1. A reduction can be a mapping into a special class of a more general problem.

\[E_{TM} = \{ \langle M \rangle : L(M) = \emptyset \} \]
\[EQ_{TM} = \{ \langle M_1, M_2 \rangle : L(M_1) = L(M_2) \} \]

Then \(E_{TM} \leq_m EQ_{TM} \) via the mapping \(f(\langle M \rangle) = \langle M, M_0 \rangle \),
where \(M_0 = \begin{array}{c}
\text{accepting} \\
\text{on all} \\
\text{c.e.}
\end{array} \quad L(M_0) = \emptyset \), so \(\langle M, M_0 \rangle \in EQ_{TM} \implies (M) \in E_{TM} \).

The mapping \(f \) is computable since it simply "bolts on" the \(M_0 \) code.
Thus \(E_{TM} \leq_m EQ_{TM} \), and since \(E_{TM} \) is not c.e., neither is \(EQ_{TM} \).
In fact \(\text{ALL}_{TM} \leq_m EQ_{TM} \), using \(M_1 = \begin{array}{c}
\text{accepting} \\
\text{on all} \\
\text{c.e.}
\end{array} \) instead of \(M_0 \).

Since \(\text{ALL}_{TM} \) is neither c.e. nor co-c.e., so is \(EQ_{TM} \). Reductions:

2. Reductions that don't simply "bolt-on" or "drop-in" blocks of code.

Theorem: There are computable functions \(f_1 \) and \(f_2 \) that given any one-tape TM \(M \) produce context-free grammars \(G_1, G_2, \) and \(G_3 \)
\(f_1(M) = G_1, f_2(M) = \langle G_2, G_3 \rangle \) such that:

\[L(M) = \emptyset \iff L(G_1) = \emptyset \iff L(G_2) \cap L(G_3) = \emptyset \]

\(\odot \) shows \(E_{TM} \leq_m \text{ALL}_{EFK} \), and \(\circ \) reduces \(E_{TM} \) to "Does \(L(G_1) \cap L(G_2) = \emptyset \) ?"
Proof (sketch): We can write configurations (aka IP's) of a 1-type
TMM M in a format specified by the following regular expression.
\[\tau = \left(\Gamma^* \cdot Q \cdot \Gamma \cdot \Gamma^* \right) \]
\(\Gamma \) is the start state.
\(Q \) is the input \(Q \) set.
\(\Gamma^* \) is the rest of the tape is blank.

Sequences of IP's have the regular format \(\tau^+ \) (one or more IP's).
The machine M defines a condition for an IP \(T \) to follow an
IP \(T \)' by one step of \(M \) as coded by an instruction in \(S \).

\[\left[u \# c \# v \right] \left[u' \# c' \# v' \right] \]

If the move \((q, c/d, S/r) \) then \(u' = u \) and \(v' = v \), with \(c' = d \).
If the move \((q, c/d, R/r) \) then \(u' = Ud \), \(c' = \text{first char of } r \), \(v' = \text{rest of } v \).
If the move is \((q, c/d, L/r) \), similar (or else, if \(v' = \epsilon \), \(c' = w \)).

This condition is like DOUBLEWORD (with \# markers).
If we write \(T \) backwards, it becomes like PALINDROME, with \#.

Define \(VHM = \{ T_0 T_1 T_2 \cdots T_t \in L(\tau^+) : \text{To is the start IP on some input } S, \text{ it is on accepting IP, and for all } \}
\(j, 1 \leq j \leq t, \text{ we may follow } I_{j-1} \}

\(VHM \) is like \(^* \Delta \cdot \text{(DOUBLEWORD)} \cdot ^* \), and since CFLs are closed
under \(\cdot \), it is a CFL. \(f_t(M) = \text{a CFG } G_t \) for \(VHM \).
Also define \(VHR_m = \sum I_0 \cdot I_4 \cdot I_2 \cdot I_3 \cdot I_5 \cdot I_6 \). It is accepting and reversible if \(m \) is odd.

\(VHR \) is like (MARKEDPAL) \(^+\) handles \(I_1 \) follows \(I_2 \), \(V \) if \(I_5 \) \(\neq \) \(I_2 \) follows \(I_5 \) if \(I_7 \) follows \(I_5 \).

\(\wedge (\text{MARKEDPAL}) \). Handles the cold cases: \(I_1 \) followed by \(I_2 \)
\(I_2 \) followed by \(I_4 \) etc.

