CSE 713: Wireless Networks Security – Principles and Practices

Shambhu Upadhyaya
Computer Science and Engineering
University at Buffalo

Introductory Lecture

January 30, 2017

Acknowledgments

- DoD Capacity Building Grant
- NSF Capacity Building Grant
- Cisco Equipment Grant
- Anusha Iyer, Pavan Rudravaram, Himabindu Challapalli, Parag Jain, Mohit Virendra, Sunu Mathew, Murtuza Jadliwala, Madhu Chandrasekaran, Ameya Sanzgiri, Tamal Biswas (former students)
Seminar Presentations

- General introduction
- Wireless security challenges
- 802.11i basics
- Topics description (Module 1, End of Week 1)
- TKIP and AES-CCMP (Module 2)
- Ad hoc networks security and sensor networks security (Module 2, End of Week 2)
- Security Principles (Module 3, End of Week 3)
- In-depth look into advanced topics
 - Energy-aware computing
 - Smart grid security
 - IoT security (Module 4, End of Week 4)
- Student presentations (Week 5 onwards)

A Typical Wireless Security Course

- Introduction to wireless networking (1 week)
- Introduction to security issues in wireless networks (2 weeks)
- Overview of challenges, threats and hacking methodologies (1 week)
- Wireless technologies and security mechanisms – 802.11, WEP, 802.11i, 802.1x, EAP, Radius, Upper layer authentication (4 weeks)
- Advanced topics – WPA, RSN, TKIP, AES-CCMP, MANETs, Sensor networks, (4 weeks)
- Countermeasures and mitigation (1 week)
- Policy and analysis (1 week)
Seminar Course Grading

- **Prerequisites**
 - A course on Computer Networks and basic knowledge of computer security
 - Some programming experience is essential
- **Course webpage**
 - http://www.cse.buffalo.edu/faculty/shambhu/cs71317/
- **Grading**
 - Presentations
 - Research, Projects, any term papers
 - Attendance mandatory

Lab Projects (Hands-on)

- Setting up wireless networks with hybrid technology
- Setting up multi-hop networks in the lab
- Packet Analysis & Spoofing
 - WildPacket's AiroPeek, Ethereal/Wireshark, etc.
- RF Jamming & Data Flooding, DOS attacks
 - Get an idea on AP vulnerabilities, iPhones
- Information Theft
 - Implement a covert channel through a wireless communication path, how easy or difficult?
- Layered Wireless Security
 - Lightweight Extensible Authentication Protocol (LEAP) system of Cisco
- Key Management
 - Authentication, confidentiality
- Network survivability
 - Admission control, graceful migration, etc.
Why Wireless?

- No way to run the cable, remote areas
- Convenience of less hardware – e.g., Conferences
- Temporary setups
- Costs of Cabling too expensive
- Scalability and Flexibility - Easy to grow
- Reduced cost of ownership - initial costs the same as the wired networks
- Mobility

Mobility and Security

- Increased mobility has become way of life
- Wireless is at the first and last miles
- Presents itself to security problems
- Proper security must be practiced
- A new security culture needs to emerge across the entire Internet user community
- Hacker ethic “destructiveness is inquisitiveness” – must be resisted
- Instead, proper online security habits must be practiced
What Would Constitue a Typical Wireless Security Course

- Components of the course
 - Threat model
 - Security protocol
 - Keys and passwords
 - Key entropy
 - Authentication
 - Authorization
 - Encryption
 - Trust issues
 - Detection models

Security and Privacy

- Wireless infrastructure
 - Less physical assets to protect
 - But there is no locked door on the airways
- Infrastructure protection
 - In Government hands
 - Being public asset, government feels responsible
 - National security
- Military is often the originator of digital security measures
- Regulations are likely to thwart privacy
- FBI’s Carnivore program – automated snooping tool, unpopular
 - Similar to wiretapping, but sniff email, designed in 1999, Violated free speech and civil rights?, Program abandoned completely in Jan. 2005
- NSA’s Prism Program
 - Clandestine mass electronic surveillance data mining program (2007)
 - Existence was leaked by Edward Snowden in June 2013
Wireless Networks

- Cellular Networks (CDMA, OFDMA, GSM)
 - 1G, 2G, 3G, 4G, 5G, ...
 - Main function is to send voice (make calls), but data over voice applications (WAP, GPRS) have been developed to enable web surfing from cell phones
- Data Networks (802.11, 802.15, 802.16, 802.20 - Mobile Broadband Wireless Access (MBWA))
 - Main function is to send data, but voice over data applications have also been developed (e.g., VOIP)
- Emphasis of the course is on Data Networks
 - 802.11: WLANs, MANETs, Sensor Networks
 - 802.11 is a STANDARD with different implementations
 - 802.11 only tells about how to access the channel, how to back-off to prevent collisions, how to send a packet over the air

