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Abstract. This paper presents evidence for several features of the population of
chess players, and the distribution of their performances measured in terms of Elo
ratings and by computer analysis of moves. Evidence that ratings have remained
stable since the inception of the Elo system in the 1970’s is given in several forms:
by showing that the population of strong players fits a simple logistic-curve model
without inflation, by plotting players’ average error against the FIDE category of
tournaments over time, by skill parameters from a model that employs computer
analysis keeping a nearly constant relation to Elo rating across that time, and by
the same model showing steady improvement in its skill measures since the dawn
of organized chess. The distribution of the model’s Intrinsic Performance Ratings
can hence be used to compare populations that have limited interaction, such as
between players in a national chess federation and FIDE, and ascertain relative
drift in their respective rating systems.
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1 Introduction

Chess players form a dynamic population of varying skills, fortunes, and aging ten-
dencies, and participate in zero-sum contests. A numerical rating system based only on
the outcomes of the contests determines everyone’s place in the pecking order. There
is much vested interest in the accuracy and stability of the system, with significance
extending to other games besides chess and potentially wider areas. Several fundamen-
tal questions about the system lack easy answers: How accurate are the ratings? How
can we judge this? Have ratings inflated over time? How can different national rating
systems be compared with the FIDE system? How much variation in performance is
intrinsic to a given skill level? Answering the last question may inform the question of
the optimal “K-factor” governing the rate of change of ratings.

This paper seeks statistical evidence beyond previous direct attempts to measure
the system’s features. We examine player rating distributions across time since the
inception of the Elo rating system by the World Chess Federation (FIDE) in 1971,
and extend before it, showing numbers that differ markedly from the “ChessMet-
rics” system of Sonas [Son11]. We continue work by Haworth, DiFatta, and Regan
[Haw03,Haw07,DHR09,RH11] on measuring performances ‘intrinsically’ by the qual-
ity of moves chosen rather than the results of games. The models in this work have ad-
justable parameters that correspond to skill levels calibrated to the Elo scale. We have
also measured aggregate error rates judged by computer analysis of entire tournaments,



and plotted them against the Elo rating category of the tournament. Major findings of
this paper extend the basic result of [RH11] that ratings have remained stable since the
1970’s, contrary to the popular wisdom of extensive “rating inflation.”

2 Ratings and Distributions

The Elo rating system, which originated for chess but is now used by many other games
and sports, provides rules for updating ratings based on performance in games against
other Elo-rated players, and for bringing new (initially ‘unrated’) players into the sys-
tem. In chess they have a numerical scale where 2800 is achieved by a handful of top
players today, 2700 is needed for most highest-level tournament invitations, 2600 is a
‘strong’ grandmaster (GM), while 2500 is typical of most GM’s, 2400 of International
Masters, 2300 of FIDE Masters, and 2200 of masters in national federations.

We emphasize that the ratings serve two primary purposes:

1. To indicate position in the world ranking.
2. To indicate a level of skill.

These two purposes lead to different interpretations of what it means for “inflation”
to occur. According to view 1. 2700 historically meant what the neighborhood of 2800
means now: being among the very best, a true world championship challenger. As late
as 1981, Anatoly Karpov topped the ratings at 2695, so no one had 2700, while today
there are forty-five players 2700 and higher, some of whom have never been invited to
an elite event. Under this view, inflation has occurred ipso-facto.

While view 2. is fundamental and has always had adherents, for a long time it had
no reliable benchmarks. The rating system itself does not supply an intrinsic meaning
for the numbers and does not care about their value: arbitrarily add 1000 to every figure
in 1971 and subsequent initialization of new players, and relative order today would be
identical. However, recent work [DHR09,?] provides a benchmark to calibrate the Elo
scale to games analyzed in the years 2006–2009, and finds that ratings fifteen and thirty
years earlier largely correspond to the same benchmark positions. In particular, today’s
echelon of over forty 2700+ players all give the same or better benchmarks than Karpov
and Viktor Korchnoi in their prime. We consider that two further objections to view 2.
might take the following forms:

(a) If Karpov and Korchnoi had access to today’s computerized databases and more
extensive opening publications, they would have played 50 to 100 points higher—
as Kasparov did as the 1980’s progressed.

