} \) binary variables. Hence [Fortnow-Rogers, 1999] BQP is in a class AWPP ostensibly weaker than PP.
- BQP is not known to include graph-isomorphism or MCS (min.-circuit size).
Dawson et al. [2004] showed that for QC’s of Hadamard and Toffoli gates, \(f \) and \(g \) could be the functions counting solutions to two sets \(E_1 \) and \(E_0 \) of polynomial equations over \(\mathbb{Z}_2 \).

Applied by Gerdt and Severyanov [2006] to build a computer-algebra simulation of these quantum circuits.

[This talk] We make \(E_1 \) and \(E_0 \) each a single equation, over any desired field or ring, with direct translation of a much wider set of quantum gates, without resporting to mixed-modulus arithmetic.

Some motivations:

- Build more extensive simulations—Chakrabarti.
- Understand which QC’s can be simulated “classically.”
- Idea for putting \(\text{BQP} \) into the third level of \(\text{PH} \), via Stockmeyer’s approximate counting.
- Ideas for algebraic metrics of multi-partite entanglement.
- Limitations on scalability of QC’s?
Target Rings

- Given a QC C, define $k(C)$ to be the least integer such that all phase angles of gates in C are multiples of $2\pi/k$.
- A ring is *adequate* for C if it embeds the k-th roots of unity, either multiplicatively or additively.
- Also embed $e(0) = 0$ in the multiplicative case ("p-case") and $e(0) = a$ set of dummy variables w in the additive case ("q-case") (a key trick, given below).
- For Toffoli+Hadamard, $k = 2$, and Dawson et al. gave an additive embedding into \mathbb{Z}_2. Whereas the p-case needs \mathbb{Z}_3 inside the field, so $-1 \neq +1$.
- For the T-gate which has entries $e^{\pi i/4}$, $k = 8$.
- The gates in Shor’s QFT circuits have large k. But, they can be approximated by circuits with Hadamard and Toffoli only, with $k = 2!$
Polynomials and Equation Solving

We will translate quantum circuits with n lines and s gates. Each interior juncture is denoted by a variable z^j_i ($1 \leq i \leq n; 1 \leq j \leq s - 1$).

- A gate is balanced if all non-zero entries in its gate matrix have the same magnitude r.
- All the most prominent gates are balanced.
- Given a QC of balanced gates, let R be the product of the balancing magnitudes r over its gates.
- For a polynomial p in variables a_i, b_i, z^j_i and arguments $a, b \in \{0, 1\}^n$, $p_{a,b}$ denotes the polynomial in variables z^j_i resulting from substituting the arguments.
- $N_B[p_{a,b}(z^j_i) = v]$ denotes the number of binary solutions to the equation, i.e. with an assignment from $\{0, 1\}^{n(s-1)}$ to the z^j_i variables.

Now we can state the theorem for the multiplicative case.
Main Theorem—Multiplicative Case

Theorem

There is an efficient uniform procedure that transforms any balanced n-qubit quantum circuit C with s gates into a polynomial p such that for all $a, b \in \{0, 1\}^n$:

$$\langle a | C | b \rangle = R \sum_{\ell=0}^{k-1} \omega^\ell N_B[p_{a,b}(z_i^j) = e(\omega^\ell)]$$ (1)

over any adequate ring. The size of p as a product-of-sums-of-products of z_i^j and $(1 - z_i^j)$ is $O(2^m ms)$ where m is the maximum arity of a gate in C, and the time to write p down is the same ignoring factors of $\log n$ and $\log s$ for variable labels.
Main Theorem—Additive Case For \mathbb{Z}_k

Theorem

There is an efficient uniform procedure that transforms any balanced n-qubit quantum circuit C with s gates, whose nonzero entries have phase a multiple of $2\pi/k$ for k a power 2^r, into a polynomial $q(\vec{a}, \vec{b}, \vec{z}, \vec{w})$ over \mathbb{Z}_k such that for all $a, b \in \{0, 1\}^n$:

$$
\langle a | C | b \rangle = R k^{-s} \sum_{\ell=0}^{k-1} \omega^\ell N_B[q_{a,b}(z^j_i, w^j_s) = e(\omega^\ell)], \quad (2)
$$

with R and the size of q the same as for p in Theorem 1.
Substitution and Nondeterminism

- When there is no gate between junctures $j - 1$ and j on qubit line i, or if the gate in column j leaves qubit i unchanged (as with a control), then one can substitute:

 $$z^i_j = z^i_{j-1}.$$

- Thus a new internal variable is introduced only when one cannot substitute.

- This happens with Hadamard gates.

- Nondeterminism = the number of internal variables.

- P' denotes polynomials obtained from the P formally given by Theorem 1 by substitution.

- Q' likewise from Q in Theorem 2.

- P'' denotes a particular embedding into the ring $\mathbb{Z}_2[u]$ where the adjoined element u satisfies $u^4 = 1$, so it translates i.
Projected from a draft of the paper...