Wireless Network Types

- Fixed networks
 - Point-to-point network
- Nomadic networks
 - Point-to-multipoint network
 - Computing devices are somewhat mobile
 - 802.11b, 802.11g, 802.11a support this
 - Becoming quite commonplace – coffee shop
- Mobile networks
 - Must support high velocity mobility, 802.16e, 802.20 and CDMA 2000 standards
802.11 Variants

<table>
<thead>
<tr>
<th>Variation</th>
<th>Operating Frequency</th>
<th>Bandwidth</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.11</td>
<td>2.4GHz</td>
<td>2 Mbps</td>
<td>Less Bandwidth</td>
</tr>
<tr>
<td>802.11b</td>
<td>2.4 GHz</td>
<td>11 Mbps</td>
<td>Lack of QoS and multimedia support</td>
</tr>
<tr>
<td>802.11g</td>
<td>2.4 GHz</td>
<td>20 Mbps</td>
<td>Same as 802.11b</td>
</tr>
<tr>
<td>802.11a</td>
<td>5 GHz</td>
<td>54 Mbps</td>
<td>More Expensive and less range</td>
</tr>
<tr>
<td>802.11h</td>
<td>5 GHz</td>
<td>54 Mbps</td>
<td>Same as 802.11a</td>
</tr>
<tr>
<td>802.11n</td>
<td>2.4 GHz or 5 GHz</td>
<td>200 Mbps</td>
<td>Expensive</td>
</tr>
<tr>
<td>802.11e</td>
<td></td>
<td></td>
<td>QoS Support to 802.11 LAN</td>
</tr>
<tr>
<td>802.11f</td>
<td></td>
<td></td>
<td>access point communications among multiple vendors</td>
</tr>
<tr>
<td>802.11i</td>
<td></td>
<td></td>
<td>Enhance security and authentication mechanism for 802.11 mac</td>
</tr>
</tbody>
</table>

Wireless Networks Deployment Strategies

- Two modes of operation of 802.11 devices
 - Infrastructure mode
 - Ad hoc mode
- An Ad hoc network between two or more wireless devices without Access point (AP)
- Infrastructure mode – AP bridging wireless media to wired media
- AP handles station authentication and association to the wireless network
Infrastructure Mode Architecture

Ad-hoc Mode Architecture
Wireless Security Challenges

- What are the major challenges?
General Threats to WLANs

- Threats in wireless networks can be configured into the following categories:
 - Errors and omissions
 - Fraud and theft committed by authorized or unauthorized users of the system
 - Employee sabotage
 - Loss of physical and infrastructure support
 - Malicious hackers
 - Industrial espionage
 - Malicious code
 - Threats to personal privacy

Vulnerabilities in Wireless Networks

- Vulnerabilities in wireless networks include:
 - Existing vulnerabilities of wired networks apply to wireless networks as well
 - Sensitive information that is not encrypted (or is encrypted with poor cryptographic techniques) and that is transmitted between two wireless devices may be intercepted and disclosed
 - Denial of service (DoS) attacks may be directed at wireless connections or devices
 - Sensitive data may be corrupted during improper synchronization
Vulnerabilities, Contd..

- Malicious entities may be able to violate the privacy of legitimate users and be able to track their actual movements.
- Handheld devices are easily stolen and can reveal sensitive information.
- Interlopers, from inside or out, may be able to gain connectivity to network management controls and thereby disable or disrupt operations.

Wi-Fi Evil Twins

- Evil twins are a significant menace to threaten the security of Internet users.
- Anyone with suitable equipment can locate a hotspot and take its place, substituting their own "evil twin".
- There are no good solutions against it.
- Strong authentication and encryption could be good defenses.
Attacks in WLANs can be classified as:

- **Passive Attacks**
 - An attack in which an unauthorized party simply gains access to an asset and does not modify its content
 - Eavesdropping
 - Traffic Analysis

- **Active Attacks**
 - An attack whereby an unauthorized party makes modifications to a message, data stream, or file
 - Masquerading
 - Replay
 - Message Modification
 - Denial of Service (DoS)

WLAN Security Goals

- There are four goals one should aim for when installing a wireless network
 - **Access control** - Only authorized users should be allowed to use the wireless network
 - **Data integrity** - The network traffic should be secure against tampering
 - **Confidentiality** - The user should be protected against a third party listening to the conversation
 - **Availability of service** - The service should be secured against Denial of Service (DoS) attacks
Basic WLAN Security Mechanisms

- Security Problems - 802.11 family faces the same problems
 - Sniffing and War driving
- Following security mechanisms exist
 - Service Set Identifier (SSID)
 - MAC Address filtering
 - Open System Authentication
 - Shared Key Authentication
 - Wired Equivalent Privacy (WEP) protocol
- 802.11 products are shipped by the vendors with all security mechanisms disabled!!
 - Allows any wireless node (NIC) to access the network
 - Walk around and gain access to the network

Open System Authentication

- The default authentication protocol for 802.11
- Authenticates anyone who requests authentication (null authentication)
Shared Key Authentication

- This assumes that each station has received a secret shared key through a secure channel independent from the 802.11 network.
- Stations authenticate through shared knowledge of the secret key.
- Use of shared key authentication requires implementation of the 'Wired Equivalent Privacy' algorithm.

