Formal Language Theory

Week 5 Notes

Lecture 7: Feb 24

There is non-determinism in how the string \(uv \) might be broken.

\[A \cdot B = \{ x \cdot y : x \in A \land y \in B \} \]

\[A \cdot \beta = \{ w : w \text{ can be broken as } w = x \cdot y \text{ such that } x \in A \land y \in B \} \]

\[A^2 = A \cdot A \]

\[A^* = A^0 \cup A^1 \cup A^2 \cup \ldots = \bigcup_{i=0}^{\infty} A^i \]

Rule: For any language \(A \), even \(A = \emptyset \), \(A^0 = \emptyset \). Like \(a^0 = 1 \).

Rule: For all languages \(A \), \(A \cdot \emptyset = \emptyset \) and \(A \cdot \emptyset^* = A \) (chom)

Distributive Law: \(A \cdot (B \cup C) = A \cdot B \cup A \cdot C \) and \((A \cdot B) \cdot C = A \cdot (B \cdot C) \)

Main difference: \(\emptyset + \emptyset = \emptyset \) \(\emptyset \cdot A = \emptyset \) and \(\emptyset \cdot A = A \)

For all languages \(A, B, \) and \(C \):

\[A \cdot (B \cup C) = A \cdot B \cup A \cdot C \]

\[(A \cdot B) \cdot C = A \cdot (B \cdot C) \]

\[\alpha \cdot (\beta + \gamma) = \alpha \beta + \alpha \gamma \quad (\alpha + \beta) \cdot \gamma = \alpha \cdot \gamma + \beta \cdot \gamma \]

Example of a totally new kind of rule: \((\epsilon + r)^* = r^* (\epsilon + v^* \cup A)^* = A^* \)

Example:

\[L_{11} = \{ x \in \{0, 1\}^* : \#0(x) \text{ is even} \} \]

\[L_{12} = \{ x \in \{0, 1\}^* : \#0(x) \text{ is odd} \} \]

\[L_{11} = (1 + 01)^* \]

\[L_{12} = 01^* (011)^* \]

Rule: For any state \(\rho \), \(L_{\rho p} = r^* \) for some regular \(r \).

The Abstract 2-State GNFA

\[L_{11} = (r + tu^*v)^* \]

\[L_{12} = L_{11}tu^* = (r + tu^*v)^*tu^* \]

\[L_{21} = (u + v^*r)^* \]

\[L_{22} = (u + v^*t)^* \]
Defn: A generalized NFA (GNFA) is a 5-tuple \(N = (Q, \Sigma, S, s, F)\) which is like an NFA except \(S \subseteq Q \times \text{Regexp}(\Sigma) \times Q\). (i.e., \(\delta\) is a regexp.

Defn: A computation path from a state \(p\) to a state \(q\) is a sequence \((p, x_1, q_1, x_2, q_2, \ldots, q_{m-1}, x_m, q_m = q)\) such that for all \(i, 1 \leq i \leq m, (q_{i-1}, x_i, q_i)\) is an instruction in \(S\).

If \(N\) can process a string \(w \in \Sigma^*\) from \(p\) to \(q\) if \(w\) can be broken into \(m\) substrings \(W = u_1 \cdot u_2 \cdot u_3 \cdots u_m\) such that for each \(i, 1 \leq i \leq m, u_i \in L(x_i)\) \(\text{and } u_i\) matches \(x_i\).

Finally, \(L(p, q) = \{w : N\text{ can process }w \text{ from }p\text{ to }q\} \quad \text{and} \quad u_i \in L(x_i)\) \(\text{and } u_i\) matches \(x_i\).

Example: In this new form:

\[
\begin{align*}
0+1 & \xrightarrow{0} 1 \\
& \xrightarrow{0+1} 2 \\
& \xrightarrow{0+1} 3
\end{align*}
\]

To witness this defn, if \(I\) my path is \((1, 1, 2, (0+1)^2, 3)\) then \(I\) fail.

\(W = u_1 \cdot u_2\) with \(u_1 = 1\) and \(u_2 = 101 \in L((0+1)^2)\).

Good path: \((1, 0+1, 1, 1, 2, (0+1)^2, 3)\) matched with \(W = 1 \cdot 1 \cdot 01\) \(u_1 = 1 \quad u_2 = 1 \quad u_3 = 01\)

Theorem: Given any DFA or NFA or GNFA \(N\), we can compute a regexp \(\lambda\) such that \(L(N) = L(\lambda)\).

