A language represents:

- A logical condition on a string
- A yes/no decision problem
- With an (arbitrary but) specific encoding of objects as strings
- Of two powers of 2?

Instances:

- \(N = 7^2 \): Yes: \(2^3 - 2^0 = 8 - 1 = 7 \)
- \(N = 120^2 \): Yes: \(2^7 - 2^3 = 128 - 8 = 120 \)
- \(N = 26^2 \): No!
- \(N = 54^2 \): No.
- \(N = 1,260^3 \)
- \(7 = 111 \)
- \(120 = 1111000 \)
- \(54 = 110110 \)
- \(1260 = \ldots \)
- \(8 = \ldots \)

Algorithm: The answer is Yes unless a '1' follows a '0' in \(n \), under standard binary encoding (Note: \(n > 0 \)).

I actually gave a logical assertion that implies an algorithm and states its correctness. Prove it?

"Proof by Picture":

\[
2^k = \ldots 10000 \ldots 0
\]

For some \(j < k \),

\[
2^j = \ldots 1111000 \ldots 0
\]

Output always has one or more 1's followed by zero or more 0's.

Shorthand: Binary \((n) = \lfloor 1.1^*0^* \rfloor = 1^*0^* \) Superscript + means one or more.
Part II: A machine-type algorithm for this problem.

Language $L = 1^+ 0^*$. $0^* = 1^+ 0^* = \{x \in \{0, 1\}^* : x$ begins with at least one 1 and has 1s followed optionally by 0s $\}$.

$L = \{x : x$ is a standard binary encoding of a number that is not a digit of two powers of 2, or x is not a legal encoding $\}$.

Formal Definition 6.1.1: "Nirvana state".

A deterministic finite automaton (DFA) is a 5-tuple $M = (Q, \Sigma, S, s, F)$ where:

- Q is a finite set of elements called states.
- Σ is the input alphabet.
- S, a member of Q, is the start state (s).
- F, a subset of Q, is the set of final states.
- $\delta : Q \times \Sigma \rightarrow Q$. Here:

$\delta(0, 0) = 4$ $\delta(0, 1) = 2$
$\delta(1, 0) = 9$ $\delta(1, 1) = 2$

$Q = \{0, 1, 2, 3, 4\}$ $\Sigma = \{0, 1\}$
$S = \{4\}$ $F = \{3\}$ in M' $\delta(0, 1) = 5$ $\delta(1, 1) = 6$

Desired final states:

For M, $F = \{2, 3\}$
$Q = \{1, 2, 3, 4\}$

For M', $F' = \{1, 3\}$ instead.

Given char and a state type already known:

- set \langlestate\rangle Q;
- set \langlechar\rangle Σ;
- State S;
- set \langlestate\rangle F;
- State [*delta*] (State p),

Member function rather than a method.

State δ (State p, char c);
Segue to Thursday's lecture

Example 2: \(L_2 = \{ x \in \{0,1\}^*: \text{the number of 1s in } x \text{ is even} \} \)

Unlike Example 1, I don't know a simple way to define the corresponding set of binary numbers "naturally".

The algorithm is easy though — a DFA with only 3 states will do:

- \(Q = \{ \text{Even}, \text{Odd} \} \)
- \(\Sigma = \{0,1\} \)
- \(\delta(\text{Even},0) = \text{Even} \)
- \(\delta(\text{Even},1) = \text{Odd} \)
- \(\delta(\text{Odd},0) = \text{Odd} \)
- \(\delta(\text{Odd},1) = \text{Even} \)

Using the idea of the graph of a function, we can rewrite \(\delta \) as a set of instructions:

\[
\text{Set}(\text{State}, \text{char}, \text{State}) \text{ delta} = \{ (\text{Even},0,\text{Even}), (\text{Even},1,\text{Odd}), (\text{Odd},0,\text{Odd}), (\text{Odd},1,\text{Even}) \} \]

Note we defined the whole DFA without using numbers for states: State can be anything. To be super-technical we should write the graph form of \(\delta \) as a nested pair \(((\text{Even}, 1), \text{Odd}) \), but simple triples are AOK. C++/Java/... let you do it either way too:

Let's set \(\text{Set<Triple<State, char, State>>} \) or \(\text{Set<Pair<Pair<State, State>>, State>>} \)

C++ does not have a standard Triplet type. You could write your own "Set<T" class to be like above. "Yuck!" (use typedef?) in C++ need this space. (OK...)

A regular expression for \(L_2 \) is easy too. We can reason directly or by "tracing" the DFA.

- Directly: "0" doesn't matter, so we can stick "zero or more 0s" anywhere. What we need is "zero or more pairs of 1s." By itself that's \((11)^*\). Combined gives \((0*10*10)^*\)

- From the machine: We need to begin and end at the "Even" state. We can come back in two ways: a single 0; or a 1 then any number of 0s then a 1 again. Expression:

\[\text{Comeback} = 0 \cup 10^*1. \]

We can and need to do zero-or-more "Comebacks," so we get: \((0 + 10^*1)^*\)

Hey! The answers are different! Is one wrong? No — but it's a sign of a "bumpy ride..."