Let L be a language defined by a "phrase specification." Eg:

$L = \{ x \in \{a,b\}^* : \#a(x) = \#b(x) \} \setminus \emptyset.$

Def. (not explicit in text): A CFG G is **sound** for the specification if $L(G) \subseteq L$. I.e., G does not generate any string $x \not\in L$. (Logic term: "complete")

G is **comprehensive** if $L \subseteq L(G)$. "G has no false positives."

G fails to be comprehensive if there is a string w in $L \setminus L(G)$. Example: $G_0 = S \rightarrow aSb | bSa | \epsilon$

- **Claim** ("by inspection") G_0 is sound: $L(G_0) \subseteq L$

- Is G_0 comprehensive? Try $x = \text{abba}$. Then $x \not\in L(G_0)$ ("by trial and error", or -?) So G_0 is not comprehensive.

More generally, G_0 obeys a "further restriction" on the spec:

$L(G_0) \subseteq L' = \{ x \in L : x \text{ does not begin or end with the same letter} \}$

Is G_0 comprehensive for L'? No: $y = \text{abbbab} \not\in L' \setminus L(G_0)$. Hence certainly G_0 is not comprehensive for the original L.

How about adding a rule? $G_1 = S \rightarrow aSb | bSa | SS | \epsilon$

Say $S \rightarrow SS$ Then $S \rightarrow SS \Rightarrow aSbS \Rightarrow abS \Rightarrow abbab \Rightarrow abba$
Thus: \(G_1 \) is not sound for \(L' \), so it has a chance of being comprehensive for \((L' \) and \(L \).

\[G_1 = S \rightarrow \varepsilon | aSc | bSa | SS \]

\(L = \{ x : \#a(x) = \#b(x) \} \). First ask, is \(G_1 \) sound for \(L \)? Yes ("because: if \(SS \Rightarrow \varepsilon \) the fact that the concatenation of two strings with equal \(a \)'s and \(b \)'s has equal \(a \)'s and \(b \)'s comes into play.

"Structural induction proof script" (for soundness proofs):

Theorem: \(L(G_1) \subseteq L \).

1. For every variable \(A \), define a property \(P_A \)
 - Here there is only one variable \(S \), so use the spec of \(L \) as \(P_S \)
 - Always need: \(x \) obeys \(P_S \Rightarrow x \in L \).

2. For each rule \(A \rightarrow X \), show that if all variables \(B, C, D \in X \) derive substrings \(y, z, w \) that obey their properties \(P_B, P_C, P_D \) etc., then the resulting string \(X \) must obey \(P_A \).

1) \(P_S = \) "Every \(x \) that I derive has \(\#a(x) = \#b(x) \)"

**2) \(S \rightarrow \varepsilon : \) Suppose \(S \Rightarrow \varepsilon \) using this rule first (utrf).
 - Then \(x = \varepsilon \) ("duh!") and \(\varepsilon \in L \). So \(P_S \) is upheld on LHS.
**3) \(S \rightarrow aSc : \) Suppose \(S \Rightarrow X \) utrf. Then \(X = aYb \) where \(S \Rightarrow Y \).
 - By 2H, \(P_S \) on RHS, \(\#a(Y) = \#b(Y) \). Hence \(\#a(X) = 1 + \#a(Y) = 1 + \#b(Y) \) (by 2H) = \(\#b(\varepsilon) \). So \(\#a(\varepsilon) = \#b(\varepsilon) \). **P_S** on LHS.
 - \(S \rightarrow bSa : \) OK to say "Similar to last rule" and move on. (\(\therefore L(G_1) \subseteq L \))
To finish with G_1, analyze the rule $S \rightarrow SS$:
Suppose $S \Rightarrow^* x \ uTrf$. Then $x = \gamma z$ where $S \Rightarrow^* y \ u z \Rightarrow^* z$
By IH P_z on RHS (twice) $#a(y) = #b(y) \land #a(z) = #b(z)$.
Thus $#a(x) = #a(y) + #a(z)$ by $x = \gamma z$
= $#b(y) + #b(z)$ by IH P_z (twice)
= $#b(x)$ again by $x = \gamma z$
$\therefore P_z$ on LHS holds in this case too.
Since P_z on LHS is upheld by each rule, $L(G_1) \subseteq L$ follows by "SF".