Proof: We have already proved this for \(K \leq 2\), where \(N = (Q, \Sigma, S, s, F)\) and \(K = 1\).

Given \(N\) with \(K \geq 2\), if \(N\) has more than one accepting state \(q \neq s\), then add a new accepting state \(f\) and \(E\)-ars from all \(q \in F\) to \(f\).
Hence we may suppose \(N \) is in well-structured form. \((K \text{ became } K+1)\)

Number \(S = 1 \), and the final states \(2, 3, 4, 5 \), or just \(1 \) if \(F = \emptyset \)?

Thus states \(3, \ldots, K \) are non-accepting. We will eliminate them by introducing a new state \(R \),

\[q = 0 \times K \]

which we write \(N \) give

\[T_{pq} = T_{pq} \]

\[q = 0 \times K \]

\[T_{pr} = W \]

To eliminate the highest-numbered state \(q \), we bypass all arcs \((p, q, g)\) into \(q \).

To bypass \((p, q, g)\), for all outgoing arcs \((q, v, r)\), we update the direct path \(T_{pr} \) by

\[T_{pr} = T_{pr} + t^{uv} \]

Then we can delete \((p, q, g)\).

for \(\text{int} j = \#; j \geq 3; j-- \) \{ \}

// eliminate state \(\# \) i.e. state \(\#$

for \(\text{int} i = 1; i < j-1; i++ \) \{

\[T_{ij}, h += \text{old} \]

(\text{that is, new} \ T_{ij}, h = \text{old} \ T_{ij}, h + \text{old} \ T_{ij}, h \)

\[T_{ij}, h += \text{old} \]

(\text{old} \ T_{ij}, h = \text{old} \ T_{ij}, h

\[T_{ij}, h += \]
Example (text w/o adding new start state, still renumber by new acc state §)

Elim state 4: Inference: Just \((1, b, 4)\)

Outgoing: \((4, b, 1)\): Update \((4, 1) (1, -1, 1)\)

\[T(1, 4) = \emptyset, \quad T(4, 1) = \emptyset \]
\[T(1, 4)^* = \emptyset, \quad T(4, 1)^* = \emptyset \]

New \(T(1, 4) = \text{old } T(1, 1) \cup T(1, 4) T(4, 4)^* T(4, 1)\).

You can also initialize \(\emptyset \cup 0 \cdot 3 \cdot b = bb\)

\(T(1, 1) \in \emptyset\), likewise \(\emptyset \cup b \cdot 3 \cdot b = 3 \cup bb\)

\(T(1, 2) \in \emptyset\) for all \(2\).

\[\triangle \text{ Both answers will work because the ultimate expression will have } T(1, 4)^* \text{ and } (bb)^* = (b + bb)^* \]

\[\text{Q-pass } (1, b, 4) \text{ to } 3 \]

New \(T(1, 3) = \text{old } T(1, 1) \cup T(1, 4) T(4, 4)^* (T(4, 3) \cup b \cdot 3 \cdot a = a + ba\)

New \(T(1, 2) = \text{old } T(1, 1) \cup T(1, 4) T(4, 4)^* T(4, 2)\).

We cannot replace \(\emptyset \cup \) by \(\emptyset\) because dest state \(2 \neq \) origin \(1\).

Elim 3:

Inference: On 14 \((1, 3)\)

Outgoing: \((3, 1)\): Update \(T(1, 1)\) again

\(T(1, 3) T(3, 3)^* T(3, 1)\).

\(T(1, 1) T(1, 3)^* T(3, 1)\).

\(L_{11} = T_{11} = (b + (atba) b)^* (b + (atba) b)^*\)

\(L_{11} = T_{11} = (bb + (atba) b a)^* (b + (atba) b)^*\)

\(L(M) = L_{11} \cdot T_{12} = (bb + (atba) b a)^* (b + (atba) b)\)
Theorem: For any language \(L \subseteq \Sigma^* \) (any \(\Sigma \)):

\[
\begin{align*}
&\text{(a) There is a DFA } M \text{ s.t. } L = L(M) \\
&\text{(b) There is an NFA } N \text{ s.t. } L = L(N) \\
&\text{(c) There is a regular expression } r \text{ s.t. } L = L(r)
\end{align*}
\]

\(L \) is a regular language if any holds.

When is a language \(L \) (non-) regular?

Related: Why is a regular \(L \) regular?

