Quantum Computing Research Directions

Kenneth W. Regan ${ }^{1}$
University at Buffalo (SUNY)

19 March, 2019
${ }^{1}$ Joint work with Amlan Chakrabarti, U. Calcutta, and Chaowen Guan, UB

Algebraic and Logical QC Simulations

Algebraic and Logical QC Simulations

- Idea is to postpone exponential blowup until the end...

Algebraic and Logical QC Simulations

- Idea is to postpone exponential blowup until the end...
- ... when a full spec can be fed to equation solvers or SAT solvers.

Algebraic and Logical QC Simulations

- Idea is to postpone exponential blowup until the end...
- ... when a full spec can be fed to equation solvers or SAT solvers.
- Algebraic side is joint work with Amlan Chakrabarti (U. Calcutta) since 2007. [show GLL page]

Algebraic and Logical QC Simulations

- Idea is to postpone exponential blowup until the end...
- ... when a full spec can be fed to equation solvers or SAT solvers.
- Algebraic side is joint work with Amlan Chakrabarti (U. Calcutta) since 2007. [show GLL page]
- Logical side with Chaowen Guan, UB.

Algebraic and Logical QC Simulations

- Idea is to postpone exponential blowup until the end...
- ... when a full spec can be fed to equation solvers or SAT solvers.
- Algebraic side is joint work with Amlan Chakrabarti (U. Calcutta) since 2007. [show GLL page]
- Logical side with Chaowen Guan, UB. Jointly became paper [RCG18] in Transactions on Computational Science, 2018.

Algebraic and Logical QC Simulations

- Idea is to postpone exponential blowup until the end...
- ... when a full spec can be fed to equation solvers or SAT solvers.
- Algebraic side is joint work with Amlan Chakrabarti (U. Calcutta) since 2007. [show GLL page]
- Logical side with Chaowen Guan, UB. Jointly became paper [RCG18] in Transactions on Computational Science, 2018.
- Logic-based full QC simulator, $8,000+$ lines of $\mathrm{C}++$.

Algebraic and Logical QC Simulations

- Idea is to postpone exponential blowup until the end...
- ... when a full spec can be fed to equation solvers or SAT solvers.
- Algebraic side is joint work with Amlan Chakrabarti (U. Calcutta) since 2007. [show GLL page]
- Logical side with Chaowen Guan, UB. Jointly became paper [RCG18] in Transactions on Computational Science, 2018.
- Logic-based full QC simulator, $8,000+$ lines of C++.
- Partly included in textbook with Richard Lipton, Quantum Algorithms Via Linear Algebra (MIT Press, 2014; 2nd. ed. to come this year).

Notable Theoretical Advance (just this past month)

Notable Theoretical Advance (just this past month)

- Stabilizer circuits (\equiv Clifford circuits) are the most salient classically solvable case.

Notable Theoretical Advance (just this past month)

- Stabilizer circuits (\equiv Clifford circuits) are the most salient classically solvable case.
- Vital in quantum error-correcting codes for fault-tolerant QC.

Notable Theoretical Advance (just this past month)

- Stabilizer circuits (\equiv Clifford circuits) are the most salient classically solvable case.
- Vital in quantum error-correcting codes for fault-tolerant QC.
- Classical simulation of n qubits takes $O\left(n^{2}\right)$ time per single-qubit measurement [Aaronson-Gottesman, 2004], $O\left(n^{3}\right)$ time to measure all n qubits.

Notable Theoretical Advance (just this past month)

- Stabilizer circuits (\equiv Clifford circuits) are the most salient classically solvable case.
- Vital in quantum error-correcting codes for fault-tolerant QC.
- Classical simulation of n qubits takes $O\left(n^{2}\right)$ time per single-qubit measurement [Aaronson-Gottesman, 2004], $O\left(n^{3}\right)$ time to measure all n qubits.
- We improve to time $O\left(n^{\omega}\right)$ where $\omega<2.3729$ is the known exponent for $n \times n$ matrix multiplication.

