(1) Prove that two of the following three languages are non-regular, via a Myhill-Nerode argument. For the regular one, give a regular expression. Here \(\#a(x) \) denotes the number of occurrences of the character \(a \) in the string \(x \), and more generally, \(\#w(x) \) denotes the number of occurrences of the substring \(w \) in \(x \). For example, \(\#0010(00100100) = 2 \) even though the two occurrences of the substring 0010 overlap each other. Also, for two strings \(x,y \) of the same length, \(x \oplus y \) denotes the bitwise exclusive-OR, e.g. \(1011 \oplus 0010 = 1001 \). All three languages are over the alphabet \(\Sigma = \{0,1\} \).

(i) \(L_1 = \{ x : \#0(x) > \#1(x) \} \).

(ii) \(L_2 = \{ x : \#01(x) > \#10(x) \} \).

(iii) \(L_3 = \{ xy : |x| = |y| \land x \oplus y = 1^{|x|} \} \).

Answer: \(L_2 \) is regular: Every binary string has a 01 substring when it goes from 0s to 1s and then has a 10 substring when it alternates back. If it begins with 10, there will never be a stage where the number of occurrences of 01 beats that of 10. So the string must begin with 0 and end with 1: 0(0 + 1)*1. For the other languages, here are proofs by MNT:

(i) Take \(S = 0^* \). Clearly \(S \) is infinite. Let any \(x,y \in S, x \neq y \) be given. Then there are numbers \(m,n \in \mathbb{N} \) such that \(x = 0^m \) and \(y = 0^n \), where wlog. \(m < n \). Take \(z = 1^m \). Then \(xz = 0^m1^m \notin L_1 \) since \(m \) is not greater than itself, but \(yz = 0^n1^m \in L_1 \) since \(n > m \) by the “wlog.” clause. So \(L_1(xz) \neq L_1(yz) \), and since \(x,y \in S \) are arbitrary, \(S \) is PD for \(L_1 \). Since \(S \) is also infinite, \(L_1 \) is not regular by the Myhill-Nerode Theorem.

(ii) Take \(S = 0^+ \). We are avoiding the annoying “edge case” of whether the empty string belongs to \(L_3 \), though the answer is objectively yes and taking \(S = 0^* \) would be fine. But \(S = 0^+ \) is infinite and “more parsimonious.” Let any \(x,y \in S, x \neq y \) be given. Then there are numbers \(m,n \in \mathbb{N} \) such that \(x = 0^m \) and \(y = 0^n \), and for greater clarity we’ll again invoke the \(m < n \) clause though we don’t really need it. Take \(z = 1^m \). Then \(x \oplus z = 1^m \), so \(xz \in L_3 \). But with \(yz \), either it’s an odd-length string so we can’t break it in half, or when we do there will be two matched-up 0s because \(n > m \) means \(yz \) has more 0s than 1s. So \(yz \notin L_3 \), giving \(L_3(xz) \neq L_3(yz) \), which makes \(S \) PD for \(L_3 \) and proves that \(L_3 \) is not regular.

Footnotes: We could do (iii) almost as easily by arguing that a string of the form 0^i,1^j can be broken as needed for \(L_3 \) only if \(i = j \), since \(i < j \) gives an excess of paired-up entries that are 1. But thinking of just 0s was a convenience. That (ii) is regular warns against false “poofs” like this: “Take \(S = (01)^* \). Clearly \(S \) is infinite. Let any \(x,y \in S, x \neq y \) be given. Then there are \(m,n \in \mathbb{N} \) such that \(x = (01)^m \) and \(y = (01)^n \) where wlog. \(m < n \). Take \(z = (10)^m \). Then \(xz = (01)^m(10)^m \notin L_2 \) [which is true] but \(yz = (01)^n(10)^m \in L_2 \) since \(n > m \). Thus…” Despite the optical appearance, the last assertion is wrong because the substrings 10 and 01 occur “between the cracks” as well as what’s shown.