Let's reuse the original DFA

\[
M = \begin{align*}
\begin{array}{c}
\text{1} \\
\text{2} \\
\text{3} \\
\end{array}
\end{align*}
\]

\[
\begin{aligned}
\text{1} & \xrightarrow{a} \text{2} \\
\text{2} & \xrightarrow{b} \text{3} \\
\text{3} & \xrightarrow{a} \text{1}
\end{aligned}
\]

\(\alpha \text{ and } \beta \text{ both get processed from } \text{1} \text{ to } \text{2}. \)

Let \(L = L(M) \)

\(\alpha \text{ and } \beta \text{ get processed to the same state.} \)

\(\begin{align*}
\forall \alpha, \beta \in \Sigma^* : \alpha \beta \in L(M) & \iff \beta \alpha \in L(M)
\end{align*} \)

\(\forall \epsilon \in \Sigma^* : \epsilon \in L(M) \iff \epsilon \in L(M). \)

\(\forall \alpha \in \Sigma^* : \alpha \in L(M) \iff \epsilon \in L(M). \)

\(\forall x \in \Sigma^* : x \in L(M), \text{ or if } x = 0 \text{, they're both in } L(M). \)

If \(z = a \), then both cannot: \(\alpha a, \beta a \notin L(M) \).

Hence, \(M \) must have at least 2 states.

Suppose \(S \) is a set of strings such that for any distinct \(x, y \in S \): \(x \neq y \).

Then for any \(x, y \in S \) (\(x \neq y \)), any DFA \(M \) must process \(x \) to \(y \).

\(\forall \alpha, \beta \in \Sigma^* : L(x \beta) \neq L(y \beta). \)

\(\forall \epsilon \in \Sigma^* : L(\epsilon) \neq L(\epsilon). \)

\(\forall \alpha \in \Sigma^* : L(\epsilon) \neq L(\epsilon). \)

\(\forall x \in \Sigma^* : L(x) \neq L(\epsilon). \)

If \(S \) has \(K \) strings, then any DFA \(M \) must have at least \(K \) states.

If \(S \) has \(\infty \) strings, then any DFA \(M \) must have at least \(\infty \) states.

Hence, \(L \) has no finite DFA, so \(L \) is not regular.
Theorem: Suppose L is a language and S is a set of strings s.t. S is infinite, and the Myhill-Nerode Thm holds. For all $x, y \in S$, $(x \neq y) \land (\exists z \in \Sigma^*) \land L(xz) \neq L(yz)$.

Then L is not regular.

Example: $L = \{a^n b^n : n \geq 0\}$. To prove L is not regular:

Take $S = \{a^n : n \geq 0\}$. Clearly S is infinite.
Let any $x, y \in S$, $x \neq y$, be given. Then there are numbers $m, n \geq 0$, so $x = a^m$ and $y = a^n$.

Take $z = b^m$.

Then $xz = a^m b^m \in L$, but $yz = a^n b^m \notin L$ since $m \neq n$.

$i.e.$, $L(xz) \neq L(yz)$, and since $x, y \in S$ are arbitrary,S is an infinite PC set for L, $\therefore L$ is not regular.

Extra: The other half of the theorem: If L is not regular, then there is an infinite set S such that $(\forall x, y \in S, x \neq y) \land (\exists z \in \Sigma^*) \land L(xz) \neq L(yz)$, i.e. such that S is PC for L.

This means that in principle every non-regular language has some kind of Myhill-Nerode proof.

The contrapositive of this is: If every PC set S for L is finite, then L is regular.

We can prove this - which completes both halves of the theorem - without going into quite as much detail as the text in problem 1.52. Consider the following unbounded "allocation" process:

For string $x = \epsilon, 0, 1, 00, 01, 10, 11, 000, \ldots$ in order, (having initialized $S = \emptyset$) {

If $(\exists y < x) \land (\forall z \in \Sigma^*) \land L(yz) = L(xz)$ then define $\text{State}(x) = \text{State}(y)$.

Else allocate $\text{State}(x)$ as a new state and put $S := S \cup \{x\}$. // Invariant: S is PC for L.

If $x = 1^n$ then for all $w \in \Sigma^*$ of length $n-1$ and $c \in \Sigma$, define $\Delta(x, c) = \text{State}(w, c)$.

By hypothesis, S stays finite, and so $(S, \Sigma, \Delta, \text{State}(c), F)$ is a DFA M s.t. $L(M) = L$, where $F = \{\text{State}(x) : x \in L\}$.\[\]