(b) Karpov and Korchnoi were supreme strategists whose depth of play does not show
up in ply-limited computer analysis.

We answer (a) by saying we are concerned only with the quality of moves made
on the board, irrespective of their provenance. Regarding also (b) we find that today’s
elite make fewer clear mistakes than their forbears. This factor impacts skill apart from



strategic depth. The model from [RH11] used in this paper by its nature weights the
relative importance of avoiding mistakes.

Our position in subscribing to view 2. is summed up as today’s players deserve their
ratings. The numerical rating should have a fixed meaning apart from giving a player’s
rank in the world pecking order. In subsequent sections we present the following ev-
idence that there has been no inflation, and that the models used for our conclusions
produce reasonable distributions of chess performances.

– The proportion of Master-level ratings accords exactly with what is predicted from
the growth in population alone.

– A version of the “average difference” (AD) statistic used by Guid and Bratko
[GB06] to compare world championship matches shows that tournaments of a given
category have seen fairly constant AD over time.

– “Intrinsic Ratings” as judged from computer analysis have likewise remained rela-
tively constant as a function of Elo rating over time—for this we refine the method
of Regan and Haworth [RH11].

– Intrinsic Ratings for the world’s top players have increased steadily since the mid-
1800s, mirroring the way records have improved in many other sports and human
endeavors.

– Intrinsic Performance Ratings (IPR’s) for players in events fall into similar dis-
tributions as assumed for Tournament Performance Ratings (TPR’s) in the rating
model. They can also judge inflation or deflation between two rating systems, such
as those between FIDE and a national federation much of whose population has
little experience in FIDE-rated events.

The last item bolsters the the Regan-Haworth model [RH11] as a reliable indicator
of performance, and hence enhances the significance of the third and fourth items.

The persistence of rating controversies after many years of the standard analysis of
rating curves and populations calls to mind the proverbial elephant that six blind men
are trying to picture. When our five non-standard modes of analysis are agreeing, how-
ever, they can be said to have gained a reasonable understanding of the elephant after
all. Besides providing new insight into distributional analysis of chess performances,
the general nature of our tools allows application in other games and fields besides
chess.

3 Population Statistics

Highlighted by the seminal work of de Solla Price on the metrics of science [dSP61],
researchers have gained an understanding of the growth of human expertise in vari-
ous subjects. In an environment with no limits on resources for growth, de Solla Price
showed that the rate of growth is proportional to the population,

dN

dt
∼ aN, (1)

which yields an exponential growth curve. For example, this holds for a population of
academic scientists, each expected to graduate some number a > 1 of students as new



academic scientists. However, this growth cannot last forever, as it would lead to a day
when the projected number of scientists would be greater than the total world popu-
lation. Indeed, David Goodstein [Goo94] showed that the growth of PhD’s in physics
produced each year in the United States stopped being exponential around 1970, and
now remains at a constant level of about 1000.

The theory of the growth of a population under limiting factors has been success-
ful in other subjects, especially in biology. Since the work of Pierre-Franois Verhulst
[Ver38] it has been widely verified that in an environment with limited resources the
growth of animals (for instance tigers on an island) can be well described by a logistic
function

N(t) =
Nmax

(1 + a(exp)−bt)
arising from

dN

dt
∼ aN − bN2, (2)

where bN2 represents a part responsible for a decrease of a growth due to an over-
population, which is quadratic insofar as every animal interacts, for instance fights for
resources, with every other animal. We demonstrate that this classic model also de-
scribes the growth of the total number of chess players in time with a high degree of
fit.

We use a minimum rating of 2203—which FIDE for the first three Elo decades
rounded up to 2205—because the rating floor and the start rating of new players have
been significantly reduced from 2200 which was used for many years.

Figure 1 shows the number of 2203+ rated players, and a curve obtained for some
particular values of a, b, and Nmax. Since there are many data points and only three pa-



rameters, the fit is striking. This implies that the growth of the number of chess players
can be explained without a need to postulate inflation.