Notable Theoretical Advance (just this past month)

- Stabilizer circuits (\equiv Clifford circuits) are the most salient classically solvable case.
- Vital in quantum error-correcting codes for fault-tolerant QC.
- Classical simulation of n qubits takes $O\left(n^{2}\right)$ time per single-qubit measurement [Aaronson-Gottesman, 2004], $O\left(n^{3}\right)$ time to measure all n qubits.
- We improve to time $O\left(n^{\omega}\right)$ where $\omega<2.3729$ is the known exponent for $n \times n$ matrix multiplication.
- Also give $O(N)$-time reduction $\left(N=n^{2}\right)$ from computing $n \times n$ matrix rank over \mathbb{F}_{2} to the QC simulation.

Notable Theoretical Advance (just this past month)

- Stabilizer circuits (\equiv Clifford circuits) are the most salient classically solvable case.
- Vital in quantum error-correcting codes for fault-tolerant QC.
- Classical simulation of n qubits takes $O\left(n^{2}\right)$ time per single-qubit measurement [Aaronson-Gottesman, 2004], $O\left(n^{3}\right)$ time to measure all n qubits.
- We improve to time $O\left(n^{\omega}\right)$ where $\omega<2.3729$ is the known exponent for $n \times n$ matrix multiplication.
- Also give $O(N)$-time reduction $\left(N=n^{2}\right)$ from computing $n \times n$ matrix rank over \mathbb{F}_{2} to the QC simulation.
- Means that the n^{2}-vs.- n^{ω} weak/strong simulation gap canot be closed unless matrix rank is in $O\left(n^{2}\right)$ time over \mathbb{F}_{2}.

How Achieved

How Achieved

- Stabilizer circuits C yield classical quadratic forms q_{C} over \mathbb{Z}_{4}.

How Achieved

- Stabilizer circuits C yield classical quadratic forms q_{C} over \mathbb{Z}_{4}.
- Exploit normal form q^{\prime} for q_{C} by Schmidt [2009].

How Achieved

- Stabilizer circuits C yield classical quadratic forms q_{C} over \mathbb{Z}_{4}.
- Exploit normal form q^{\prime} for q_{C} by Schmidt [2009].
- Apply new algorithm for LDU decompositions over \mathbb{F}_{2} by Dumas-Pernet [2018].

How Achieved

- Stabilizer circuits C yield classical quadratic forms q_{C} over \mathbb{Z}_{4}.
- Exploit normal form q^{\prime} for q_{C} by Schmidt [2009].
- Apply new algorithm for LDU decompositions over \mathbb{F}_{2} by Dumas-Pernet [2018].
- Invert the LDU process but calculating in \mathbb{Z}_{4}.

How Achieved

- Stabilizer circuits C yield classical quadratic forms q_{C} over \mathbb{Z}_{4}.
- Exploit normal form q^{\prime} for q_{C} by Schmidt [2009].
- Apply new algorithm for LDU decompositions over \mathbb{F}_{2} by Dumas-Pernet [2018].
- Invert the LDU process but calculating in \mathbb{Z}_{4}.
- Painstaking analysis of how distributions of values were mapped yields a simple recursion then gives the result from the final "spectrum."

How Achieved

- Stabilizer circuits C yield classical quadratic forms q_{C} over \mathbb{Z}_{4}.
- Exploit normal form q^{\prime} for q_{C} by Schmidt [2009].
- Apply new algorithm for LDU decompositions over \mathbb{F}_{2} by Dumas-Pernet [2018].
- Invert the LDU process but calculating in \mathbb{Z}_{4}.
- Painstaking analysis of how distributions of values were mapped yields a simple recursion then gives the result from the final "spectrum."
- Also yields an apparently new class of undirected graphs:

Boolean Logic Simulation

Boolean Logic Simulation

- Allocate free variables x_{i} for every input (qu)bit, z_{i} for corresponding outputs, and y_{j} for every nondeterministic gate (wlog. Hadamard gate).

