Demo of "Dragonstar" DFA using the "Turky Kit"

Theorem: If a DFA $M = (Q, \Sigma, \delta, s, F)$ accepts a language L, then the DFA $M' = (Q, \Sigma, \delta, s, Q \setminus F)$ accepts \overline{L}.

Example: $L = L_A = \{ x \in \{0, 1, 2, 3\}^* : x$ leaves light A on $\}$.

Let $A = \{9, 9\}$.

By the Cartesian Product theorem in recitations, if L_1 is accepted by a DFA M, and L_2 by M_2, then we can build a DFA M_3 s.t. $L(M_3) = L_1 \cap L_2$.

$M_3 = (Q_1 \times Q_2, \Sigma, \delta_3, (s_1, s_2), F_3)$

Then $L(M_4) = L(M_1) \cup L(M_2)$.

$M_5 = (Q_1 \times Q_2, \Sigma, \delta_5, (S_1, S_2), F_5)$

Then $L(M_5) = \{ x : M_1$ accepts $x \times M_2$ accepts $x \times 2 \}$ XOR $I_2 \in F_2$.

Do $M_6 = \{ x \in \{0, 1, 2, 3\}^* : x$ leaves one or both lights on $\}$.

$\widehat{L} = \{ x \in \{0, 1, 2, 3\}^* : x$ leaves one or both lights on $\}$.

$\widehat{L} = \widehat{L}_A \cup \widehat{L}_B$.

Third idea: For U, try an NFA.
Build an NFA \(N_3 = (Q_3, \Sigma, \delta_3, s_3, F_3) \) such that \(L(N_3) = L(M'_A) \cup L(M'_B) \).

By:

\[Q_3 = \{ s_3 \} \cup Q_1, Q_2 \]

\[F_3 = F_1 \cup F_2 = \{ q_1, q_2 \} \]

\[S_3 = S_1 \cup S_2 \cup \{ (s_3, \varepsilon, s_1), (s_3, \varepsilon, s_2) \} \]

Formal Definition of NFA (with \(\varepsilon \)-arcs)

Def: A nondeterministic finite automaton (NFA) is a 5-tuple \(N = (Q, \Sigma, \delta, s, F) \) where:

- \(Q \) is a finite set of states
- \(\Sigma \) is the input alphabet
- \(s \) is a member of \(Q \), is the start state
- \(F \) is a subset of \(Q \), the final states

\(\delta \) is a function with domain all of \(Q \times \Sigma \) and range \(\subseteq Q \).

Typical instruction: \(\langle p, \sigma, q \rangle \) \(\sigma \in \Sigma \) or \(\langle p, \varepsilon, q \rangle \) \(p = q \) allowed.

An NFA is a DFA if for all \(q \in Q \) and \(\sigma \in \Sigma \) there is exactly one instruction \(\langle q, \sigma, r \rangle \in \delta \) where \(r \in Q \). (And no instruction have \(\varepsilon \).)

\[\Sigma = \{ \$0, \$1, \$D \} \]

\[L = \{ \varepsilon \in \Sigma^* \} \]

Is this a DFA?

No: lacks an instruction for \((q_0, 0) \).

Formally, this diagram needs to be "completed" by adding a dead state. Then we can complement the machine.
Defn: A computation path that processes a string x is a sequence $(q_0, w_1, q_1, w_2, q_2, \ldots, q_{m-1}, w_m, q_m)$ such that

1. For all j, $0 \leq j \leq m\!-\!1$, $(q_{j-1}, w_j, q_j) \in S$
2. The string $w_1 \cdot w_2 \cdots w_m$ equals x.

Then we also say that N can process x from state q_0 to state q_m.

Formally, $L(N) = \{ x \in \Sigma' : N$ can process x from s to a state in $F \}.$

Example: $x = 1\, 3$ (leaves both lights on)

Path: $(s_3, \varepsilon, s_1, 1, s_1, 3, q_1)$

Another Acc Path: $(s_3, \varepsilon, s_2, 1, s_2, 3, q_2)$

With a DFA, always $m = n = l(x)\!$, and every step has just one option.

Note Added: We will use the concept in cases where q_0 is not the start state. Indeed for any $p, q \in Q$ we can define

$L_{pq} = \{ x \in \Sigma' : N$ can process x from p to $q \}.$

So $L(N) = \bigcup_{q \in F} L_{sq}$. This again is why I like to use separate notation in "s" from q_0 for the start state.