Def: Given a language $L \subseteq \Sigma^*$, a set $S \subseteq \Sigma^*$ is a Po set for L if for all $x, y \in S$, $x \neq y$ there exists $z \in \Sigma^*$ such that $L(xz) \neq L(yz)$.

Note: S need not be a subset of L.

Example: $L = \{a^n b^n : n \geq 0\}$

$S = \{a^n : n \geq 0\} = \{a^n\}$

Proof that S is Po for L:

Let any $x, y \in S$, $x \neq y$, be given.

Then there are natural numbers $m, n \geq 0$, $m \neq n$, such that $x = a^m$ and $y = a^n$. [Def of S]

Take $z = b^n$. Then $xz = a^m b^n \in L$ but $yz = a^n b^m \notin L$ since $n \neq m$.

Thus $L(xz) \neq L(yz)$. Since $x, y \in S$ were an arbitrary distinct pair, S is Po for L.

Myhill-Nerode Thm, Part I: If S is Po for L, then any DFA M s.t. $L(M) = L$ needs at least $|S| - 1$ many states, and if S is infinite, no such M exists.
Theorem L is non-regular: [by MNT, so you first need an infinite PD set for L]

Proof: Take $S = \{ \} \cdot \{ \}^*$. Clearly S is infinite.

Let any $x, y \in S$, $x \neq y$, be given. Then there are $m, n \in \mathbb{N}$ s.t.
we can helpfully write $x = \{ \}^m$ and $y = \{ \}^n$, where $\Delta m \neq \Delta n$.

Take $z = \{ \}^n$. Then $xz \notin L$ because $xz = \{ \}^m \{ \}^n$ doesn't survive.

but $yz \in L$ because $yz = \{ \}^n \{ \}^m$ which survives.

Thus $L(xy) \neq L(yz)$. Since $x, y \in S$ were arbitrary, S is PD for L, and since S is infinite, L is non-regular by MNT. \square

MNT: $x \notin (S, |S| = \infty)(\forall x, y \in S, x \neq y)(\exists z): L(xz) \neq L(yz)$, then $L \notin REG$.

Example: $L' = \{ x \in \{\}, \{\}^* : x \text{ is a survivable dungeon in the game allowing any # of swords} \}$

$x = \{\}^D\{\}\{\}\{\} \notin L'$

$L'' = \{ x \in \{\}, \{\}^* : \#s(x) = \#D(x)^2 \}$, exact same proof $L' = \Delta L''$.

MNT never cares about switching L and L'.

$L_4 = \{ x \in \{\}, \{\}^* : x \text{ is potentially survivable}; \text{i.e. } \#s(x) \geq \#D(x) \}$

$L'_4 = \{ x \in \{\}, \{\}^* : \#s(x) > \#D(x)^2 \}$, take $z = \{\}^{D-1}$.

$L_5 = \{ x \in \{\}, \{\}^* : \#s(x) \leq \#D(x)^2 \}$, take $z = \{\}^D$, $yz \notin L$.

$L_6 = \{ x \in \{a,b\}^* : \#a(x) + \#b(x) \text{ is odd} \}$ is a regular language.
The Full MNT: John Myhill UB + 1987
(1958) Anil Nerode Cornell still alive

Part I: If \(\exists \) an ininite PD set \(S \) for \(L \), then \(L \) is nonregular.

Part II: If \(L \) is nonregular, then there is an infinite PD set \(S \) for \(L \).

Conversely, equivalence: If all PD sets \(S \) for \(L \) are finite, then \(L \) is regular.

The import of "Part II" is \(\Leftrightarrow \) if \(L \) is nonregular, there is always in some sense an MNT proof of that.

Extra

Another Example. (For Tuesday, this or similar).

\[L = \frac{1}{2} \text{WW: } W \in \{0,1\}^* \text{?} \] How should we choose \(S \)?

If we just choose \(S = \emptyset \), it's not clear we know the idea. Well, let any \(x_1 \in S \), \(x_2 \) be given. Then there are numbers \(m, n \in \mathbb{N} \), where WLOG \(m \leq n \), such that \(x = 0^m \) and \(y = 0^n \). Take \(z = 0^3 \).

If we're on autopilot, we might take \(z = 0^m \). Then \(xz = 0^m0^m \) is certainly in \(L \), but what about \(yz = 0^n0^n \)? You might be tempted to say "not in \(L \) since \(n \neq m \)" but look: if (say) \(m = 3 \) and \(n = 5 \), then \(0^30^5 = 0^8 = 0^40^4 \) by a different "parse," so \(yz \in L \) too.

Instead take \(z = 10^m1 \). Then \(xz = 0^m10^m1 \in L \), but \(yz = 0^n10^m1 \) dh. So we win: \(L \) is nonregular, but choosing \(S = 0^m1 \) would have put us on "backstage."