The model makes a testable prediction. The best fit is obtained for Nmax approx-
imately 22,250. Having in mind that the total number of players rated at least 2203 is
already almost 21,000, we do not expect a further significant growth in the number of
master-level players worldwide.

4 Average Error and Results by Tournament Categories

The first author has run automated analysis of almost every major event in chess history,
using the program RYBKA 3 [RK07] to fixed reported depth 13 ply4 in Single-PV mode.
This mode is similar to how Matej Guid and Ivan Bratko [GB06] operated the program
CRAFTY to depth (only) 12, and how others have run other programs since. Game turns
1–8, turns where RYBKA reported a more than three pawns advantage already at the
previous move, and turns involved in repetitions are weeded out.

The analysis computations have included all round-robin events of Category 17 or
higher, and all Category 11 and higher from 1971 to 1993. The categories are the aver-
age rating of players in the event taken in blocks of 25 points; for instance, category 11
means the average rating is between 2500 and 2525, while category 15 means 2600–
2625.

For every move that is not equivalent to RYBKA’s top move, the “error” is taken as
the value of the present position minus the value after the move played. The errors over
a game or player-performance or an entire tournament are summed and divided by the
number of moves (those not weeded out) to make the “Average Error” (AE) statistic.
This omits some refinements of Guid and Bratko’s “Average Difference” (AD) statistic
[GB06], so we use the separate name.

For large numbers of games, AD or AE seems to give a reasonable measure of
playing quality. When aggregated for all tournaments in a span of years, the figures
were in fact used to make scale corrections for the in-depth mode presented in the next
section. When AE is plotted against the turn number, sharply greater error for turns
approaching the standard Move 40 time control is evident; then comes a sharp drop
back to previous levels after Move 41. When AE is plotted against the advantage or
disadvantage for the player to move, in intervals of 0.10 or 0.05 pawns, a scaling pattern
emerges. The AE for advantage 0.51–0.60 is almost double that for near-equality 0.01–
0.10, while for -0.51 to -0.60 it is regularly more than double. It would seem strange
to conclude that strong masters play only half as well when ahead or behind by half a
pawn as even. Rather this seems to be evidence that human players perceive differences
in value in proportion to the overall advantage for one side. This yields a log-log kind
of scaling, with an additive constant that tests place close to 1, so we used 1.

With all this said, here is a plot of AE for all tournaments by year as a four-year
moving average.

4 That RYBKA versions often report the depth as -2 or -1 in UCI feedback has fueled speculation
that the true depth here is 16, while the first author finds it on a par in playing strength with
some other prominent programs fixed to depths in the 17–20 range.



The five lines represent categories 11–12 (2500–2549 average rating), 13–14 (2550–
2599), 15–16 (2600–2649), 17–18 (2650–2699), and 19–20 (2700–2749). The lowest
category has the highest AE and hence appears at the top. To be sure there are variations
year-to-year, but the graph allows drawing two clear conclusions: the categories do
correspond to different levels of AE, and the lines by-and-large do not slope up to the
right as would indicate inflation. Indeed, the downslope of AE for categories above
2650 suggests some deflation since 1990.

Since the AE statistic itself depends on how tactically challenging a game is, and
hence does not indicate skill by itself, we need a more intensive mode of analysis in
order to judge skill directly.

5 Intrinsic Ratings Over Time

Haworth [Haw03,Haw07] and G. DiFatta and Regan [DHR09,HRD10,RH11] have de-
veloped models of fallible decision agents that can be trained on players’ games and
calibrated to a wide range of skill levels. Their main distinction from [GB06] is the use
of Multi-PV analysis to obtain equally authoritative values for all reasonable options,
not just the top move(s) and the move played. Thus each move is evaluated in the full
context of available options.

Models of this kind function in one direction by taking in game analyses and using
statistical fitting to generate values of the skill parameters to indicate the intrinsic level



of the games. They function in the other direction by taking pre-set values of the skill
parameters and generating a probability distribution of next moves by an agent of that
skill profile. The defining equation of the particular model used in [RH11], relating the
probability pi of the i-th alternative move to p0 for the best move and its difference in
value, is

log(1/pi)

log(1/p0)
= e−(

δ
s )
c

, where δi =

∫ v0

vi

1

1 + |z|
dz. (3)

Here when the value v0 of the best move and vi of the i-th move have the same sign,
the integral giving the scaled difference simplifies to | log(1 + v0)− log(1 + vi)|. Note
that this employs the empirically-determined scaling law from the last section.

