
VMES: A NETWORK-BASED
VERSA TILE MAINTENANCE EXPERT SYSTEM

Annual Report on Contract No. F30602-85-C-0008 for 1985

submitted to

Northeast Artificial lntelligen.ce Consortium
120 HindsHal!

Syracus University
Syracus, NY 13210

November 25, 1985

submitted by:

Stuart C. Shapiro, Principal Investigatr-
Sargur N. Srihari, Co-Principal Investigator
James Geller, Graduate Research Assistant

Ming-Ruey Taie, Cfraduate Research Assistant
Scott S. Campbell, Graduate Research Assistant

Department or Computer Science
StateUniversity or New York at Buffalo

226 Bell Hall
Ruffalo, NY 14260

--- -·

1
I

c uuc, ;u. ,Jc c;. • t .1.1.;. n.J, t. ;_c. ;_;. ,_uc. uc,oc.uootJ.JOO"JJ.,J..>.:.•Jo.:h.1UJ2.Zl .. ,ch>l)-•2'.\,'lbh2~.)<H)ZS8h

.,

Part. I Device Modeling and Fault Diagnosis of VMES

1. INTRODUCTION

We are developing a versatile maintenance expert system (VMES) for trouble-shooting
digital circuits.

Some diagnosis systems, such as MYCIN [19] for medical diagnosis and CRIB [5] for
computer fauit diagnosis, are built on· rules which represented empirical associations.
Though these, systems have had considerable success,. there are some important drawbacks:

<, ~-legg.e acquisition from domain expe~~fficult, all possible faults (diseases} have to
be enumer~plicit..ly which results in a limitation of the diagnosis power, and· they
have almost no capability of system generalization. ·

As a solution to difficulties of empirical-rule-based diagnosis systems, structural and
functional descriptions have been widely used by Al researchers in the domain of fault
diagnosis [3, 4]. The knowledge needed for building such a system is well-structured and
readily available at the time when a device is designed. There is no need to explicitly
enumerate all possible faults since they are defined generically as violated expectations at
the output ports. This approach makes the adaptation for the system to a new device much
easier, because the only thing needed is to describe the device to the system.

To rest this idea, we have implemented a diagnosis system that has successfully pin
pointed the l'au l tv part of a multiplier/adder board, a favorite example for researchers in
this field (<;ee e.g_, [3].)

An important aspect of our research is to find a good knowledge-representation
scheme to support the diagnosis and the construction of a versatile maintenance system.
We have implemented our system in the SNePS Semantic Network Processing System [16].
Advantages are: (1) structural and functional knowledge is integrated into a single net
work; (2) reasoning is done by rule-based inference; (3) diagnosis assumptions can be han
dled in a natural way; (4) the deduction process can be monitored; (5) inference can also be
traced graphically; (6) the representation can easily be expanded and modified; (7) pro
cedural knowledge is represented and used; (8) it is smoothly interfaced with USP.

Version 1 of our implementation uses a hand-coded description of the device. An
intermediate user, who adapts the system to a specific device, needs to hand-code all the
structural and functional details of the device, even that a lot of parts are of the same com
ponent type. Since versatility is a goal, the system was redesigned as Version 2. It contains
a kind of type declaration to build a component library. This has enhanced the versatility
of the system quite significantly. We successfully adapted the system to a new device with
minimum effort by just adding the descriptions of new components to the system.

A brief description or the implementation of Version 1 appears in the next section.
Section 3 contains a· detailed description of our current implementation. (Version 2) along
with an annotated demonstration. Section 4 and 5 are discussions and future work.

2. VERSION 1

This section contains a brief description of our early implementation of VMES. A
board of three multipliers and two adders was used as the target object to be diagnosed.

The structural description was hierarchical, which made it possible to focus on the
relevant part of the device at any time during the diagnosis. The structural description
was hard-wired, every detail of the device needed to be entered by hand. Examples are:

1-1

in SNePS codes

(build object Dl
type M3A2
inpl Dlinpl
inp2 Dl inp2
inp3 D1inp3
outl Dloutl
out2 Dlout2
sub-part (DlMl D1M2 D1M3

D1Al D1A2)
super-part NIL)

(build object D1Ml
type MULT
inpl DlMlinpl
inp2 D1M1inp2
out l D1M1outl
sub-part NIL
super-part D1)

In English

The object Dl is of M3A2 type;
it has three inputs and two outputs
named in order as Dlinpl, Dlinp2,
Dlinp3, Dloutl and Dlout2;
it is consists of 5 sub-parts: DlMl,
D1M2, D1M3, D1A1 and DlA2.

