Suppose tape has a hard left end. We want to move "caterpillar" on tape.

Suppose \(\Sigma = \{\text{c}, \text{i}, \text{d}\} \)

Looking at \(X_i \), see read or "start again."

Theorem (alluded to but not formally stated in text): For every TM \(M \) with a 2-way infinite tape, we can build a TM \(M' \) that has only a one-way infinite tape that simulates \(M \) step-for-steps.

Let: \(M' \) sees \(\lambda \) exactly when \(M \) moves into a previously unvisited blank cell on the left.

\(M' \) then overlays, at every state of \(M \), a modified caterpillar routine that is triggered by \(\lambda \) and inserts \(-\)....
Theorem (in 5.3.2): Given any K-tape TM M, we can build a single-tape TM M' that simulates M step-for-step.

M' allocates a new symbol, $\#$, not used by M. If needed or helpful, we can have M' allocate K many symbols $\#, \#_2, \ldots, \#_K$ instead.

M' has blank content θ_j at each tape j between $\#_{j-1}$ and $\#_j$.

Now consider any configuration of a computation by M.

M' also has a "dot alias" C for every symbol used by M to mark head locations on other tapes.

You can see the "caterpillar daemon" activate leftward.
Multiply number by 10, 100, etc. Use Tills can do:

* Copy strings — shift bytes if needed.
 * Maintain virtual registry on the tape or files.

Add/Subtract binary numbers, also compares.

Example:

```
L. 
M 
divide M
```

End the corresponding instruction.
Significance: Turing Machines are a General Universal Model.

Define: A language \(L \subseteq \Sigma^* \) is \((\underline{\text{Turing}}-)\) acceptable if there is a TM \(M \) s.t. \(L = L(M) \).

If in addition \(M \) halts for all inputs, then \(L \) is \underline{decidable}.

Example: \(\{ a^n b^n c^n : n \geq 0 \} \) is decidable but not a CFL. Because a DFA or a PDA "Is-A" TM that always halts, all regular languages, in deed all CFLs, are decidable too.

* These definitions have the same effect for programs in any other (known) High-level Language in place of Turing Machines.

Church-Turing Thesis: This will remain true for any model we can build, or any formulation of human or alien decision making.

Footnote: From now on, given any clear procedure-in pseudo code related to a high-level language or just in clear steps-we can assert that a Turing Machine can do it. This is how "appeals to the C-T Thesis" work in practice. For a simplifying example, can you imagine precisely how to simulate a Nondeterministic TM \(N \) by a high-level program that exhaustively tries all options available to \(N \)? Well, by C-T Thesis that program can in so-fact be converted into a Deterministic TM \(M \) such that \(L(M) = L(N) \).