The skill parameters are called s for “sensitivity” and c for “consistency” because
s when small can enlarge small differences in value, while c when large sharply cuts
down the probability of poor moves. The equation solved directly for pi becomes

pi = pα0 where α = e−(
δ
s )
c

.

The constraint
∑
i pi = 1 thus determines all values. By fitting these derived probabili-

ties to actual frequencies of move choice in training data, we can find values of s and c
corresponding to the training set.

Each Elo century mark 2700,2600,2500,. . . is represented by the training set com-
prising all available games under standard time controls in round-robin or small-Swiss
(such as no more than 54 players for 9 rounds) in which both players were rated within
10 points of the mark, in the three different time periods 2006–2009, 1991–1994, and
1976–1979. In [RH11], it was observed that the computed values of c stayed within a
relatively narrow range, and gave a good linear fit to Elo rating by themselves. Thus it
was reasonable to impose that fit and then do a single-parameter regression on s. The
“central s, c artery” created this way thus gives a simple linear relation to Elo rating.
Then if a player P ’s games in an event E produce a point (sP , cP ) on the line when
fitted, the corresponding Elo rating can be read right off. Points off the artery can be
mapped to the closest point on it by an iterative process.

Here we take a more direct route by computing from any (s, c) a single value that
corresponds to an Elo rating. The value is the expected error per move on the union of
the training sets. We denote it by AEe, and note that it, the expected number MMe of
matches to the computer’s first-listed move, and projected standard deviations for these
two quantities, are given by these formulas:

MMe =
∑T
t=1 p0.t, σMM =

√∑T
t=1 p0,t(1− p0,t)

AEe =
1
T

∑T
t=1

∑
i≥1 pi,tδi,t, σAE =

√
1
T

∑T
t=1

∑
i≥1 pi,t(1− pi,t)δi,t.

The first table gives the values of AEe that were obtained by first fitting the training
data for 2006–09, to obtain s, c, then computing the expectation for the union of the
training sets. It was found that a smaller set of moves comprising the games of the 2005
and 2007 world championship tournaments and the 2006 world championship match
gave identical results to the fourth decimal place.

Elo 2700 2600 2500 2400 2300 2200
AEe .0572 .0624 .0689 .0749 .0843 .0883



A simple linear fit then yields the rule to produce the Elo rating for any (s, c), which we
call an “Intrinsic Performance Rating” (IPR) when the (s, c) are obtained by analyzing
the games of a particular event and player(s).

IPR = 3571− 15413 ·AEe. (4)

This expresses, incidentally, that at least from the vantage of RYBKA 3 run to reported
depth 13, perfect play has a rating under 3600. This is reasonable when one considers
that if a 2800 player such as Vladimir Kramnik is able to draw one game in fifty, the
opponent can never have a higher rating than that.

Using equation (4), we reprise the main table from [RH11], this time with the cor-
responding Elo ratings from the above formulas. The left-hand side gives the original
fits, while the right-hand side corresponds to the “central artery” discussed above.

2006–2009

Elo s c IPR cfit sfit IPR
2700 .078 .503 2690 .513 .080 2698
2600 .092 .523 2611 .506 .089 2589
2500 .092 .491 2510 .499 .093 2528
2400 .098 .483 2422 .492 .100 2435
2300 .108 .475 2293 .485 .111 2304
2200 .123 .490 2213 .478 .120 2192
2100 .134 .486 2099 .471 .130 2072
2000 .139 .454 1909 .464 .143 1922
1900 .159 .474 1834 .457 .153 1802
1800 .146 .442 1785 .450 .149 1801
1700 .153 .439 1707 .443 .155 1712
1600 .165 .431 1561 .436 .168 1565

