TAUTOLGY: (TAUT)
\[\text{Inst: A Boolean formula } \phi \text{ in variables } x_1, \ldots, x_n \]
\[\text{with AND, OR, NOT, possibly NAND connectives} \]

\[\text{Ques: Is } \phi \text{ a tautology, i.e. } \forall a \in \{0,1\}^n, \phi(a_n, \ldots, a_0) = \text{True} ? \]

TAUT is decidable: test every row of the truth table for \(\phi \).

Problem is: truth table has \(2^n \) rows. This doesn't scale:
if the data size doubles, \(n \) rows \(\rightarrow \) \(2n \) rows, the time goes to
\[2^n = (2^n) \cdot 2^n \] Not a constant factor times the original time

Extra Defn: A running time \(t(n) \) scales if there is a constant \(c > 0 \) s.t.
\[t(2n) \leq c \cdot t(n) \]

- If \(t(n) = n^2 \)
 \[t(2n) = 4n^2 = 4 \cdot t(n) \]
- If \(t(n) = n^3 \)
 \[t(2n) = 8n^3 = 8 \cdot t(n) \]
- If \(t(n) = n^k \)
 \[t(2n) = 2^k \cdot n^k = 2^k \cdot t(n) \]

If \(k \) is fixed, i.e. \(t(n) = \) "polynomial" then we have "constant scaling"

In fact, \(t(2n) \leq c \cdot t(n) \) \(\Leftrightarrow \) \(t(n) \) = polynomial in \(n \).

Theorem: \(NP = P \) if and only if TAUT is in \(P \).

ie: fast tautology-solving algorithms can Scale.
Note: ϕ is not a tautology if:

- there is an assignement $a \in \{0,1\}^n$ that makes $\phi(a_1, a_n) = \text{False}$;
- there is an assignement $a \in \{0,1\}^n$ that makes $(\neg \phi)(a_1, a_n) = \text{True}$;
- there is a way to make $\neg \phi$ true $\equiv \neg \phi$ is satisfiable.

Also note: if ϕ is a disjunction of terms $\phi = (x_1 \land \overline{x_2}) \lor (x_3 \land \overline{x_1}) \lor \ldots$

then $\neg \phi$ is a conjunction of clauses, called CNF.

for Conjunctive Normal Form — (Not to be confused with Chomsky normal form, Ch NF.)

Satisfiability (general form, called SAT) We consider:

- INST: A Boolean formula $\phi(x_1, \ldots, x_n) \land \neg[\phi]$;
- QUES: Is ϕ satisfiable, i.e. $(\exists a_1, \ldots, a_n \in \{0,1\}^n) \cdot \phi(a) = 1$?

CNF-SAT

- INST: A Boolean formula ϕ in Conjunctive NF.
- QUES: same. (So this is a special case of SAT and trivially reduces to it like \lor reduces to \And.)

3SAT:

- INST: A ϕ in CNF with at most 3 literals per clause.
- QUES: same, so this is an even more special case.

Defn: A language B is NP-complete (under \leq_p) if $B \in \text{NP}$ and

- for all $A \in \text{NP}$, $A \leq_p B$, meaning there is a function $f(x)$ computable in polynomial time $\forall x \cdot x \in A \iff f(x) \in B$.
Theorem (Steve Cook and Leonid Levin) SAT, CNF-SAT, 3SAT are all NP-complete.

I. SAT ∈ NP

Note that given an encoding \(\langle \phi \rangle \) of \(\phi \):

\[\langle \phi \rangle \in \text{SAT} \iff \text{there exists } a_1,..,a_n \in \{0,1\}^n \text{ s.t. } \phi(a_1,..,a_n) = 1 \]

An NTM can guess \(a_1,..,a_n \) in \(n \) steps and then evaluate \(\phi(a_1,..,a_n) \) in polynomial time. The text calls this latter stage a verifier and uses the equivalent definition of NP:

A language \(B \) belongs to NP \iff there is a polynomial \(p(n) \) and a verifier \(V \) s.t. for all \(x \in B \):

\[x \in B \iff (\exists y : 1 \leq |y| \leq p(n)) \ V \text{ accepts } x \# y \text{ within } p(|x|) \text{ steps}. \]

\(\# \text{-NP} \)

Theorem. This is equivalent to \(B \subseteq \text{L}(N) \) for some polynomial \(N \)

\[\Rightarrow \quad \text{Given } V, \text{ build } N \text{ to guess } x \text{ and run } V(x \# y). \]

\[\Leftarrow \quad \text{We can verify computations } \langle I_0, I_1, I_2, ..., I_t \rangle \text{ for } t \leq p(n) \]

because the language \(V \) from last lecture is in \(P \) and doesn't care whether the given computation is by a DTM or NTM.

Since CNF-SAT and 3SAT are special cases they too belong to NP.

II. 3SAT is NP-hard: Let any \(A \in \text{NP} \) be given. Goal: show \(A \leq_m \text{3SAT} \)

Take a polynomial time \(\text{DTM} V \) acting as verifier with runtime \(p(n) \).

So \(x \in A \iff \exists y_1 ... y_m \text{ s.t. } V \text{ accepts } x \# y_1 ... y_m \text{ in } p(n) \text{ steps} \).
Our reduction function $f(x) = \phi(x)$ outputs the 3CNF formula ϕ was input variables x_1, x_2, \ldots, x_n.

Then $x \epsilon A \iff \exists y \epsilon B \forall z \epsilon C \exists w \epsilon D (x \lor y \lor z \lor w)$. Thus N variables $x = \phi \epsilon \{0, 1\}$.

Next either satisfy each variable x_i, x'_i or use in which clause.

Then every variable y, y' are handled.

Finally, output the logical form of $x \lor y \lor z \lor w$.

We can use the same 3×3 gadget overlap everywhere in the circuit. If the grid you are using a new gadget, we can draw this in a single $A \lor (B \lor C \lor D)$. If we overlap, we can see the logic of $A \lor B \lor C \lor D$ from the gadget. If the logic only if then $A \lor B \lor C \lor D$ happens to be the gadget in $A \lor B \lor C \lor D$. This logic needs only a single \lor gadget under binary encoding.
So we have \(f(x) = \phi \) based on \(C_n \) computable in \(O(p^c n^2) = \text{polynomial time} \), so

\[A \leq^p \text{3SAT} \]

Since \(A \in \text{NP} \) is arbitrary, \text{3SAT} is \text{NP-complete}.

Since \(\text{3SAT} \leq^p \text{CNFSAT} \leq^p \text{SAT trivially} \), these reductions are \text{NP-complete}.

So \(\text{NP} = \text{P} \Leftrightarrow \text{SAT} \in \text{P} \Leftrightarrow \text{TAUT} \in \text{P} \).

Added:
This enables us to place languages into the final classes covered in the course:
- \(\text{RE} \), Decidable \(\iff \) \text{Co-1CFL} or higher

The "Decidable" lower part of the Formal Languages and Complexity Landscape.