So this exemplifies what last Wednesday’s lecture said about \(\emptyset \) being analogous to zero, and \(\mathbb{E} \) behaving like \(1 \).
But now we want to push the analogy to obey this law of exponents:

\[
\text{Numbers: } \quad a^2 \cdot a^3 = a^{2+3} \quad \text{Works when } i=0 \text{ if } a^0=1
\]
\[
\text{Strings: } \quad x^i \cdot x^j = x^{i+j} \quad \text{OK for } i=0 \text{ if } x^0 = \epsilon
\]
\[
\text{Languages: } \quad A^i \cdot A^j = A^{i+j} \quad \text{OK for } i=0 \text{ if } A^0 = \mathbb{E} \mathbb{E} \mathbb{E}.
\]

So we make a convention: For every language \(A \), \(A^0 = \mathbb{E} \mathbb{E} \mathbb{E} \).
And we declare this true even for \(A = \emptyset \): \(\emptyset^0 = \mathbb{E} \mathbb{E} \mathbb{E} \). But why??

How can we get something out of nothing? (Lecture said \(\mathbb{E} \mathbb{E} \mathbb{E} \) is something)

[Famous Buddhist "Koan" riddle:]

What is the sound of one hand clapping?
I don’t have an answer. But for zero

\[\text{hands I do: The sound of 0 hands clapping is the empty sound, } \epsilon.\]
Then \(\emptyset^0 = \mathbb{E} \mathbb{E} \mathbb{E} \) is "merely" the further step of saying this is true even when there are no hands.

We would feel more comfortable about this if in math, \(0^0 = 1 \).
Here’s the argument: In Discrete Math, for any sets \(P \) and \(Q \), \(Q^P \) stands for the set of functions \(f: P \to Q \). And by rule, \(|Q^P| = |Q|^{|P|} \).

For example, let \(P = \{0,1,2,3,4\} \) and \(Q = \{0,1,2\} \). Then a function \(f: P \to Q \) is the same as a binary string of length 5. E.g. the string 00110 is the function \(f(0) = 0, f(1) = 2, f(2) = 1, f(3) = 1, f(4) = 0 \). There are \(2^5 = 32 \) such binary strings, and \(|Q^P| = 181^{10^1} = 2^5 \) as needed.

Hence, \(\emptyset^0 \) stands for the set of 32 functions \(f: \emptyset \to \emptyset \). Are there any?
Yes! \(\emptyset \) is a function from \(\emptyset \to \emptyset \). It’s the only one, so \(0^0 = |\emptyset|^{|\emptyset|} = 1 \!\)