Boolean Logic Simulation

- Allocate free variables x_{i} for every input (qu)bit, z_{i} for corresponding outputs, and y_{j} for every nondeterministic gate (wlog. Hadamard gate).
- Also maintain "forced" variables giving the current phase and location of every Feynman path.

Boolean Logic Simulation

- Allocate free variables x_{i} for every input (qu)bit, z_{i} for corresponding outputs, and y_{j} for every nondeterministic gate (wlog. Hadamard gate).
- Also maintain "forced" variables giving the current phase and location of every Feynman path.
- Translation from circuit C to Boolean formula ϕ_{C} is again real-time.

Boolean Logic Simulation

- Allocate free variables x_{i} for every input (qu)bit, z_{i} for corresponding outputs, and y_{j} for every nondeterministic gate (wlog. Hadamard gate).
- Also maintain "forced" variables giving the current phase and location of every Feynman path.
- Translation from circuit C to Boolean formula ϕ_{C} is again real-time.
- Solution counts over each phase for a target location yield its amplitude.

Boolean Logic Simulation

- Allocate free variables x_{i} for every input (qu)bit, z_{i} for corresponding outputs, and y_{j} for every nondeterministic gate (wlog. Hadamard gate).
- Also maintain "forced" variables giving the current phase and location of every Feynman path.
- Translation from circuit C to Boolean formula ϕ_{C} is again real-time.
- Solution counts over each phase for a target location yield its amplitude.
- \#SAT solvers such as sharpSAT and Cachet give hope of heuristic simulations of harder classes of circults.

Boolean Logic Simulation

- Allocate free variables x_{i} for every input (qu)bit, z_{i} for corresponding outputs, and y_{j} for every nondeterministic gate (wlog. Hadamard gate).
- Also maintain "forced" variables giving the current phase and location of every Feynman path.
- Translation from circuit C to Boolean formula ϕ_{C} is again real-time.
- Solution counts over each phase for a target location yield its amplitude.
- \#SAT solvers such as sharpSAT and Cachet give hope of heuristic simulations of harder classes of circults.
- Our C++ simulator outputs DIMACS-compliant files for these solvers. SAT solvers have seen great success in many areas

Boolean Logic Simulation

- Allocate free variables x_{i} for every input (qu)bit, z_{i} for corresponding outputs, and y_{j} for every nondeterministic gate (wlog. Hadamard gate).
- Also maintain "forced" variables giving the current phase and location of every Feynman path.
- Translation from circuit C to Boolean formula ϕ_{C} is again real-time.
- Solution counts over each phase for a target location yield its amplitude.
- \#SAT solvers such as sharpSAT and Cachet give hope of heuristic simulations of harder classes of circults.
- Our C++ simulator outputs DIMACS-compliant files for these solvers. SAT solvers have seen great success in many areas, but maybe not QC...

Boolean Logic Simulation

- Allocate free variables x_{i} for every input (qu)bit, z_{i} for corresponding outputs, and y_{j} for every nondeterministic gate (wlog. Hadamard gate).
- Also maintain "forced" variables giving the current phase and location of every Feynman path.
- Translation from circuit C to Boolean formula ϕ_{C} is again real-time.
- Solution counts over each phase for a target location yield its amplitude.
- \#SAT solvers such as sharpSAT and Cachet give hope of heuristic simulations of harder classes of circults.
- Our C++ simulator outputs DIMACS-compliant files for these solvers. SAT solvers have seen great success in many areas, but maybe not QC...
- Second main purpose of simulator [show] is to enable tinkering with approximative methods.

Higher Algebra and Applications

Higher Algebra and Applications

- Invariants based on Strassen's geometric degree $\gamma(f)$ concept may help quantify both entanglement and effort to keep coherence.

