More MNT Examples

If I change this to \(n \geq 0 \), allowing \(1 \) \(\epsilon \) \(L \), does the proof become wrong?

\[L = \{ 0^n 1 0^n : n \geq 1 \} \text{?} \]

Some basic script:
Take \(S = 0^* \). Clearly \(S \) is infinite. Let any \(x, y \in S \) \((x \neq y) \) be given. Then there are numbers \(m, n \geq 1 \) with \(m \neq n \).

\(S \) is infinite.

\[\begin{align*}
& x = 1^n \text{ and } y = 1^n. \quad \text{Take } z = 10^m. \text{ Then:} \\
& xz = 0^n 1 0^n \in L \text{ but } yz = 0^n 1 0^m \notin L \text{ since } n \neq m. \quad \text{Hence } S \text{ is an infinite PD set for } L, \text{ so } L \text{ is not regular.} \checkmark
\end{align*} \]

(Study \(Q \): With \(L \), \(L^* \) above with \(n \geq 1 \), \(S = 0^* \) still PD?
\(\) The proof would be wrong, but can the proof be fixed?)

Footnote: \(\{ 0^n 0 1 0^n : n \geq 0 \} \) is an equivalent def'n of \(L \).

\[L' = \{ 0^n 0^n : n \geq 1 \}\text{?} \]

Take \(S = 0^* \). Let any \(x, y \in S \) \(x \neq y \) be given. \(x = 0^m \text{ and } y = 0^n. \text{ Take } z = 0^n. \text{ Then:} \\
xz = 0^m 0^n \notin \; L' \ldots \text{no: it can still be } \epsilon \; L' \text{?} \\
L' = \{ 001^+ \} \text{ which is regular.} \]

\[L'' = \{ \text{ww} \in W \; \text{w} \; \text{ww} : \text{ww} \; \text{30, 1?} \} \text{?} \]

"Critical Cases": \(W = 00000...01 \)

Take \(S = 0^* \). Clearly \(S \) is infinite!

Let any \(x, y \in S \) \(x \neq y \) be given. Then there are \(m, n \geq 1 \), \(m \neq n \), such that \(x = 0^m 1 \text{ and } y = 0^n 1 \). Take \(z = 0^m 1 \). Then:

\[xz = 0^m 1 0^m 1 \in L'' \text{ by the division shown, but } yz = 0^n 1 0^n 1 \notin \]

because the only possible div is after the first 1, but \(n \neq m \) so it doesn't work.
II. The **class \(\text{RED} \)** (or **just \(\text{REG} \)) of **Regular Languages**:

\[
\begin{align*}
\text{string} &= \text{list}(<\text{char}>) \\
\text{language} &= \text{set}(<\text{string}>) \\
\text{First-order Objects} &= x, y, z, w, v, u, \ldots \\
\text{Second-order} &= L, A, B, C, D, \ldots \\
\text{Third-order} &= \text{set}<\text{language}> = \text{set}<\text{set}<\text{list}<\text{char}> >
\end{align*}
\]

The last few weeks have proved the following **Theorem**:

For any language \(L \subseteq \Sigma^* \), the following are equivalent:

(a) There is a regular expression \(R \) such that \(L = L(R) \)

(b) There is a DFA \(M \) such that \(L = L(M) \)

(c) There is an NFA \(N \) such that \(L = L(N) \)

(d) \(\cdots \textit{GNFA} \cdots \) etc!

Proof: (a) \(\rightarrow \) (c), (c) \(\rightarrow \) (b), (b, c, d) \(\rightarrow \) a.

Theorem 2: For any regular expression \(R \), we can **build a regular expression \(R' \)** such that \(L(R') = \complement L(R) \).

Abstract: The class \(\text{RED} \) is **closed under complement**.

Abstract proof: Use (b) to take a DFA \(M \) st: \(L(M) = L \), then simply and quickly build \(M' = (\Sigma, \Sigma, S, s, \lambda, F) \).

Concrete proof of Theorem 2:

- (a) \(\rightarrow \) (b): Convert \(R \) into equivalent NFA \(N_R \).
- (c) \(\rightarrow \) (b): Convert \(N_R \) into equivalent DFA \(M_R \).

Theorem 3: \(\text{RED} \) is closed under \(\cap \).

- For any regular languages \(A, B \in \text{RED} \), the language \(A \cap B \) is also in \(\text{RED} \).

- **Proof:** We may take DFAs \(M_A, M_B \) st: \(L(M_A) = A \) and \(L(M_B) = B \). Then build a DFA \(M_C \) st: \(L(M_C) = L(M_A) \cap L(M_B) \) using "Cartesian Product" for DFAs.

Thus \(L(M_C) = A \cap B \) is a DFA, so \(A \cap B \) is regular.

Let \(A, B \in \text{RED} \) be given.

Proof: We may take DFAs \(M_A, M_B \) st: \(L(M_A) = A \) and \(L(M_B) = B \). Then build a DFA \(M_C \) st: \(L(M_C) = L(M_A) \land L(M_B) \) using "Cartesian Product" for DFAs.
Suppose instead we are given regular expressions α and β, and we desire to build a regexp γ st. $L(\gamma) = L(\alpha) \cap L(\beta)$?

Proof: 1. Convert α, β to equivalent NFAs (with 3 qres)
Algorithm: N_α and N_β
$L(N_\alpha) = L(\alpha)$, $L(N_\beta) = L(\beta)$.

2. Convert N_α, N_β to equivalent DFAs M_α, M_β.
"Cart. Prod." M_γ st. $L(M_\gamma) = L(M_\alpha) \cap L(M_\beta)$.

3. Convert M_γ back to regexp γ st. $L(\gamma) = L(M_\gamma)$.

Puzzle Q: Can we avoid expt. blowup of NFA to DFA? Not to mention L.

*: Since REG is closed under \cap and \cup, it is closed under all Boolean operations.

Theorem: All finite languages are regular. Proof: If $L = \{w_1, w_2, \ldots, w_m\}$, then L has the regexp $w_1 w_2 \ldots w_m$.

*: If L is regular, then any language L' obtained by adding or taking away finitely many strings is also regular.

Because: If F is the finite language of strings whose status was changed, then $L' = (L \Delta F) \cup (F \cap L)$. [Example for all three objects: regular \cup \text{Bool op.} \text{ regular} \cup \text{F in text}(1) or so]

For any $K \geq 1$, define $L_K = \{x \in \{0, 1\}^* : \text{bit } K \text{ from the end is a } '1'\}$.

Regular Exp. $R_K = (0+1)^* (0+1)^{K-1} : 12 + \lfloor \log_2 K \rfloor$ chars.

NFA: $N_K = \begin{array}{c}
01 \to \ldots \to \end{array}$

DFA? Study Fact: $\{0, 1\}^K$ is PD for L_K, so any DFA M_K st. $L_K = L(M_K)$ needs 2^K states.