Definition. Two polynomials are *equivalent* if they arise from annotations of two equivalent quantum circuits.
Annotating a circuit

\[\begin{align*}
 & a_1 \quad H \quad x_1 \\
 & a_2 \quad H \quad b_2 \\
 & a_3 \quad H \quad b_3 \\
\end{align*} \]

\[\begin{align*}
 & x_3 \quad b_2 b_3 + x_3 - 2b_2 b_3 x_3 \\
\end{align*} \]
What to do with all this—in theory?

Two central theoretical problems are:

1. Which subsets of quantum gates can be simulated efficiently with classical computation alone?

2. What (classical) upper and lower bounds can be given for \(\text{BQP} \)?

Both problems involve one in subcases of the classic \(\#\text{P} \)-complete problem of counting solutions to polynomial equations. Unlike the case of \(\text{SAT} \), there has not been a comparable classification theorem, though Leslie Valiant and Jin-Yi Cai and their students have undertaken one.
Case of Stabilizer Circuits

- Are QC’s with only Hadamard, S, and CNOT and/or CZ gates.
- Have efficient classical simulations: $O(s^3)$ by Gottesmann-Knill, $O(s^2)$ by Aaronson-Gottesmann, $O(s)$ by Peter Hoyer (give-and-take $\log n$ factors).
- Additive translation into equations over \mathbb{Z}_4:
 1. Hadamard: $2yz$, with no substitution; and
 2. S: y^2, substituting $z := y$; and
 3. CZ: $2y_1y_2$, substituting $z_1 := y_1$, $z_2 := y_2$; or
 4. CNOT: 0, substituting $z_1 := y_1$, $z_2 := y_1 + y_2$, with the latter being sound in place of the proper $z_2 := y_1 + y_2 - 2y_1y_2$ owing to the invariance under adding 2.
Yet Another Proof of Dequantization

Theorem (Cai-Chen-Lipton-Lu, 2010)

Quadratic n-variable polynomials over \mathbb{Z}_{2^r} for fixed r have polynomial-time solution counting.

Open for variable $r = n^{O(1)}$.

Corollary

The exact acceptance probability for stabilizer circuits can be computed in deterministic polynomial time.

General running time from CCLL is inferior to best-known “graph state” methods for stabilizer circuits. *Can this be matched for the particular polynomials we get over \mathbb{Z}_4?*
Analyzing Quantum Circuits Via Polynomials

Graininess of Solution Set Sizes

Theorem (Surówka)

Let $P(x)$ be a multivariate polynomial of n variables over \mathbb{Z}_m where $m = p_1^{r_1} p_2^{r_2} \ldots p_k^{r_k}$ and all p_1, p_2, \ldots, p_k are different primes. Then for any $g \in \mathbb{Z}_m$ there is an integer T_g such that:

$$N_P[g] = T_g \prod_{i:2 | r_i} p_i^{\frac{r_i}{2} (n-1)} \prod_{i:2 | r_i} p_i^{\frac{r_i-1}{2} (n-1)}$$

Proof applies Hensel lifting. But we believe we can go beyond what Hensel’s techniques, as used by Ax and others, give.
Graininess of Solution Set Sizes

Theorem (Surówka)

Let $P(x)$ be a multivariate polynomial of n variables over \mathbb{Z}_m where $m = p_1^{r_1}p_2^{r_2} \cdots p_k^{r_k}$ and all p_1, p_2, \ldots, p_k are different primes. Then for any $g \in \mathbb{Z}_m$ there is an integer T_g such that:

$$N_P[g] = T_g \prod_{i:2|r_i} p_i^{\frac{r_i}{2}(n-1)} \prod_{i:2\nmid r_i} p_i^{\frac{r_i-1}{2}(n-1)}$$

Proof applies Hensel lifting. But we believe we can go beyond what Hensel’s techniques, as used by Ax and others, give.
Also in terms of the degree, we conjecture the following stronger result, with supportive computer runs:

Conjecture

Let $P(x)$ be a multivariate polynomial of degree d, of n variables over $\mathbb{Z}_{p_1^{r_1}p_2^{r_2}...p_k^{r_k}}$ where all p_1, p_2, \ldots, p_k are different primes. Then for any $g \in \mathbb{Z}_{p_1^{r_1}p_2^{r_2}...p_k^{r_k}}$ there is an integer T_g such that:

$$N_P[g] = T_g \prod_{i:r_i=1} p_i^{\left\lceil \frac{n}{d} \right\rceil - 1} \prod_{i:r_i>1} p_i^{\left\lceil \frac{r_in}{2} \right\rceil - 1}.$$
The Other Goals—Ideas Welcome

- Extend notion of equivalence to manipulations giving polynomials that do not come from QC’s.
- Try to increase the R factor without introducing more nondeterminism. That makes Stockmeyer approximation “better.”
- What notions from algebraic geometry might yield measures of entanglement?
- Idea: It should reflect constraints on solution spaces. This aligns it with the idea of geometric degree of algebraic varieties.
- Ultimately goal is to apply Strassen’s lower-bound ideas to QC’s.