(2) Now consider \(L_4 = \{ x : \#010(x) = 0 \land \#101(x) = 0 \} \). Use the Myhill-Nerode technique to show that any DFA \(M \) such that \(L(M) = L_4 \) requires at least 6 states. Then design such a DFA
M—ideally showing how your proof guided you to it (or vice-versa). Finally explain why you can basically "collapse" M into a generalized NFA with only 2 states s, f such that

$$L(M) = L_{s,s} \cup L_{s,f} \cup L_{f,s} \cup L_{f,f},$$

and use that to give a regular expression for L_4. (12 + 6 + 9 = 27 pts., for 63 total on the set)

Answer: All strings of length 2 or less belong to L_4. The shortest strings that don’t are 010 and 101, and any string beginning with those is dead. Now we can consider pairs x, y of strings and suffixes z that make $L_4(xz) \neq L_4(yz)$:

- $x = \lambda, y = 0$: $z = 10$.
- $x = \lambda, y = 1$: $z = 01$.
- $x = 0, y = 1$: $z = 10$. Hence these three strings x, y must all go to different states.
- $x = 0, y = 00$: “Oopsie,” no z makes $L_4(0z) \neq L_4(00z)$. So those two strings can be processed from s to the same state.
- $x = 0, y = 01$: Separated by $z = 0$. Can we separate 01 from others?
- $x = \lambda, y = 01$: Take $z = 0$.
- $x = 1, y = 01$: Take $z = 0$ again. It’s not needing to be separated by a different z that matters, but the fact of having some separating z for every pair of two from $\lambda, 0, 1, 01$. So we know we need 4 states—actually we have 5 since none of these strings is dead and 010 is.
- $x = 10$: That this is distinguished from the three strings $\lambda, 0, 1$ comes from a similar argument by symmetry. So we need only stack it up against $y = 01$. They are distinguished by $z = 0$ (or $z = 1$ etc.), so we have our 6.

So we design the DFA with states $s, q_0, q_1, q_01, q_{10}$ and $q_{010} = a$ dead state d. The transitions $(s, 0, q_0), (s, 1, q_1), (q_0, 1, q_{01}), (q_1, 0, q_{10})$, and $(q_{01}, 0, d), (q_{10}, 1, d)$ plus the self-loops at d are automatic from the labels. We can also do $(q_0, 0, q_0)$ and $(q_1, 1, q_1)$ as self-loops. So we just need to finish $(q_{01}, 1, ?)$ and $(q_{10}, 0, ?)$ and they can go back to q_1 and q_0, respectively. Every state other than d is accepting.

Now to find a regular expression for L_4, we can start by deleting the dead state, since it doesn’t help any processing and a (G)NFA can do without it. Then if we take a 1 out of q_0 to q_{01}, we have to go back on a 1 to q_1. Hence we can bypass q_{01} simply by making $(q_0, 11, q_1)$. But we can’t forget about q_{01} entirely because it is an accepting state—so we have to remember things that can go there by a final 1. And $(q_1, 00, q_0)$ similarly cuts q_{10} out of the picture, but we have to remember to re-include a training 0. Now we’re left with 3 states, but s goes out and doesn’t come back. So what we’re left with is a two-state GNFA where we can start up in either state and we have arcs

$$(q_0, 0, q_0), (q_0, 11, q_1), (q_1, 00, q_0), (q_1, 1, q_1).$$

The language we want—remembering the trailers—is

$$L_{0,0}(\lambda + 1) \cup L_{1,0}(\lambda + 1) \cup L_{0,1}(\lambda + 0) \cup L_{1,1}(\lambda + 0).$$

Now $L_{0,0} = (0 + 111*00)^*$, $L_{0,1} = L_{0,0}111^*$, $L_{1,1} = (1 + 000^*11)^*$, and $L_{1,0} = L_{1,1}000^*$. Plugging those in gives a yucky but correct regular expression for L_4.