The object DlMl is a MULTiplier,
it has two inputs and one output
named in order as Dlinpl, Dlinp2,
and Dloutl. It has no sub-part and
it is part of Dl.

(build from
to

Dlinpl
(D1 M 1 inpl Dl M2inpl))

There is a wire connection from
Dlinpl to DlMlinpl & D1M2inpl.

Only one wire connection description, which actually represented two wires, is shown
here. And similar codes for D1M2, D1M3, DlAl and D1A2 were required since the struc
tural description was hand-coded.

lefinition was implemented as a template of the SNePSUL function node
[1 7]. Unlike the structural description, the functional description was associated with each
type of the components rather than the parts themselves. An example was:

In SNePS code:

(dp ADDER (inpl inp2 outl)
(cond (Ceq (plus inpl inp2) oun) (succeed true))

(t (succeed false))))

in English:

For an adder, it is good if the two inputs sum to the output,
it is bad otherwise.

The function description gave an explicit definition to decide whether a component was

1-2

--------------------~~~=~==~~~-~ ... = ... ,,., .. , .. ,.,.,_. ... ,.".""' ..

malfunctioning. It did not explicitly depict what the function of an adder was, which was
required in order to simulate the behavior of an adder. And for every type of component,
it needed its own rule for finding violated expectation at the output ports. The rules, in
English, looked like:

If an object is an adder and all its input and output values are
known, then one and only one of the following is true:
1). the object is functioning well, which can be infered from

the adder function description;
2). there is a violated expectation at its output.

The inference engine for fault diagnosis followed a simple control structure. It is
similar to that of the current implementation, and is discussed in the next section.

3. VERSION 2
This section contains a full description of our current system implementation. The

system consists of two major parts: the device representation and the inference engine. The
device representation is further divided into structural and functional descriptions. An
annotated demonstration of the system is at the end of this section.

3.1. Device Representation
The current implementation of VMES includes a complete redesign of the device

representation in both the structural and functional description. The disadvantages of
the hand-coded description have been removed, and major progress has been made
toward an ultimately versatile system.

3.1.1. Structural Description
Once again, only the logical structure of the device is represented and used for

diagnosis in our current implementation. Instead of hand-coding every detail of the
device, the system keeps a component library which know every "type" of com
ponent. Each component type is abstracted at two levels and represented by two
SNePS rules which are categorized as instantiation rules. The structure of the device
is still represented in a hierarchical way through the parts hierarchy. Sub-parts of
the device are instantiated only when they are needed. This increases memory
efficiency .

. At level-1 instantiation, an object is built as a module (a black box) with its
I/0 ports and a pointer to its functional description. The functional description is
implemented as a LISP function which simulates/infers the value of one port in
terms of the others. This will b_e discussed later.

At Jevel-2, the sub-parts of the object at the next hierarchical level is built, and
the wire connections between the object and its sub-parts, as well as those among the
sub-parts themselves are made. Each sub-part is assigned a name which is an exten
sion of the name of its super-part (the object), and it is instantiated at level-] so that
its 1/0 ports are available for the wire connections.

Several typical instantiation rules are as follows:

.. ,-,

All annotations are shown in italics.

1-3

., , .

All types of components are described as:
level- I description: I /0 ports and functions.
level-2 description: sub-parts and connections.

; The following two SNePS rules describe
; the M3A2 type components:

(build
avb Sx
ant (build object *x type M3A2 state TBL-Ll)
cq (build inport-of *x inp-id l) = vlNPl
cq (build inport-of *x inp-id 2) = vINP2
cq (build inport-of *x inp-id 3) = vlNP3
cq (build ou tport-of *x out-id 1) = vOUTl
cq (build outport-of *x out-id 2) = v0UT2
cq (build port *vOUTl f-rule M3A2outl

pn 3 pl *vINPl p2 *vlNP2 p3 *vINP3)
cq (build port *v0UT2 I-rule M3A2out2

pn 3 pl *vINPl p2 *vINP2 p3 *vINP3]

: The first three lines says that "if xis an M3A2 and is to be
instantiated at leoel-I (T Bl- L 1), then do the follows:"

: The next five lines instantiate the ilo ports.
: The last two "builds" link the output ports to the functional

description of the object. The first one says "to simulate the
value of first output, uses the function M3A2outl which takes
three parameters: the inputs of the object x in order."

; Similar links can be done for all input ports if we want lo infer
their values from other ilo ports.

