Key Definition: A language A \{many-one reduces\} mapping-reduces to a language B, written $A \leq_m B$, if there is a total computable function $f : \Sigma^* \rightarrow \Sigma^*$ such that:

$$\text{for all } x \in \Sigma^*, \ x \in A \iff f(x) \in B.$$

Note: This is the same as $x \in A \iff f(x) \in \bar{B}$, so $A \leq_m B \iff \bar{A} \leq_m \bar{B}$. “Mapping Reduction are Mirror.”

Visual Convention

$A \leq_m B$ is indicated by making the angle from A up to B steeper than “45°.”

Key Lemma: For all languages A, B:

- If $A \leq_m B$ and B is decidable, then A is decidable.
- If $A \leq_m B$ and $B \in \text{RE}$, then $A \in \text{RE}$, i.e., A is recognizable.
- If $A \leq_m \bar{B}$ and $B \in \text{co-RE}$, then $A \in \text{co-RE}$.

Proof of (c) first: If $A \leq_m B$ and $B \in \text{co-RE}$, then $\bar{B} \in \text{RE}$ and assuming (\text{\textcircled{\textcircled{1}}}) $\bar{A} \leq_m B$: $\bar{A} \leq_m B$ by (\text{\textcircled{\textcircled{1}}}), $\bar{A} \in \text{RE}$, so finally $A \in \text{co-RE}$.

Note $A \leq_m K

\iff \bar{A} \leq_m \bar{K}$.

since $D = \sim K$.

Proof of (a): Take any total TM M_B s.t. $L(M_B) = B$. Take a total TM T that computes f. Build M_A as follows:

compute $y = T(x)$

Input $x \in \Sigma^*$

M_A

Output y

Correctness: M_A is total and for all x,

M_A accepts $x \iff M_B$ accepts y

by construction

by reduction $\iff L(M_B) = B \iff f(x) \in B$

by construction $\iff y \in B, \Rightarrow L(M_A) = A.$

For (b), even if M_B merely recognizes B, M_A still recognizes A. \blacksquare

For (b), even if M_B merely recognizes B, M_A still recognizes A. \blacksquare

Remark \Rightarrow Chapter 7 (Thm 7.31)

In case (a), you might think the total running time $t(n)$ for M_A equals the sum of the runtime $t_1(n)$ for $y = T(x)$ and the $(n=1x1)$ runtime $t_2(2)$ for M_B. But note: $t(n) = 1-1!$ which might be $t(n) = 1!$. Best estimate for the time by M_A is $t_2(t_1(n))$. Still polynomial, $t_2(n) = n^{o(1)}$.

Corollary — The Contraposible: If $A \leq_m B$, then:

(a'): if A is undecidable then B is undecidable.

(b'): if A is not r.e. (recognizable) then B is not r.e. either.

(c'): if $A \in \text{co-R.E.}$, then $B \in \text{co-R.E.}$.

Part (a') is how we use reductions to show undecidability. And if $A \in \text{co-R.E.}$ and $A \leq_m B$ and $B \leq_m B$ too, then B is in the intersection of two "upward reducibility cones" so B is not r.e. nor r.e. nor co-r.e. nor co-r.e.
Examples of reductions: A simple "f" first:

1. \(K \subseteq \text{ATM} \) via the function \(f(u) = \langle u, u \rangle \).

Correct since \(K = \{ u : u \) is the code of a TM \(M_u \) such that \(M_u \) accepts \(u \} \)

so \(u \in K \iff M_u \text{ accepts } u \iff \langle M_u, u \rangle \in \text{ATM} \)

Annoying issue again: what if \(u \) is not a valid code?

OK, then \(\langle u, u \rangle \) isn't valid either, so \(u \notin K \) and \(\langle u, u \rangle \notin \text{ATM} \).

