First a note on the "pumping lemma" and logic: Version 1b (2x2) Theorem 1b

If A is a regular language, then

- **There exists** an integer \(p > 0 \) such that
 - **For all** \(s \in A \) with \(|s| \geq p \)
 - **There exists** a breakdown \(S = x \cdot y \cdot z \) such that
 - \(|x| \cdot |y| \leq p \), \(y \neq \varepsilon \), and
 - **For all** \(i \geq 0 \),
 - \(xy^iz \in A \).

Proof Script:

Let any \(p > 0 \) be given.

- **A1:** \(A_1 = \{ \text{W} \cdot W^R : W \in \{a,b\}^* \} = \{ \text{palindrome} \} \)
- **A2:** \(A_2 = \{ \text{W} \cdot W : \text{W} \in \{a,b\}^* \} = \{ \text{square} \} \)

Case 1: \(A_1 \)

- Let \(x = a^m \cdot y = a^n \), \(m, n \geq 0 \)
- Consider any breakdown \(S = x \cdot y \cdot z \) with \(|x| \cdot |y| \leq p \), \(y \neq \varepsilon \)
 - Take \(i = 0 \).

Case 2: \(A_2 \)

- Let \(x = a^m b, y = a^n b \), \(m, n \geq 0 \)
- Consider any breakdown \(S = x \cdot y \cdot z \) with \(|x| \cdot |y| \leq p \), \(y \neq \varepsilon \)
 - Take \(i = 0 \).

Hence \(A \) is not regular, by the Pumping Lemma.
Context-Free Grammars:

\[A_1 = \{ W \cdot WR = WE \{ a, b \}^* \} \]

\[A_1 = \{ \varepsilon, aa, bb, aaaa, abba, baba, bbbb, aaaa, aabbaaa, \ldots \} \]

A CFG \(G \) s.t. \(L(G) = A_1 \):

\(S \) means "I stand for some EVENPAL x."

\(S \rightarrow aSa \mid bSb \mid \varepsilon \)

Derivation:

\[S \rightarrow aSa \rightarrow aaaSaa \rightarrow aabSbbaa \rightarrow aabbaa \]

\[S \rightarrow aSa \rightarrow aaaSaa \rightarrow aabSbbaa \rightarrow aabbaa \]

Inductive Defn:

Basis: \(\varepsilon \) is an "EVENPAL"

Induction: If \(x \) is an EVENPAL, then

- \(axa \) is also an EVENPAL.
- If \(x \) is an EVENPAL, then \(bxb \) is also an EVENPAL.

Catchall Clause: The only EVENPALS are the ones that arise via these three rules.

\[A_2 = \{ WW = WE \{ a, b \}^* \} \]

Can we design a CFG \(G \) such that

\(G \) generates exactly those strings in \(A_2 \), i.e. \(L(G) = A_2 \)?

Answer: No! \(\varepsilon, a, a, a, abab, abbab, ababbb \).

CFG \(\equiv \) BNF as taught in CSE 305.
Formal Definition: A context-free grammar (CFG) is a 4-tuple \(G = (V, \Sigma, R, S) \) where \(\Sigma \) is the terminal alphabet, \(V \) is a finite set of variables, \(S \in V \) is the start variable, and \(R \) is a finite set of rules of the form \(A \to X \) where \(A \in V \) and \(X \in (V \cup \Sigma)^* \).

Before we have \(\Sigma = \{a, b, c\} \),

\[\Sigma = \{a, b, c\}, \quad R = \{S \to \varepsilon, S \to aSa, S \to bSb\}. \]

Given two strings \(X, Y \in (V \cup \Sigma)^* \), we write \(X \Rightarrow Y \) if \(X \) can be broken down as \(X \Rightarrow UVW \) such that for some rule \(A \to Z \in R, \ Y = UZW \).

We write \(S \Rightarrow^* X \) if there are \(Y_1, \ldots, Y_k \) s.t. \(X = VAW \)

\[S \Rightarrow S \Rightarrow Y_1 \Rightarrow Y_2 \Rightarrow \cdots \Rightarrow Y_k \Rightarrow X, \text{ and } \text{shall } L(G) = \{x \in \Sigma^* : S \Rightarrow^* x \}. \]

Variables can also be written as XML-style tags.

\[S \to \langle Noun Phrase \rangle \langle Verb Phrase \rangle \mid \ldots \]
\[\langle Noun Phrase \rangle \to \langle Complex Noun \rangle \mid \langle Complex Noun \rangle \langle Prep Phrase \rangle \mid \cdots \]
\[\langle Complex Noun \rangle \to \langle Article \rangle \langle Simple Noun \rangle \mid \cdots \]
\[\langle Article \rangle \to \text{ the } \mid \text{ a/an} \]
\[\langle Simple Noun \rangle \to \text{ cat } | \text{ dog } | \text{ hat} \]
\[\langle Prep Phrase \rangle \to \langle Preposition \rangle \langle Complex Noun \rangle \]
\[\langle Noun Phrase \rangle \Rightarrow \text{ the cat in the hat}. \]

[End of Week 6]