1991–1994

2700 .079 .487 2630 .513 .084 2659
2600 .092 .533 2639 .506 .087 2609
2500 .098 .500 2482 .499 .092 2537
2400 .101 .484 2396 .492 .103 2406
2300 .116 .480 2237 .485 .117 2248
2200 .122 .477 2169 .478 .122 2173

1976–1979

2600 .094 .543 2647 .506 .087 2609
2500 .094 .512 2559 .499 .091 2547
2400 .099 .479 2397 .492 .103 2406
2300 .121 .502 2277 .485 .116 2257

The entries vary around the Elo century marks, as is to be expected from a linear
fit. Some points in the 1600–2100 range are anomalous, and this may owe to various



factors pertaining to the quality of the games. The standard deviations are such that only
the first 3 digits of the IPR are significant, but the table still supports a conclusion of
no overall inflation. Because the fit was done with data from 2006–2009 only, inflation
would show up as, for instance, 2600- and 2500-rated players from earlier years having
higher IPR’s than players with those ratings today.

Further support for our basic contention that today’s players deserve their higher
ratings comes from historical IPR’s. Since the IPR is based only on game analysis and
has no functional component from Elo, it extends before the adoption of Elo to the
beginning of chess. The next table gives IPR’s for some players and events.

Player, player in event, or entire event IPR

Howard Staunton, versus P. de Saint-Amant 1899
Staunton, all major matches 1940
Adolf Anderssen, London 1851 2004
Anderssen, versus Paul Morphy 2112
Morphy, versus Anderssen 2124
Morphy, 59 most important games overall 2344
Anderssen, 1860 onward 2100
Wilhelm Steinitz, up to 1870 1937
Steinitz, 1871–1882 2320
Steinitz, London 1883 2486
Steinitz, all games versus Zukertort 2352
Steinitz, all games versus Chigorin 2146
Steinitz, all games versus Gunsberg 2495
Steinitz, all games versus Lasker 2334
Johannes Zukertort, all games 2188
Zukertort, London 1883 2445
Zukertort, all games with Steinitz 2199
Emanuel Lasker, all games with Steinitz 2471
St. Petersburg 1896 quadrangular 2390
Cambridge Springs 1904, top 9 vs. each other 2443
St. Petersburg 1914 prelims 2331
St. Petersburg 1914 finals 2575
New York 1927 2580
José Raoul Capablanca at New York, 1927 2936
(not a typo)
Capablanca at AVRO 1938 2681
AVRO 1938 overall 2605
The Hague 1948 2639
Paul Keres at The Hague 1948 2657
Curacao 1962 Candidates’ Tournament 2536



Player, player in event, or entire event IPR

Linares 1993 2521
Anatoly Karpov at Linares 1993 2569
Garry Kasparov at Linares 1993 2813
Linares 1994 2517
Karpov at Linares 1994 2917
Kasparov at Linares 1994 2481
Corus 2006 2735
Corus 2007 2765
Sofia 2006 2744
Sofia 2007 2576
Sofia 2008 2691
Sofia 2009 2705
Nanjing 2010 2747
Shanghai 2010 2831
Bilbao 2010 2906
Moscow Tal Memorial 2010 2693
London Classic 2010 2669

This shows a steady progression in IPR throughout chess history, mirroring the
improvement of sporting records in other fields and ascribable to better human health
overall, and greater wealth allowing there to be more enthusiasts. This argues against
ratings having inflated relative to skill.

It is possible that the model as currently constituted is favoring positional players
at the expense of tactical ones. Currently it quantifies only how one reacts to one’s own
challenges; it may need to quantify the degree of challenge set for the opponent. It may
also be overly influenced by plus-scores, as shown in the next section.

6 Distributions of Performances

The final experiment reported here analyzed 220 games from the 2011 Canadian Open,
including all from players with FIDE ratings 2400 and above, and all who finished
with at least 6/9. The following table shows the IPR’s and compares them to Chess
Federation of Canada ratings before and after the event, FIDE ratings before, and the
tournament performance ratings (TPR’s) based on the CFC ratings. The right hand col-
umn restricts to games against opponents with FIDE ratings 2400 and above. Players
marked with a * had fewer than 100 total analyzed moves against such players, and
so are not included in the latter sampling. From this we draw the following tentative
conclusions, pending an analysis in progress of the entire tournament:

1. FIDE ratings of Canadian players are deflated relative to apparent skill. This is
commonly believed to be due to a lack of playing opportunities in FIDE-rated events.

