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Five Muffins, Three Students

At
A Recreational Math Conference

(Gathering for Gardner)
May 2016

I found a pamphlet advertising
The Julia Robinson Mathematics Festival

which had this problem, proposed by Alan Frank:

How can you divide and distribute 5 muffins to 3 students so that
every student gets 5

3 where nobody gets a tiny sliver?



Five Muffins, Three Students, Proc by Picture

Person Color What they Get

Alice RED 1 + 2
3 = 5

3

Bob BLUE 1 + 2
3 = 5

3

Carol GREEN 1 + 1
3 + 1

3 = 5
3

Smallest Piece: 1
3



Can We Do Better?

The smallest piece in the above solution is 1
3 .

Is there a procedure with a larger smallest piece?
VOTE

I YES

I NO

YES WE CAN!

We use ! since we are excited that we can!
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Five Muffins, Three People–Proc by Picture

Person Color What they Get

Alice RED 6
12 + 7

12 + 7
12

Bob BLUE 6
12 + 7

12 + 7
12

Carol GREEN 5
12 + 5

12 + 5
12 + 5

12

Smallest Piece: 5
12



Can We Do Better?

The smallest piece in the above solution is 5
12 .

Is there a procedure with a larger smallest piece?
VOTE

I YES

I NO

NO WE CAN’T!

We use ! since we are excited to prove we can’t do better!
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The smallest piece in the above solution is 5
12 .

Is there a procedure with a larger smallest piece?
VOTE
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Five Muffins, Three People–Can’t Do Better Than 5
12

There is a procedure for 5 muffins,3 students where each student
gets 5

3 muffins, smallest piece N. We want N ≤ 5
12 .

Case 0: Some muffin is uncut. Cut it (12 ,
1
2) and give both 1

2 -sized
pieces to whoever got the uncut muffin. (Note 1

2 >
5
12 .) Reduces

to other cases.
(Henceforth: All muffins are cut into ≥ 2 pieces.)

Case 1: Some muffin is cut into ≥ 3 pieces. Then N ≤ 1
3 <

5
12 .

(Henceforth: All muffins are cut into 2 pieces.)

Case 2: All muffins are cut into 2 pieces. 10 pieces, 3 students:
Someone gets ≥ 4 pieces. He has some piece

≤ 5

3
× 1

4
=

5

12
Great to see

5

12



Be Amazed Now! And Later!

1. Procedure for 5 muffins, 3 people, smallest piece 5
12 .

2. NO Procedure for 5 muffins, 3 people, smallest piece> 5
12 .

Amazing That Have Exact Result!

Prepare To Be More Amazed! On Next Page!
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Amazing Results!

1. Procedure for 47 muffins, 9 people, smallest piece 111
234 .

2. NO Procedure for 47 muffins, 9 people, smallest piece> 111
234 .

1. Procedure for 52 muffins, 11 people, smallest piece 83
176 .

2. NO Procedure for 52 muffins, 11 people, smallest piece> 83
176 .

1. Procedure for 35 muffins, 13 people, smallest piece 64
143 .

2. NO Procedure for 35 muffins, 13 people, smallest piece> 64
143 .

All done by hand, no use of a computer

Co-author Erik Metz is a muffin savant
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General Problem

How can you divide and distribute m muffins to s students so that
each students gets m

s AND the MIN piece is MAXIMIZED?

An (m, s)-procedure is a way to divide and distribute m muffins to
s students so that each student gets m

s muffins.

An (m, s)-procedure is optimal if it has the largest smallest piece
of any procedure.

f (m, s) be the smallest piece in an optimal (m, s)-procedure.

We have shown f (5, 3) = 5
12 .

Note: f (m, s) ≥ 1
s : divide each M into s pieces of size 1

s and give
each S m of them.



f (3, 5) ≥?

Clearly f (3, 5) ≥ 1
5 . Can we get f (3, 5) > 1

5?
Think about it at your desk.

f (3, 5) ≥ 1
4

1. Divide 2 muffin [ 6
20 ,

7
20 ,

7
20 ]

2. Divide 1 muffin [ 5
20 ,

5
20 ,

5
20 ,

5
20 ]

3. Give 4 students ( 5
20 ,

7
20)

4. Give 1 students ( 6
20 ,

6
20)

Can we do better? Vote!
YES
NO
UNKNOWN TO SCIENCE
NO Proof on next slide.
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f (3, 5) ≤ 1
4

There is a procedure for 3 muffins,5 students where each student
gets 3

5 muffins, smallest piece N. We want N ≤ 1
4 .