We can build CFGs \(G_2 \) and \(G_3 \) so \(VHR = L(G_2) \cap L(G_3) \).

\(M \in \mathcal{Fm} \iff VHR_m = \emptyset \iff L(G_2) \cap L(G_3) = \emptyset \iff f_2(<m>) = 0 \).

call it \(\text{ENC} \).

Last reduction in \(\delta \). \(V \) and \(VHR_m \) can both be decided by special TMs \(B \) that never go outside the cells initially occupied by their input \(\langle m \rangle \).

B is called a \underline{linear bounded automaton} \((LBA)\). Hence both \(\text{FO-LBA} \) and \(\text{ALL-LBA} \) are undecidable problems as well. This happens for ANY kind of deterministic machine that can verify proofs!

3. A little more in logic and "\(P \)" and "\(\overline{P} \)"

\(\text{SAT's feasibility} \): instance: A Boolean formula \(f(x_1, \ldots, x_n) \)

\[\text{like } (x_1 \lor x_2) \land \neg (x_3 \land x_4) \lor (x_3 \land \overline{x}_1) \]

\(f \) \text{ satisfiable?} \iff \underline{Question: Is there an assignment } a_1, a_2, \ldots, a_n \in \{0, 1\} \text{ that makes } f(a_1, a_2, \ldots, a_n) = \text{true?} \]
Defn 1: A language B belongs to P if there is a deterministic TM M such that $L(M) = B$, and for all inputs $x \in \Sigma^*$, $M(x)$ halts within $q(|x|)$ steps, where q is a fixed polynomial function. That is, t from VTM is $\leq q(|x|)$.

Defn 2: B belongs to NP if there is a nondeterministic TM N s.t. $L(N) = B$ and every branch of N's computation halts within $q(n)$ steps, where $n = |x|$ and q is some fixed polynomial.

Examples:
- All of our multi-type linear-time languages belong to P.
- All of our decision problems ultimately solved by BFS or BFA belong to P.
- With the EPEFG and ECFG algorithms.
- Any CFL belongs to P (not trivially, indeed $A_{CFG} \notin P$ (not in textbook)).
- $\{ <f(x_1 \ldots x_n), a_1 a_2 \ldots a_n > | f(a_1 \ldots a_n) = \text{true} \}$

 This is value checking for logical formulas.

However, $\text{SAT} = \{ <f(x_1 \ldots x_n) > | (\exists a_1 \ldots a_n) f(a_1 \ldots a_n) = \text{true} \}$ is only known to belong to NP, via an NTM that on input f guesses $a_1 \ldots a_n$ and then verifies $f(a_1 \ldots a_n) = \text{true}$.

Theorem: $P = NP \iff \text{SAT} \in P = \text{false}$, this is unknown.
A better "Cono Diagram" than I drew at the end of lecture:

Neither RE nor NP is closed under diagonalization.

Diagram Language

\[C = NP \lor (\neg NP) \]

MULLER Llive here.

\[\text{If } C = \text{NP} \lor (\neg \text{NP}) \]

\[\text{is trickier; neither } C \text{ nor } (\neg C) \]

\[\text{is NP, but its complement isn't.} \]

\[\text{is a CFL, but its complement isn't.} \]

\[\text{are not CFLs, but their complements are CFLs (as seen on HW).} \]

\[\text{are not CFLs, but PAL is not a CFL.} \]

Extra: The main & last intended theoretical concepts that were missed are hardness and completeness under polynomial-time computable mapping reductions. We write \(A \leq_m^p B \) if \(A \leq_m B \) via a function \(f: \Sigma^* \rightarrow \Sigma^* \) such that \(y = f(x) \) is computable in time \(1 \times 10^{10}(1) \), and of course \(x \in A \Rightarrow y \in B \) since \(f \) is a mapping reduction. Because the composition of two polynomials is a polynomial — like I said \((n^3)^r = n^6 \) in lecture — we get the same kinds of theorems as in §5.3, but with \(P \) in place of \(DEC \) and \(NP \) in place of \(A \):s.

\[\text{1. } B \in P \Rightarrow A \in P \]
\[\text{2. } B \in NP \Rightarrow A \in NP \]
\[\text{3. } B \in \text{co} NP \Rightarrow A \in \text{co} NP \]

\[\text{Finally, } B \text{ is NP-hard if } A \leq_m^p B \text{ for all } A \in NP, \text{ and NP-complete if also } B \in NP. \text{ So the np-lown theorem states that SAT is NP-complete. Also ATM is complete for RE under } \leq_m^p. \]