Given a regular expression R, over an alphabet Σ, define

$$L(R) = \{ x \in \Sigma^* : x \text{ matches } R \}.$$

Intent: how does a string x match R?

Intension: concentration on the language as a whole.

Extension: concentration on the language as a whole.

Formal Inductive Definition of Regular Expressions, Their Languages, With NFA “Pictures” Too.

Basis: (Lecture: Temporarily use \sim to say something)

- \emptyset is a regexp, $L(\emptyset) = \emptyset$
- ε is a regexp, $L(\varepsilon) = \{ \varepsilon \}$
- For any char $c \in \Sigma$, c is a regexp, $L(c) = \{ c \}$

Induction: Let any two regexps R_1 and R_2 be given, along with:
- Their languages $L_1 = L(R_1)$ and $L_2 = L(R_2)$
- Their NFA “pictures” N_1 and N_2 such that $L(N_1) = L_1$ and $L(N_2) = L_2$

Cannot process any nonempty string.

Can process “c” but no more.

Must process one c, so $c \in L(c)$.
Then: \(R_3 = (R_1 \cup R_2) \) is a regexp [also write \(R_3 = R_1 \cup R_2 \)].

and denotes \(L(R_1) \cup L(R_2) = L(R_3). \)

From the given NFA's \(N_1 \) s.t. \(L(N_1) = L(R_1) \) and \(N_2 \) s.t. \(L(N_2) = L(R_2) \) build \(N_3 = \)

\[
\begin{array}{c}
\text{N_3} \\
\end{array}
\]

\[s_1 \quad \epsilon \]
\[\epsilon \quad s_2 \quad \epsilon \]
\[\epsilon \quad \epsilon \quad \epsilon \quad f_3 \]

build \(N_3 \)

and complete the induction by showing
\[L(N_3) = L_3 \]
\[L(R_3) = L_1 \cup L_2. \]

\[\text{N_3 can process a string x from s_2 to f_3} \Leftrightarrow \]
\[N_1 \text{ can process x from } s_1 \text{ to } f_1 \text{ or } N_2 \text{ can process x from } s_2 \text{ to } f_2. \]

\[L(N_3) = L(N_1) \cup L(N_2) = L(R_1) \cup L(R_2) = L_1 \cup L_2 = L_3 \]

by machine construction [by induction hyp. \(L(N_3) = L(R_3) \).]

Then \(R_4 = (R_1 \cdot R_2) \) is a regexp, [parentheses and dot optional]

\[L(R_4) = \text{def } L(R_1) \cdot L(R_2). \]

Then the NFA's \(N_1 \) and \(N_2 \), build

\[\begin{array}{c}
N_4:
\end{array} \]

\[s_1 \quad \epsilon \quad s_2 \quad \epsilon \]
\[\epsilon \quad s_1 \quad \epsilon \quad s_2 \]
\[\epsilon \quad \epsilon \quad \epsilon \quad f_4 \]

Then \(N_4 \) can process a string \(x \) from \(s_4 \) to \(f_4 \) \(\Leftrightarrow \) \(x \) can be broken as \(x = yz \) such that \(N_1 \) can process \(y \) from \(s_1 \) to \(f_1 \) and \(N_2 \) can process \(z \) from \(s_2 \) to \(f_2. \)

\[L(N_4) = L(N_1) \cdot L(N_2) \]

[End of text, Skip this part, which is just for neatness.]
Recall: \(A \cdot B = \{ x : x \text{ can be broken as } y \cdot z \text{ st. } y \in A \land z \in B \} \). So \(L(R_4) = \text{def } L(R_1) \cdot L(R_2) = \{ x : x \text{ can be broken as } y \in L(R_1) \land z \in L(R_2) \} \).

By induction hypothesis: \(L(R_1) = L(N_1) \)
\(L(R_2) = L(N_2) \).

\[\therefore L(R_4) = \{ x : x \text{ can be broken as } y \in L(N_1) \land z \in L(N_2) \} \]
\[= L(N_1) \cdot L(N_2) = L(N_4) \]
\[\therefore L(N_4) = L(R_1) \cdot L(R_2) \]
\[= L(R_4) \cdot \emptyset \]

\(\star \)

Finally define \(R_S = (R_1)^* \) [\(R_2 \) not involved]. And define \(L(R_S) = L(R_1)^* \)
\[= \{ x \in \Sigma^* : x \text{ can be broken as } \text{ such that } \forall k \in L(R_1) \} \]

Build \(N_S \) given \(N_1 \) like so:

Feedback Circuit (with bypass)

Then \(L(N_S) = \exists x : x \text{ can be broken into zero or more } L(R_1) \) substrings each processed by \(N_1 \), \(L(R_S) \)

Diagram Construction

Theorem: For every regular expression \(R \), we can (recursively!) build an NFA \(N_R \) such that \(L(N_R) = L(R) \).
Example 1: \(R = 1 \cdot 0^* \cdot N \cdot 0^* \cdot N_1 \cdot 0^* \cdot N \),
\[N = \{ s, 0 \} \]
Literal Recursion.

Much simpler (closer to text):
Formally an NFA but has no actual non-determinism. Hence can complete to a DFA.

Example 2: \((0+1)^* 010 (0+1)^* \cdot \)
"Aesthetic Point": The NFA \(N \) is the most immediate picture for \(1^* \cdot 0^+ \cdot M \).

Has actual non-determinism, so DFA more complicated. "Nirvana" state

Extra - added after lecture:

Example 3: \(R = 1^* 0^* \cdot \) Wrong is \(q_0 \) - that is \((1+0)^* \)
Correct is \(\cdot \)\(q_0 \)\(\epsilon \)\(q_0 \)
Thus \(\epsilon \)-arcs are sometimes helpful.

Also good is \(\cdot \)\(q_0 \)\(\epsilon \)\(q_0 \)\(q_0 \)
This needs the start state to be accepting too. Can be completed to a DFA as shown in blue.

Example 4:
\(R = 1^* 0^* \cdot \)
\(\cdot \)\(q_0 \)\(\epsilon \)\(q_0 \)\(q_0 \)
\(q_0 \)\(\epsilon \)\(q_0 \)\(q_0 \)\(q_0 \)
\(q_0 \)\(\epsilon \)\(q_0 \)\(q_0 \)\(q_0 \)
OFA is as shown in blue.