Lecture 4/7. Technique for proving non-CFL ness of a language $L \subseteq \Sigma^*$:

Let any (sufficiently large) $p > 0$ be given. Take $x = \ldots$ such that $x \in L$ and $|x| \geq p$ indeed often $|x| > 2p$.

Let any breakdown $x = uv^iw^jx$ subject to $|uvw| \leq p$ and $uw \in \Sigma^*$ be given.

Take $i = \ldots$ so that you can get $x^{(i)} = uv^iw^jx \in L$, $i=0$ is allowed.

Then L is not a CFL.

Example: $L = \{a^n b^n c^n : n \geq 0\}$. Let any $p > 0$ be given.

Take $x = a^p b^p c^p$

$$x = \underbrace{aa \ldots} \underbrace{abbb \ldots} \underbrace{ccccc \ldots} = p = p = p$$

Take $x^{(i)} = uv^i w^j x$. By $|uvw| \leq p$, uw can't both contain an 'a' and a 'c', so either $A_q(x^{(i)})$ or $A_c(x^{(i)})$ remains equal to p. We get at least one other character, so we cannot have all of A_q, A_b, A_c equal to p, so $x^{(i)}$ can't possibly belong to L. Hence L is not a CFL.

\[\square \]

The same proof works for $L' = \{x \in \{a,b,c\}^* : \#a(x) = \#b(x) = \#c(x) \}$. It is a regular set, if L' were a CFL then so would be $L \cup L'$, but this equals L. \[\square \]
Note \(L = \{ a^n b^n c^r : n, r \geq 0 \} \cap \{ a^n b^n c^r : n, r \geq 0 \} \). The two languages being intersected are CF-Ls.

CFG for \(L_1 = S \rightarrow TC, C \rightarrow cC \mid \varepsilon \) \(\varepsilon \) if \(c^* \).

CFG for \(L_2 = S \rightarrow AT, A \rightarrow aA \mid \varepsilon, T \rightarrow bT' \) \(\varepsilon \).

The class of CF-Ls, unlike the class of regular languages, is not closed under intersection. \(\widehat{L} \) is a CF-L (remarked on hw).

- It is closed under union.
- Hence it is also not closed under complements. If it were, we would get closure under \(\cap \) via \(L_1 \cap L_2 = \cap \) \(L_1 \cup L_2 \).

However, if \(L \) is a CF-L and \(R \) is a regular set, then \(L \cap R \) (and of course \(L \cup R \)) are CF-Ls.

Why the Cartesian product construction doesn't work for N:\no\text{POA}

\[X \in L_1 \cap L_2 \]

\[X = x_1 x_2 \ldots x_n \]

NPOA

N \(\text{st.} \)

\(L(N_1) = L \)

NPOA

N \(\text{st.} \)

\(L(N_2) = L_2 \)

If we want one POA \(N \) such that \(L(N) = L(N_1) \cap L(N_2) \), they must agree on sharing an stack.

But if \(N_2 \) is a DFA, or even an NFA, it needs no stack and can patiently react to inputs \(N_1 \) reads.
Example 2: \(A = \sum a^m b^n c^m d^n : m, n \geq 0 \) is not a CFL.

Proof: Let any (sufficiently large) \(p > 0 \) be given. Take \(x = a^p b^p c^p d^p \).

Let any breakdown \(x = yuvze \) with \(|uv| \leq p \), \(u, v, w, e \) be given. The compass must "touch" at least one region A, B, C, or D.

Out: • If it touches A, it can't also touch C. \(x^{(i)} = y u^i v w^i e \)
 • If it touches B, it can't also touch D. \(x^{(i)} = y u^i v w^i e \)
 • If it touches C, it can't also touch D. \(x^{(i)} = y u^i v w^i e \)

Hence in \(x^{(i)} \) or \(x^{(i)} \) or any \(x^{(i)} \) with \(i \neq i \), the restrictions \#u = \#c
 and \#b = \#d cannot both be present. So \(x^{(i)} \) \(\notin \) A, so A is not a CFL.

D Some proof works for \(A'' = \sum a^m b^n a^m b^n : m, n \geq 0 \).

D Then it also works for \(L_{WW} : w e i w b f^* i e d \) (for double words).
The argument is then easiest for \(i = 0 \). Another way: take \(R = d \) and use \(D \cap R = A'' \), so \(i \neq D \) were a CFL then \(A'' \) would be also.

D The "NR" idea helps somewhat with languages like \(L = a^i b^i c^i \)
 \(L'' = L \cap R = \sum a^m b^n c^p : \#a(x) > \#b(x) \) \& \#b(x) > \#c(x) \).

L'' = \(L'' \cap R = \sum a^m b^n c^p : m \geq n \) and \(n \geq p \). Enough to show \(L'' \) not a CFL

Take \(x = \) a\(^p\) b\(^p\) c\(^p+2\) and pump as \((i, k + e)\) if both \(e \), must pump as \((i, n + e)\) pump in b\(^k\).

If \(\lambda \) is only \(a \) or \(c, \) must pump down.
CFGs can handle nested and sequential binary dependencies:

\[B_1 = \{ a^m b^n a^n b^m \mid m, n \geq 0 \} \]

is a CFL by nesting.

CFG

\[
\begin{align*}
S & \rightarrow aSbT \\
T & \rightarrow bTa \mid \epsilon
\end{align*}
\]

\[B_2 = \{ a^m b^n a^n b^m : m, n \geq 0 \} \] is also a CFL, it is in fact equal to \(A \cdot A \) where \(A = \{ a^m b^n : m, n \geq 0 \} \).

What kind of machine can handle \(\{ a^n b^n \} \) and \(\{ a^n b^n c^n d^n \} \)?

What capabilities can we add to a DFA to handle these languages?

\[x \sim \]

\[\begin{array}{c}
\text{a}^n \text{?} \\
\text{?} \\
\text{b}^n \text{?} \\
\text{?} \\
\text{c}^n \text{?} \\
\text{?}
\end{array} \]

for some \(n \geq 0 \).

1. Allow the DFA to change a char on the tape.
2. Allow the DFA to move its read head \(L \) as well as \(R \).

(1) by itself makes no difference — the new char could be lumped in with a new state in \(\mathcal{Q} \times \mathcal{Z} = \mathcal{Q} \) CHANGED THM, NOT IN TEXT! Two-Way DFA crossing sequences.

(2) by itself also makes no difference.

(1) \& (2) together create a Turing Machine: \(M = (\mathcal{Q}, \Gamma, \prod, \mathcal{S}, s, F) \)

where \(\mathcal{S} \subseteq (\mathcal{Q} \times \Gamma^*) \times (\prod \times Z \times Z) \).

\((p, c \rightarrow d, D, q) \)