Case 0: Some student gets 1 piece, so size 3
5 . Cut that piece in

half and give both 3
10 -sized pieces to that student. (Note 3

10 >
1
4 .)

Reduces to other cases.
(Henceforth: All students get ≥ 2 pieces.)

Case 1: Some student gets ≥ 3 pieces. Then N ≤ 3
5 ×

1
3 = 1

5 <
1
4 .

(Henceforth: All students get 2 pieces.)

Case 2: All students get 2 pieces. 5 students, so 10 pieces.
Some muffin gets cut into ≥ 4 pieces. Some piece ≤ 1

4 .



3 People, 5 Muffins VS 5 People, 3 Muffins

f (5, 3) ≥ 5
12

1. Divide 4 muffins [ 5
12 ,

7
12 ]

2. Divide 1 muffin [ 6
12 ,

6
12 ]

3. Give 2 students ( 6
12 ,

7
12 ,

7
12)

4. Give 1 students ( 5
12 ,

5
12 ,

5
12 ,

5
12)

f (3, 5) ≥ 1
4
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20 ,
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7
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2. Divide 1 muffin [ 5
20 ,

5
20 ,

5
20 ,

5
20 ]

3. Give 4 students ( 5
20 ,

7
20)

4. Give 1 students ( 6
20 ,

6
20)

f (3, 5) proc is f (5, 3) proc but swap Divide/Give and mult by 3/5.
Theorem: f (m, s) = m

s f (s,m).
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Floor-Ceiling Theorem (Generalize f (5, 3) ≤ 5
12)

f (m, s) ≤ max

{
1

3
,min

{
m

s d2m/se
, 1− m

s b2m/sc

}}
.

Case 0: Some muffin is uncut. Cut it (12 ,
1
2) and give both halves

to whoever got the uncut muffin, so reduces to other cases.

Case 1: Some muffin is cut into ≥ 3 pieces. Some piece ≤ 1
3 .

Case 2: Every muffin is cut into 2 pieces, so 2m pieces.

Someone gets ≥
⌈
2m
s

⌉
pieces. ∃ piece ≤ m

s ×
1

d2m/se = m
sd2m/se .

Someone gets ≤
⌊
2m
s

⌋
pieces. ∃ piece ≥ m

s
1

b2m/sc = m
sb2m/sc .

The other piece from that muffin is of size ≤ 1− m
sb2m/sc .



THREE Students

CLEVERNESS, COMP PROGS for the procedure.

Floor-Ceiling Theorem for optimality.

f (1, 3) = 1
3

f (3k, 3) = 1.

f (3k + 1, 3) = 3k−1
6k , k ≥ 1.

f (3k + 2, 3) = 3k+2
6k+6 .



FOUR Students

CLEVERNESS, COMP PROGS for procedures.

Floor-Ceiling Theorem for optimality.

f (4k, 4) = 1 (easy)

f (1, 4) = 1
4 (easy)

f (4k + 1, 4) = 4k−1
8k , k ≥ 1.

f (4k + 2, 4) = 1
2 .

f (4k + 3, 4) = 4k+1
8k+4 .

Is FIVE student case a Mod 5 pattern?
VOTE YES or NO

YES but with some exceptions
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FIVE Students, m = 1, . . . , 11
f (1, 5) = 1

5 (easy or use f (1, 5) = 5
1 f (5, 1).)

f (2, 5) = 1
5 (easy or use f (2, 5) = 5

2 f (5, 2).)

f (3, 5) = 1
4 (use f (3, 5) = 3

5 f (5, 3).)

f (4, 5) = 3
10 (use f (4, 5) = 4

5 f (5, 4).)

f (5, 5) = 1 (Easy and fits pattern)

f (6, 5) = 2
5 (Use Floor-Ceiling Thm, fits pattern)

f (7, 5) = 1
3 (Use Floor-Ceiling Thm, NOT pattern)

f (8, 5) = 2
5 (Use Floor-Ceiling Thm, fits pattern)

f (9, 5) = 2
5 (Use Floor-Ceiling Thm, fits pattern )

f (10, 5) = 1 (Easy and fits pattern)

f (11, 5) = (Will come back to this later)



FIVE Students

CLEVERNESS, COMP PROGS for procedures.

Floor-Ceiling Theorem for optimality.

For k ≥ 1, f (5k , 5) = 1.

For k = 1 and k ≥ 3, f (5k + 1, 5) = 5k+1
10k+5

For k ≥ 2, f (5k + 2, 5) = 5k−2
10k

For k ≥ 1, f (5k + 3, 5) = 5k+3
10k+10

For k ≥ 1, f (5k + 4, 5) = 5k+1
10k+5



What About FIVE students, ELEVEN muffins?

