A Turing Machine (TM) allows to decide if a TM, DTMs liberalizes a DFA (or NFA) by:

- allowing to change states on one or more tapes
- allowing tape heads to move left (L) or stay stationary (S) beside moving right (R).

Upshot: TMs can decide languages like \[\{ a^n b^n c^n : n \geq 0 \} \]
that are not even CFLs, let alone regular.

The work alphabet \(\Gamma \) always includes \(\Sigma \) plus
- blank \(B \), cannot include other states
- \(\Lambda, B, \#, \times \)

The initial code of my TM can emulate a DFA
Mo such that
\[L(M_0) = a^+ b^+ c^+ \]
(not necessarily)

So

\[(a/a, R) \]
\[(b/b, R) \]
\[(c/c, R) \]

Rewind to \(\Lambda \)

\[(\delta(\delta(a, B), R), L) \]
\[(\delta(\delta(b, B), R), L) \]
\[(\delta(\delta(c, B), R), L) \]

\[d = a, b, c \text{ or } \times \]
Defn: A Turing Machine is a 7-tupel $M = (Q, \Sigma, \Gamma, \delta, \in, q_0, F)$, where:

- Q is a finite set of states
- Σ is the finite input alphabet
- Γ is the blank (_ in text, or \texttt{0}, or \texttt{1} etc.) tape alphabet
- δ, which always includes $\Sigma \cup (\Gamma \setminus \Sigma)$, is the transition function
- \in, which always includes $\Sigma \cup (\Gamma \setminus \Sigma)$, is the work alphabet
- q_0 is the start state (\texttt{0} \ in \ text)
- F is the set of desired final states

$\delta \subseteq Q \times \Gamma \times \Gamma \times \{L, R, S\} \times Q$

Typical cell or instruction tuple (p, c, d, D, q)

Diagram

Furthermore:

- M is **deterministic** if for all $p \in Q$ and $c \in \Gamma$, there is at most one tuple in δ that begins $(p, c/---)$.
- M is **complete** if for all $p \in \{q_{acc}, q_{rej}\}$ and $c \in \Gamma$, there is a tuple beginning $(p, c/---)$.

Together $\Rightarrow \delta$ is a function from $(Q \setminus \{q_{acc}, q_{rej}\} \times \Gamma)$ to $(\Gamma \times \{L, R, S\} \times Q)$, a text defn of a DTM.

Otherwise, if there is any pair (q, c) with two or more rules beginning $(q, c/---)$ then M is properly an NTM.
Extension for any number \(k \) of tapes. \(M = (Q, \Sigma, \Gamma, \delta, \delta_0, \delta_f) \)

with \(s = Q \times \prod_{i=1}^{k} \Gamma_i \times \prod_{i=1}^{k} \Gamma_i \times \{L, R, S\}^k \times Q \)

Start

\(k = 2 \)

Initially

\(X_a X_a X_a X_a X_a X_b | B | \quad B - B - B - B - B \)

Initially

\[(a \downarrow a, S) \quad (a \downarrow a, R) \quad (b \downarrow b, R) \quad (b \downarrow b, L) \]

L(M) = \{a^m b^n a^m b^n : m, n \geq 0 \mid (\$1-\)

which is a CFL.

A DFA

NFA \(2 \rightarrow A \) 1-tape TM in which every tuple \((p, c/d, D, g)\)

has \(d = c \) and \(D = R \).

\(\Rightarrow \) A

DPDA

N8DA \(2 \rightarrow A \) 2-tape TM in which every instruction

\[(P_1, C_1, d_1, D_1, q) \]

has \(d_1 = C_1 \) and \(D_1 \neq L \)

Type 2

is a

pushdown

Automaton.

Added: The definition of deterministic/non-deterministic is similar for all these forms.