2. The model gives higher results even than Canadian ratings when all games are
included, but lower results when restricting to games among the FIDE 2400+ group.



Name CanR post FIDE TPR IPR Diff MvGp IPR+ -FIDE

Arencibia 2537 2556 2476 2745 2722 216 2737 +261
Benjamin 2641 2646 2553 2688 2411 -277 308 2491 - 62
Bluvshtein 2634 2634 2611 2622 2534 267 2462 -149
Bojkov* 2544 2550 2544 2595 2152 -443 64
Calugar* 2437 2408 2247 2144 2301 +157 0
Cheng 2500 2514 2385 2661 2732 189 2614 +229
Cummings* 2459 2461 2350 2473 2833 +360 47
Fedorowicz* 2508 2500 2454 2422 2390 32
Gerzhoy 2647 2645 2483 2622 2964 +342 192 2934 +451
Golod* 2576 2577 2582 2582 2640 110
Hambleton 2349 2359 2206 2425 2247 -178 101 1759 -447
Hebert* 2486 2490 2414 2519 2789 +270 79
Humphreys 2277 2300 2111 2458 2235 -223 180 2021 - 90
Krnan 2470 2486 2390 2651 2694 180 2477 + 87
Krush 2578 2575 2487 2539 2497 211 2495 + 8
Macak* 2391 2374 2391 2273 2521 +248 0
Meszaros* 2409 2399 2418 2278 62
Mikhalevski 2664 2652 2569 2519 2615 199 2538 - 31
Milicevic* 2400 2397 2288 2352 50
Mulyar 2422 2421 2410 2412 2635 +223 103 2683 +273
Noritsyn 2597 2594 2425 2563 2393 -170 162 2077 -348
Pechenkin* 2408 2401 2297 2309 2647 +338 11
Perelshteyn 2532 2543 2534 2650 2629 196 2559 + 25
Perez Rod’z 2467 2488 2467 2676 2628 116 2617 +150
Plotkin* 2411 2399 2243 2260 52
Regan* 2422 2408 2409 2268 2525 +257 51
Rozentalis 2614 2619 2571 2666 2722 222 2742 +171
Sambuev 2739 2723 2528 2571 2676 261 2584 + 56
Samsonkin 2532 2549 2378 2707 2535 -172 189 2502 +124
Sapozhnikov 2424 2429 2295 2480 2404 165 2231 - 64
Shabalov 2618 2613 2577 2549 2643 131 2814 +237
Thavandiran 2447 2461 2320 2607 2621 128 2427 +107
Wang* 2346 2350 2240 2376 2340 88
Xu 2149 2185 1875 2522 2151 -371 149 1869 - 6
Yoos* 2439 2426 2373 2289 77
Zenyuk* 2429 2424 2222 2342 2791 +449 93

Averages 2486 2392 2495 2551
21 no * 2516 2412 2587 2557 2459 + 47
15 *ed 2444 2365 2365 2539
32 with IPR 2495 2400 2520 2551



3. There are some strange high outlier IPR’s (David Cummings and Iryna Zenyuk,
even more than Leonid Gerzhoy), but the averages overall are reasonable—especially
when restricted to games within the 2400+ group, all of which were analyzed.

7 Conclusions

In this paper we have shown multiple, separate, and novel pieces of evidence that the
population of Elo-rated chess-players has remained stable in the relation of rating to
intrinsic skill level, and obeys simple large-scale population laws that make no refer-
ence to inflation. We have presented evidence that chess skill has increased steadily
throughout history, in line with the increased number of high-rated players. Given this
stability in the FIDE system, we can promote the use of our tools in adjusting members
of national federations wit their own rating pools to the international scale.

We anticipate further development of the methods in this paper. It is possible that
some rating systems being tested as alternatives to Elo in the recent Kaggle competitions
sponsored by Sonas [SK11] may yield better correspondences to our models.
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