Procedure:

Divide the Muffins in to Pieces:

1. Divide 6 muffins into (1330 ,
17
30).

2. Divide 4 muffins into ( 9
20 ,

11
20).

3. Divide 1 muffin into (12 ,
1
2).

Distribute the Shares to Students:

1. Give 2 students [1730 ,
17
30 ,

17
30 ,

1
2 ].

2. Give 2 students [1330 ,
13
30 ,

13
30 ,

9
20 ,

9
20 ]

3. Give 1 student [1120 ,
11
20 ,

11
20 ,

11
20 ]

So

f (11, 5) ≥ 13

30
∼ 0.43333.



What About FIVE students, ELEVEN muffins? Opt

Recall: Floor-Ceiling Theorem:

f (m, s) ≤ max

{
1

3
,min

{
m

s d2m/se
, 1− m

s b2m/sc

}}
.

f (11, 5) ≤ max

{
1

3
,min

{
11

5 d22/5e
, 1− 11

5 b22/5c

}}
.

f (11, 5) ≤ max

{
1

3
,min

{
11

5× 5
, 1− 11

5× 4

}}
.

f (11, 5) ≤ max

{
1

3
,min

{
11

25
,

9

20

}}
.

f (11, 5) ≤ max

{
1

3
,

11

25

}
=

11

25
= 0.44.



Where Are We On FIVE students, ELEVEN muffins?

I By Procedure 13
30 ∼ 0.43333 ≤ f (11, 5)

I By Floor-Ceiling f (11, 5) ≤ 11
25 ∼ .44

So
13

30
≤ f (11, 5) ≤ 11

25
Diff= 0.006666 . . .

Darling: 0.0066666 close enough ?
VOTE:

1. f (11, 5) = 13
30 : Needs NEW technique to show limits on

procedures.

2. f (11, 5) = 11
25 : Needs NEW better procedure.

3. f (11, 5) = α where 13
30 < α < 11

25 . Needs both:

4. UNKNOWN TO SCIENCE!

KNOWN: f(11, 5) =
13

30

HAPPY: New opt tech more interesting than new proc.
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f (11, 5) = 13
30 , Easy Case Based on Muffins

There is a procedure for 11 muffins, 5 students where each student
gets 11

5 muffins, smallest piece N. We want N ≤ 13
30 .

Case 0: Some muffin is uncut. Cut it (12 ,
1
2) and give both halves

to whoever got the uncut muffin. Reduces to other cases.

Case 1: Some muffin is cut into ≥ 3 pieces. N ≤ 1
3 <

13
30 .

(Negation of Case 0 and Case 1: All muffins cut into 2 pieces.)



f (11, 5) = 13
30 , Easy Case Based on Students

Case 2: Some student gets ≥ 6 pieces.

N ≤ 11

5
× 1

6
=

11

30
<

13

30
.

Case 3: Some student gets ≤ 3 pieces.
One of the pieces is

≥ 11

5
× 1

3
=

11

15
.

Look at the muffin it came from to find a piece that is

≤ 1− 11

15
=

4

15
<

13

30
.

(Negation of Cases 2 and 3: Every student gets 4 or 5 pieces.)



f (11, 5) = 13
30 , Fun Cases

Case 4: Every muffin is cut in 2 pieces, every student gets 4 or 5
pieces. Number of pieces: 22. Note ≤ 11 pieces are > 1

2 .

I s4 is number of students who get 4 pieces

I s5 is number of students who get 5 pieces

4s4 + 5s5 = 22
s4 + s5 = 5

s4 = 3: There are 3 students who have 4 pieces.
s5 = 2: There are 2 students who have 5 pieces.



f (11, 5) = 13
30 , Fun Cases

� � � � � (Sums to 11/5)
� � � � � (Sums to 11/5)

◦ ◦ ◦ ◦ (Sums to 11/5)
◦ ◦ ◦ ◦ (Sums to 11/5)

◦ ◦ ◦ ◦ (Sums to 11/5)

Case 4.1: One of (say)

◦ ◦ ◦ ◦ (Sums to 11/5)

is ≤ 1
2 . Then there is a piece

≥ (11/5)− (1/2)

3
=

17

30
.

The other piece from the muffin is

≤ 1− 17

30
=

13

30
Great to see

13

30
.



f (11, 5) = 13
30 , Fun Cases

Case 4.2: All

◦ ◦ ◦ ◦ (Sums to 11/5)
◦ ◦ ◦ ◦ (Sums to 11/5)

◦ ◦ ◦ ◦ (Sums to 11/5)

are > 1
2 .