Wired Equivalence Privacy (WEP)

- Designed to provide confidentiality to a wireless network similar to that of standard LANs.
- WEP is essentially the RC4 symmetric key cryptographic algorithm (same key for encrypting and decrypting).
- Transmitting station concatenates 40 bit key with a 24 bit Initialization Vector (IV) to produce pseudorandom key stream.
- Plaintext is XORed with the pseudorandom key stream to produce ciphertext.
Wired Equivalence Privacy (WEP)

- Ciphertext is concatenated with IV and transmitted over the wireless medium
- Receiving station reads the IV, concatenates it with the secret key to produce local copy of the pseudorandom key stream
- Received ciphertext is XORed with the key stream generated to get back the plaintext

WEP Encryption Algorithm
WEP Decrypting Algorithm

WEP Problems

- There is no key management provision in the WEP protocol
- WEP has been broken! Walker (Oct 2000), Borisov et al. (Jan 2001), Fluhrer-Mantin-Shamir (Aug 2001)
- Unsafe at any key size: Testing reveals WEP encapsulation remains insecure whether its key length is 1 bit or 1000 or any other size
- More about this at: https://mentor.ieee.org/802.11/documents/
802.11i Basics

- The wireless security standards

802.11i – The New Security Standard

- New generation of Security Standards
- Standard was ratified in June, 2004 and incorporated into 802.11-2007 standard
- Defines a security mechanism that operates between the Media Access Control (MAC) sublayer and the Network layer
- Introduced a new type of wireless network called RSN
- RSN - Robust Security Networks
 - Based on AES (Advanced Encryption Standard) along with 802.1X and EAP (Extensible Authentication Protocol)
 - Needs RSN compatible hardware to operate
To ensure a smooth transition from current networks to 802.11i, TSN (Transitional Security Networks) were defined where both RSN and WEP can operate in parallel.

Due to the requirements of RSN for a different hardware, Wi-Fi Alliance defined WPA.

- **WPA - Wi-Fi Protected Access** → subset of RSN
 - Can be applied to current WEP enabled devices as a software update
 - Focuses on TKIP (Temporal Key Integrity Protocol)

RSN and WPA share single security architecture.

Architecture covers:
- Upper level authentication procedures
- Secret key distribution and key renewal

Differences between WPA and RSN:
- WPA defines a particular implementation of the network whereas RSN gives more flexibility
- RSN supports TKIP and AES whereas WPA has support only for TKIP
- WPA – applied to infrastructure mode only
- RSN – Applied to ad-hoc mode also

Security Context:
- Keys – Security relies heavily on secret keys
- RSN – Key hierarchy
 - Temporal or session keys
 - Master key
802.11i Contd...

- Security Layers
 - *Wireless LAN layer*
 Raw communication, advertising capabilities, encryption, decryption
 - *Access control layer*
 Middle manager: manages the security context. Talks to the authentication layer to decide the establishment of security context and participates in generation of temporal keys
 - *Authentication layer*
 Layer where the policy decisions are made and proof of identity is accepted or rejected
Access Control Methods

- Access Control Mechanism to separate authorized and unauthorized personnel
- Protocols used to implement Access Control in RSN and WPA are:
 - 802.1X
 - EAP
 - RADIUS

Elements of Access Control:
- Supplicant
- Authenticator
- Authorizer

Steps in Access Control:
- Authenticator is alerted by the supplicant
- Supplicant identifies himself
- Authenticator requests authorization from authorizer
- Authorizer indicates Yes or No
- Authenticator allows or blocks device
802.1X

- Divides the network into three entities:
 - Supplicant
 - Authenticator
 - Authentication Server
- Works between the supplicant (client) and the authenticator (network device)
- Medium independent (Wired, Wireless, Cable/Fiber)
- Uses EAP to support Multiple authentication methods like:
 - EAP-TLS (certificates)
 - PEAP/TTLS (password)

802.1X Components

1. User activates link (i.e., connects to the access point)
2. Switch requests authentication server if user is authorized to access LAN
3. Authentication server responds with authority access
4. Switch opens controlled port (if authorized) for user to access LAN
Role of RADIUS in WPA

- **Remote Authentication Dial-In User Service**
- De-Facto Standard For Remote Authentication
 - PAP (Password Authentication Protocol)
 - CHAP (Challenge Handshake Authentication Protocol)
- Used for communication between APs and AS
- RADIUS facilitates centralized user administration required for many applications, e.g., ISPs
- Perhaps not used in home installations
- WPA mandates the use of RADIUS authentication
- Optional for RSNs – RSNs use Kerberos

Student Presentation Topics

- Secure Routing in Ad hoc Networks
- Key Management in Ad Hoc and Sensor Networks
- Attacks in Sensor Networks
- Trust Issues in Wireless Networks
- Mesh Networks Security
- Vehicular Networks Security
- Smart Grid Security
- Smartphone Security
- Internet of Things (IoT) Security