2. \(\text{ATM} \leq \text{HALT}_{\text{TM}} \)

\[\langle M, x \rangle \quad \langle M', x' \rangle \]

make = \(x \) \hspace{1cm} \text{Construction} \hspace{1cm} \text{space} \hspace{1cm} \text{for \text{at least one \text{HALT}_{\text{TM}}}} \]

\[\text{computability} \quad f(\langle M, x \rangle) = \langle M', x' \rangle \text{ where } x' = x \]

and \(M' \) is computed by adding \(\langle c, c, s, \text{why} \rangle \) to the code of \(M \).

This is a "lexical transformation of code" and is (easily) computable.

Correctness: \(\langle M, x \rangle \in \text{ATM} \iff M(x) \) accepts \(\iff M'(x) \) halts, because \(M' \) doesn't halt when \(M \) doesn't accept. \(\iff \langle M', x \rangle \in \text{HALT}_{\text{TM}} \)

Thus \(\text{ATM} \leq \text{HALT}_{\text{TM}} \).

3. Also \(\text{HALT}_{\text{TM}} \leq \text{ATM} \). Thinking of correctness first, we need \(f' \)

defined on instances \(\langle M, x \rangle \) of the \(\text{HALT}_{\text{TM}} \) problem so that \(\langle M, x \rangle \) is in the \(\text{HALT}_{\text{TM}} \) language.

\[M(x) \iff M' \text{ accepts } x \iff \langle M', x \rangle \in \text{ATM} \text{ where } \langle M', x \rangle = f'(\langle M, x \rangle). \]
Since \(\text{ATM} \leq_m \text{HALT}_{TM} \) and \(\text{HALT}_{TM} \leq_m \text{ATM} \), we write \(\text{ATM} \equiv_m \text{HALT}_{TM} \) and say they are mapping-equivalent.

\[
\text{ATM} \leq_m \text{NB}_{TM}:
\begin{align*}
\langle M, x \rangle & \xrightarrow{C} M' = \\
\text{NE}_{TM} & : \text{INST: } M \\
& \text{Guess: } \exists M' \neq \emptyset
\end{align*}
\]

Visually, ATM does not mapping reduce to BPM:

Correctness: This \(f \) is compatible because it takes \(M \) and \(x \) and inserts it as a "\((0,0)" into the code of \(M' \):
\[
\langle M, x \rangle \in \text{ATM} \iff M \text{ accepts } x \iff \text{for all } w, M' \text{ accepts } w \Rightarrow L(M') = \Sigma^* \\
\Rightarrow L(M') \neq \emptyset \Rightarrow \langle M' \rangle \in \text{NE}_{TM}
\]

\[
\langle M, x \rangle \in \text{ATM} \iff M \text{ does not accept } x \iff \text{for all } w, M' \text{ does not accept } w \\
\Rightarrow L(M') = \emptyset \Rightarrow \langle M' \rangle \in \text{NB}_{TM}.
\]

\(\text{ATM} \equiv_m \text{NB}_{TM} \).

\(\text{ATM} \equiv_m \text{E}_{TM} \), since \(\text{E}_{TM} \equiv_m \text{NB}_{TM} \), so \(\text{ATM} \equiv_m \text{NB}_{TM} \).

Corollary: \(\tilde{\text{ATM}} \equiv_m \tilde{\text{E}}_{TM} \) since \(\tilde{\text{E}}_{TM} \equiv_m \tilde{\text{NB}}_{TM} \), so we get that since \(\tilde{\text{ATM}} \) is not recognizable, \(\tilde{\text{E}}_{TM} \) is not recognizable either.

Added: By the same construction and analysis, we can show \(\tilde{\text{E}}_{TM} \equiv_m \text{ALL}_{TM} \) too:
\[
M \in \text{E}_{TM} \Rightarrow \text{for all } w, M'(w) \text{ never finds an accept } \Rightarrow L(M') = \Sigma^* \\
M \notin \text{E}_{TM} \Rightarrow \text{for some long enough } w, M'(w) \text{ finds accept } \Rightarrow L(M') \neq \Sigma^*.
\]

Else: \(M \) is accepting, \(w \) is not accepted.