Three Messages. 2. -- but not as much a barrier as we thought 40 and 80 years ago (Turing 1936)

3. Reductions include positive aspects of "negative" results.

Example: \(\text{HALT}_{TM} \) is undecidable.

The language \(\text{HALT}_{TM} \) is undecidable.

The language \(\text{HALT}_{TM} = \{ \langle M, x \rangle \mid M \text{ accepts } x \} \).

Direct: Suppose we had a \(\text{total} \) TM \(Q \) s.t. \(L(Q) = \text{HALT}_{TM} \). Then we could use \(Q \) to get a \(\text{total} \) TM \(R \) s.t. \(L(R) = \text{A}_{TM} \) as follows:

1. Convert \(M \) to \(M' \) s.t. if \(M \) goes to \(Q \) on \(x \), then \(M' \) loops instead.
2. The effect of this is that for all \(x \), \(M'(x) \downarrow \iff M \) accepts \(x \).

Feed \(\langle M', x \rangle \) to \(Q \) (by assumption, \(\text{solid box} \)).

If \(Q \) accepts \(L(M') \), accept; else reject.

Let \(r(n) \) this will be due by a reduction.

Diagram: (Two TMs denoted by boxes with arrows and labels.)

1. \(M \) has states and inputs.
2. \(M' \) has states and is modified.
3. \(Q \) accepts \(L(M') \) or rejects.
4. \(S' = S \cup \{ \text{new state} \} \) for all \(C \).
5. \(C \) and \(S' \) are included in \(L(R) \).
Then \(R \) accepts \(\langle M, x \rangle \) \(\iff \) \(\alpha \) accepts \(\langle M', x \rangle \)
\(\iff M'(x) \) accepts \(\iff M(x) \) accepts \(\iff \langle M, x \rangle \) \(\in \text{ATM} \).
\(\circ R \) is total and \(L(R) = \text{ATM} \), but this is impossible.
\(\text{Last lecture showed ATM is undecidable.} \)

Hence there is no such \(\alpha \). \(\Box \)

\text{Note: Halt}_{TM} \text{ is recognizable. } \text{We can code } R' \text{ to run } M(x) \text{ and accept if it halts. But if } M(x) \text{ then our } R' \text{ won't halt either. } \text{Contradiction is } \alpha \text{ or } R \text{ being total.}

\text{The complement } \overline{\text{Halt}}_{TM} \text{ is not even recognizable.}

\text{Example 2: Emptiness and Nonemptiness}

\(\text{NE}_{TM} = \text{INSTANCE: A Turing Machine } M = \langle \text{just an } M \rangle \)
\(\text{question: } \exists \ M \in \text{L(M)} \neq \emptyset ? \)
\(\text{ETM: \langle M \rangle \sim \exists \ M \in \text{L(M)} \neq \emptyset ? \)
\(\text{ETM = \langle M \rangle \sim \emptyset \implies \text{NE}_{TM} \}

\text{If } \langle M \rangle \text{ includes all strings, then } \text{ETM literally } = \overline{\text{NE}_{TM}}.

\text{If we consider any invalid code to yield the empty language, then } \text{ETM = } \exists \ x \in \text{L(M) \ or \ L(M) = \emptyset} \implies \overline{\text{NE}_{TM}}.

\text{Generally, it will be OK to ignore the issue of invalid codes.}

\text{Theorem: NE}_{TM} \text{ is recognizable but undecidable and so ETM is not even recognizable.
Proof: Suppose we had a total TM Q s.t. $L(Q) = \text{NTRM}$.

Then we could build a total TM R deciding ATTM as follows:

1. input to R is $\langle M, x \rangle$

 - M' is a machine that takes M and x as a fixed subroutine.
 - If Q accepts, accept;
 - Else, simulate M on x.

Analysis: M accepts $x \iff L(M') \neq \emptyset$

$\langle M, x \rangle \in \text{ATTM} \Rightarrow M(x) \text{ accepts} \Rightarrow \forall w \in \Sigma^*, M(w) \in L(M') \neq \emptyset$

$\langle M, x \rangle \in \text{ATTM} \Rightarrow M(x) \text{ does not accept} \Rightarrow \forall w \in \Sigma^*, M(w) \not\in L(M') = \emptyset$

$\Rightarrow L(R) = \text{ATTM} \land R$ is total, contradiction.

Consequences:

- Not only is R Turing, but also it is not even Turing reducible to NTRM.
- ATTM is undecidable.
- Let Q' be another TM.
- Suppose we had a total TM Q' s.t. $L(Q') = \text{ATTM}$.
- Using Q' in place of Q makes R behave the same.
- i.e., $L(R) = \text{ATTM}$, contradiction, so Q' does not exist.

Note: This does not say that ATTM is a non-reducible TM.

Example:

- $E(\emptyset) = \emptyset^*$ is not decidable.
- $E(\{0,1\}) = L(\emptyset) = \emptyset$ is decidable.

But we will see $E(\{0\}) = L(\emptyset) = \Sigma^*$ is undecidable.

\[\text{Remember: Is } L(M) = \Sigma^? \text{ is undecidable.} \]