A Multi-Variable Example: G_2:
$S \rightarrow e \mid AB \mid BA$
$A \rightarrow a \mid aS \mid BAA$
$B \rightarrow b \mid bS \mid ABB$.

Same L, Same P_z.
What to choose for P_A & P_B?

Suggestion: $P_A = \"Every x I derive has $#a(x) = #b(x) + 1.\"$
$P_B = \"Every z I derive has $#b(z) = #a(z) + 1.\"$

(1) P_A: "Every y I derive has $#a(y) = #b(y) + 1."$
(2) $S \rightarrow e$ OK
As before.

$S \rightarrow AB$: Suppose $S \Rightarrow^* x \ uTrf$. Then $x = \gamma z$ where $A \Rightarrow^* y$
and $z \Rightarrow^* z$. By IH P_a on RHS, $#a(y) = #b(y) + 1$, and
by IH P_a on RHS, $#b(z) = #a(z) + 1$. Hence
$#a(x) = #a(y) + #a(z)$ by $x = \gamma z$
$= #b(y) + 1 + #a(z)$ by IH P_A
$= #b(y) + 1 + #b(z) - 1 = #b(y) + #b(z) = #b(x)$.
$\therefore P_z$ is upheld on LHS.

$S \rightarrow BA$: OK to say "Similar":
Is it OK to stop here?
No: We also need to show the rules for $A \& B$ uphold $PA \& PB$!

$A \to a$: Immediate since $\#a(a) = 1 = 1 + 0 = 1 + \#B(a)$.

$A \to as$: Suppose $A \Rightarrow w \text{ utrf. Then } w = ax$ where $s \Rightarrow x$.

$B + 2 \equiv B$ on $\text{RHS, } \#a(x) = \#b(x)$.

Hence $\#a(w) = 1 + \#a(x)$

So $\#a(w) = 1 + \#b(w)$ (by B on RHS)

$\#a(w) = 1 + \#b(w)$ (by $x = aw$) which uphold B on LHS.

$A \to BAA$: Suppose $A \Rightarrow w \text{ utrf. Then } w = xyz$ where

$B \Rightarrow x$ \hspace{1cm} $B \equiv B$ and $\#b(x) = \#a(x) + 1$ \hspace{1cm} Adds $\Rightarrow PA$ on LHS

$A \Rightarrow y$ \hspace{1cm} PA (twice) \hspace{1cm} $\#a(\cdot) = \#b(\cdot) + 1$ \hspace{1cm} up to \hspace{1cm} for w.

$A \Rightarrow z$ \hspace{1cm} on $\text{RHS: } \#a(z) = \#b(z) + 1$ \hspace{1cm} $\#a(w) = \#b(w) + 1$.

We have to do the rules for B too, but here they are "similar."

$\therefore B$, PA, PB are upheld by all rules, $\therefore L(G_2) \subseteq L$.

Is G_2 comprehensive? \Rightarrow Thy.

Added Note (spoken early in the lecture): The concepts "sound" and "comprehensive" apply to more general kinds of string rewriting systems than CFG. The granddaddy of them all is the notion of a proof system (taught in CS199).

A proof system has "items" that are well-formed formulas (WFFs) over some logical and/or arithmetical syntax (which itself can be defined by a CFG/ANN grammar) and ("meta-") rules typified by Modus Ponens: if $X \land X \to Y$ are theorems then so is Y.

We begin with an axiom set \mathcal{A}; then $L(F)$ is the set of theorems. The language L, often called V for veritas (truth in Latin), is the set of WFFs that are objectively true. F is sound if $L(F) \subseteq V$. Gödel's Incompleteness Theorem is that for $F = \text{"set theory"}, L(F) \not\subseteq V$.