(1) Show that the concatenation of any two decidable languages is decidable, and that the concatenation of any two c.e. languages is c.e. Find, however, an example of two undecidable languages A and B such that $A \cdot B$ is decidable. Indeed, you can arrange that $A \cdot B$ is regular and even make $B = A$. (Vague hint: Take any language $L \subset \{0,1\}^*$ whatever and “dilate it” in such a way that you can fill in lots of extra strings into the “gaps” you made but the resulting language A is still undecidable. $9+6+12 = 27$ pts.)

Answer: (a) Given decidable languages A and B, we may take total Turing machines M_a and M_b deciding them, and on any input $x \in \Sigma^*$ run the following loop:

\[
\begin{align*}
 n & := |x|; \\
 \text{for } i = 0 \text{ to } n \text{ do} & \\
 \quad \text{string } y = x[1..i], z = x[i+1..n]; \quad \text{//note: indexing from 1} \\
 \quad \text{if } (M_a \text{ accepts } y \&\& M_b \text{ accepts } z) \{ \\
 \quad \quad \text{accept } x; \\
 \quad \} \\
\end{align*}
\]

Since M_a and M_b are total the body of this loop always terminates, and since the loop is strictly counted, the loop always finished too. Thus this routine always halts, and it accepts iff $x \in A \cdot B$, so $A \cdot B$ is decidable.

(b) If we only know that A and B are c.e. then we cannot code a machine for $A \cdot B$ serially as above, because the failure of one loop iteration to halt will prevent a later iteration from ever getting the chance to succeed. Instead what we need to do is fork $n+1$ processes in parallel and accept x if and when one of them gets notified of acceptance of both $M_a(y)$ and $M_b(z)$.

An alternate answer is to insert a master governing while loop:

\[
\begin{align*}
 n & := |x|; \\
 t & = 0; \\
 \text{while (true) } \{ \\
 t++; \\
 \quad \text{for } i = 0 \text{ to } n \text{ do} \\
 \quad \quad \text{string } y = x[1..i], z = x[i+1..n]; \quad \text{//note: indexing from 1} \\
 \quad \quad \text{Run } M_a(y) \text{ and } M_b(z) \text{ for } t \text{ steps each; } \\
 \quad \quad \text{if } (\text{both accepted within that time}) \{ \\
 \quad \quad \quad \text{accept } x; \quad \}
 \}
\end{align*}
\]

This is like the proof of $\text{REC} = \text{RE} \cap \text{coRE}$ given in class.

(c) Take C to be any undecidable language. Then its complement \bar{C} is undecidable too. So are $A = C \cup \{\lambda\}$ and $B = \bar{C} \cup \{\lambda\}$ since we’re adding at most one string to one of them. But $A \cdot B = \Sigma^*$ which is decidable, regular, everything.

To do this with $B = A$ needs “dilating” C further as vaguely hinted. Take O to be the set of odd-length strings over Σ. Define $C' = \{xx : x \in C\}$. Then C' is likewise undecidable and
every string in C' has even length. Finally define

$$A = \{\lambda\} \cup O \cup C'.$$

We still have for all x (other than λ) that $x \in C \iff xx \in A$ so A remains undecidable. But $A \cdot A$ includes all the odd-length strings via $\lambda \cdot O$, all the even-length strings other than λ since they can be broken into two odd-length strings and so belong to $O \cdot O$, and includes λ via the rule $\lambda \cdot \lambda = \lambda$. So $A \cdot A = \Sigma^*$ which is decidable, even regular.

(2) Prove—preferably by reduction—that the following decision problem is undecidable:

Instance: A Turing machine M.

Question: Is every string accepted by M a palindrome?

State the language L of this problem, then state the complementary language \tilde{L} by a prose definition, and finally sketch why \tilde{L}—though likewise undecidable—is computably enumerable.

Answer: Take P to be the language of palindromes. Note that P is decidable—it is in deterministic linear time and also has an NPDA but not a DPDA (asserted but not proven in class—the proof is hard) and certainly not a DFA (proved by MNT). One should not confuse P with L—instead we use P to define L:

- $L = \{M : L(M) \subseteq P\}$.
- $\tilde{L} = \{M : (\exists x)x \in L(M)$ but $x \notin P\}$.

The “all-or-nothing-switch” as given in the Monday 10/10 class solves this literally: Map an instance $\langle M, x \rangle$ of the A_{TM} problem to a machine M' that on any input w runs $M(x)$, and accepts w only if and when M accepts x. Then

$$\langle M, x \rangle \in A_{TM} \implies L(M') = \Sigma^*,$$

which certainly means that M' accepts some non-palindromes. So $M' \in \tilde{L}$. But

$$\langle M, x \rangle \notin A_{TM} \implies L(M') = \emptyset.$$

Now this may sound like sophistry, but when $L(M') = \emptyset$ it is always considered true (“by default”) that every string accepted by M' is a palindrome, likewise that every string accepted by M' appears in the *Dao De Jing*.\(^1\) So this is a valid answer and makes $M' \in L$. So

$$\langle M, x \rangle \notin A_{TM} \iff M' \in \tilde{L},$$

which means that A_{TM} is many-one reducing to the complement of L. Hence L is undecidable.

It is important to realize right away that this also rules out L being c.e., but the final part of the question asked about \tilde{L}. This is c.e., and here’s why: We can run a master loop for $n = 1, 2, 3, 4, \ldots$, and on each iteration, run M on the first n strings that are not palindromes, for n steps on each such string. If $M \in \tilde{L}$, then there is some non-palindrome x that it accepts, and we will catch this whenever n is both bigger than the numerical value of x and than the number of steps it took to accept x. If not, then our loop never catches such an x and hence never accepts. Thus the loop represents a Turing machine T such that $L(T) = \tilde{L}$, so \tilde{L} is c.e., so L is co-c.e.

\(^1\)Verse 11: “We mold clay into a pot, but it is the emptiness inside that makes the vessel useful.”