Higher Algebra and Applications

- Invariants based on Strassen's geometric degree $\gamma(f)$ concept may help quantify both entanglement and effort to keep coherence.
- Baur-Strassen showed that $\Omega\left(\log _{2} \gamma(f)\right)$ lower-bounds the arithmetical complexity of f, indeed the number of binary multiplication gates.

Higher Algebra and Applications

- Invariants based on Strassen's geometric degree $\gamma(f)$ concept may help quantify both entanglement and effort to keep coherence.
- Baur-Strassen showed that $\Omega\left(\log _{2} \gamma(f)\right)$ lower-bounds the arithmetical complexity of f, indeed the number of binary multiplication gates. Apply similar to quantum circuits?

Higher Algebra and Applications

- Invariants based on Strassen's geometric degree $\gamma(f)$ concept may help quantify both entanglement and effort to keep coherence.
- Baur-Strassen showed that $\Omega\left(\log _{2} \gamma(f)\right)$ lower-bounds the arithmetical complexity of f, indeed the number of binary multiplication gates. Apply similar to quantum circuits?
- Already hard to formulate n-partite entanglement of (pure or mixed) states.

Higher Algebra and Applications

- Invariants based on Strassen's geometric degree $\gamma(f)$ concept may help quantify both entanglement and effort to keep coherence.
- Baur-Strassen showed that $\Omega\left(\log _{2} \gamma(f)\right)$ lower-bounds the arithmetical complexity of f, indeed the number of binary multiplication gates. Apply similar to quantum circuits?
- Already hard to formulate n-partite entanglement of (pure or mixed) states. How to define for circuits?

Higher Algebra and Applications

- Invariants based on Strassen's geometric degree $\gamma(f)$ concept may help quantify both entanglement and effort to keep coherence.
- Baur-Strassen showed that $\Omega\left(\log _{2} \gamma(f)\right)$ lower-bounds the arithmetical complexity of f, indeed the number of binary multiplication gates. Apply similar to quantum circuits?
- Already hard to formulate n-partite entanglement of (pure or mixed) states. How to define for circuits? Plausible axioms:

$$
\begin{aligned}
e\left(C^{*}\right) & =e(C), \\
e\left(C_{1} \otimes C_{2}\right) & =e\left(C_{1}\right)+e\left(C_{2}\right), \\
e(C ; \text { measure }) & \leq e(C), \\
e(C+\mathrm{LOCC}) & =e(C)
\end{aligned}
$$

Higher Algebra and Applications

- Invariants based on Strassen's geometric degree $\gamma(f)$ concept may help quantify both entanglement and effort to keep coherence.
- Baur-Strassen showed that $\Omega\left(\log _{2} \gamma(f)\right)$ lower-bounds the arithmetical complexity of f, indeed the number of binary multiplication gates. Apply similar to quantum circuits?
- Already hard to formulate n-partite entanglement of (pure or mixed) states. How to define for circuits? Plausible axioms:

$$
\begin{aligned}
e\left(C^{*}\right) & =e(C), \\
e\left(C_{1} \otimes C_{2}\right) & =e\left(C_{1}\right)+e\left(C_{2}\right), \\
e(C ; \text { measure }) & \leq e(C), \\
e(C+\mathrm{LOCC}) & =e(C)
\end{aligned}
$$

- Also apply to study T-gate count, singular points...

Summary

Summary

- Novel research ideas.

Summary

- Novel research ideas.
- Development of program infrastructure to experiment with them.

Summary

- Novel research ideas.
- Development of program infrastructure to experiment with them.
- Indo-US collaboration.

Summary

- Novel research ideas.
- Development of program infrastructure to experiment with them.
- Indo-US collaboration.
- Avenues for dissemination: Gödel's Lost Letter blog, textbook with MIT Press going to second edition this summer.

Summary

- Novel research ideas.
- Development of program infrastructure to experiment with them.
- Indo-US collaboration.
- Avenues for dissemination: Gödel's Lost Letter blog, textbook with MIT Press going to second edition this summer.
- Involvement in the general debate over Quantum Advantage.