There are ≥ 12 pieces > 1
2 . Can’t occur.



The Techniques Generalizes!

Good News!
The technique used to get f (11, 5) ≤ 13

30 lead to a theorem that
apply to other cases! We call it The Interval Theorem

Bad News!
Interval Theorem is hard to state, so you don’t get to see it.

Good News!
Interval Theorem is hard to state, so you don’t have to see it.



Notation

FC (m, s) is the upper bound provided by Floor-Ceiling Thm.

IN(m, s) is the upper bound provided by INterval Thm.

SP(s + 1, s) = f (s + 1, s). We have a theorem that tells us this
exactly.



How Good Is the FC Bound? Mod Pattern?

1. For all s for all m ≥ s3 + 2s2 + s

2
, f (m, s) = FC (m, s).

(Empirical evidence O(s2)).

2. For all s there is a mod-s-formula FORM(m, s) such that for

all m ≥ s2+s
4 , f (m, s) = FORM(m, s).

3. Hence: For all s there is a mod-s-formula FORM(m, s) such

that for all m ≥ s3+2s2+s
2 , f (m, s) = FORM(m, s).

4. For 1 ≤ s ≤ 6 we have the FORM(m, s).

5. For 7 ≤ s ≤ 60 have conjectures for FORM(m, s) that are
surely true.



The Exceptions

For all s there is a mod-s-formula FORM(m, s) such that for all

m ≥ s2+s
4 , f (m, s) = FORM(m, s).

What happens when FORM(m, s) 6= f (m, s).

1. f (s + 1, s). Have Sep theorem for that case, known exactly.

2. f (m, s) = 1
3 .

3. f (m, s) used Interval Theorem.

So far these are the only exceptions.



Does f (m, s) Exist? Rational? Debatable?

Plausible:

1. There is a protocol showing f (m, s) ≥ 1
5

2. There is a protocol showing f (m, s) ≥ 1
5 + 1

52

3. There is a protocol showing f (m, s) ≥ 1
5 + 1

52
+ 1

53

4.
...

But NO protocol shows f (m, s) ≥ 1
5 + 1

52
+ · · · = 1

4 .

Plausible: f (m, s) = 1
π (so π is key to muffins!)

Plausible: f (m, s) is not computable.
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f (m, s) Exist, Rational, Computable

Theorem

1. There is a mixed integer program with O(ms) binary variables,
O(ms) real variables, O(ms) constraints, and all coefficients
integers of absolute value ≤ max{m, s} such that, from the
solution, one can extract f (m, s) and a protocol that achieves
this bound. This MIP can easily be obtained given m, s.

2. f (m, s) is always rational. This follows from part 1.

3. The problem of, given m, s, determine f (m, s), is decidable.
This follows from part 1.



Not Just Theoretical

Good News: f (m, s) exists, is rational and computable!

Bad News: Proof uses MIP’s which are NP-complete

Good News: There are packages for MIP’s that are . . . okay.

Bad News: There is no more bad news which breaks the
symmetry of good/bad/good/bad.

Good News: We HAVE coded it up and we HAVE gotten some
results this way.
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The Synergy Between Fields

One often hears:
Pure Math done without an application in mind often ends
up being Applied!
(Number theory and Cryptography is a great example.)

One seldom hears (though its true):
Applied Math done for a real world applications often ends
up being used for Pure Math!
(MIP and Muffins is a ‘great’ example.)

Pure Math, Applied Math, Computer Science, Physics, all
play off each other! None of the four has moral superiority!
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How Research Works

1. Obtain particular results.

2. Prove a general theorem based on those results.

3. Run into a case we cannot solve (e.g., (11,5) and (35,13)).

4. Lather, Rinse, Repeat.



Conjectures

Conjecture: The following program computes f (m, s) for m > s.

I If d = gcd(m, s) 6= 1 then call f (m/d , s/d).

I If m = s + 1 output SP(s + 1, s).

I If s = 1 then output 1.

I Otherwise output the MIN of FC (m, s) and INT (m, s)

Empirically true for 1 ≤ s ≤ 15, 1 ≤ m ≤ 100.
If True:

1. f (m, s) can be computed with a constant number of arith
operations on numbers ≤ O(s + m).

2. f (m, s) can be computed in time O(M(s + m)), where M is
speed of multiplication.

3. f (m, s) is in P.



Accomplishment I Am Most Proud of

Accomplishment I Am Most Proud of:

Convinced

I 4 High School students (Guang, Naveen, Naveen, Sunny)

I 1 college student (Erik)

I 1 professor (John D.)

that the most important field of Mathematics is Muffinry.
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