(build
avb *x
ant (build object *x type M3A2 state TBI-L2)
cq (build

avb ($xpl $xp2 $xp3 $xp4 $xp5)
ant (build name: Give-PID-M3A2 object *x

pl *xpl p2 *xp2 p3 *xp3 p4 *xp4 p5 *xp5)
cq ((build object *xpl type MULT state TBI-Ll)

(build object *xp2 type MULT state TBI-Ll)
(build object *xp3 type MULT state TBI-Ll)
(build object *xp4 type ADDER state TBI-Ll)
(build object *xp5 type ADDER state TBI-Ll}
(build super-part *x

sub-parts (*xpl *xp2 *xp3 *xp4 *xp5))
(build from *vlNPl

to ((build inport-of *xpl inp-id 2)
(build inport-of *xp2 inp-id l)))

; to save space, not all wire connections are shown here.
(build from (build outport-of *xp3 out-id l)

to (build inport-of *xp5 inp-id 2))
(build from (build outport-of *xp5 out-id 1)

to *vOUT2]

1-4

; The first seven lines say: "if xis an M 3A2 at T BI-L2, uses the
function Give-PI D-M 3A2 to get the names for its sub-parts"

; The next seven lines declare the types of the sub-parts and will
activate appropriate rules to instantiate them at their leuel-I
instantiation. The super-part/ sub-parts hierarchical relation

; between the object x and its sub-parts is built also.
; The remainders connect the wires between x and its sub-parts as

well as those among the sub-parts themselves.

; The following two SNePS rules describes
; the MU L'I'iplier type components:

(build
avb $x
ant (build object *x type MULT state TBI-Ll)
cq (build inport-of *x inp-id 1) = vINPl
cq (build inport-of *x inp-id 2) = vINP2
cq (build outport-of *x out-id 1) = vOUTl
cq (build port *vOUTl I-rule MULToutl

pn 2 pl *vINPl p2 *vINP2]

(build
avb *x
ant (build object *x type MULT state TI3l-L2)
cq (build super-part *x sub-parts lamDRU]

; Please note that the leoel-Z instantiation will not instantiate any
sub-part since a multiplier is regarded as a Depot Replaceable
Unit (DRU) and there is no need to re present its details.

All instantiation rules are stored in a file, which is regarded as a components
library. Representing the structure of a device via the instantiation rules and the
use of a components library give the system several important advantages. We do
not have to hand-code three almost identical multipliers on our example digital cir
cuit board; the information is generated by the system only when required during
the course of diagnosis. This should minimize the construction effort during the sys
tem development period, and .shou ld also gain some memory efficiency during diag
nosis. This is especially important in a memory critical environment. ·

Although instantiation· during diagnosis is good for memory efficiency, it is
slower during diagnosis. To overcome this problem without degrading the benefit of
fast system construction, we designed the representation in a way which allows
pre-instantiation of the device before diagnosis. This can be done easily by changing
all TBI-L2 nodes in the components library to THI-Ll. Since the instantiation rules
are used in a forward way, if a device is declared to be some type at its level-I
instantiation, it would activate all required instantiation rules throughout its struc
tural hierarchies and build every detail of the device. This design give the system
one more dimension of versatility, namely that the system is versatile in both
memory-critical and diagnosis-speed-critical situations.

1-5

The most important advantage of the current implementation is the extreme
ease in adapting the system to other devices. All that the system adapter has to do is
to add the structural and functional information of the "new" component types to
the components library and the functions library, which will be discussed later. A
new component type is defined as a component type which has not been described to
the component library. The new device itself is a new component type by our
definition. The effort required to adapt the system to new devices should be minimal
since digital circuit devices have a lot of common components, and the structural and
functional description should be readily available at the time when a device is
designed.

3.1.2. Functional Description

In Version 1, the functional description was actually a testing procedure which
could only be used to decide whether a component was malfunctioning. It had two
main drawbacks: the description could not be used to simulate the behavior of the
component, and every component type required its own associated SNePS rule for
finding violated expectation at its output ports.

Version 1 offended a theoretical basis of fault diagnosis. Jt implemented the
strategy:

If the component is malfunctioning,
there is violated expectation at its output.

But it should be the other way around:
If some violated expectation is observed at the outputs,
the component is malfunctioning.

And the violated expectation should be defined generically as:
If there is a mismatch between the expected (calculated) value and the
observed (measured) value at some output, it is a violated expectation.

The functional description should be useable to simulate the component
behavior, i.e., to calculate the values of output ports if the values of the input ports
are given. It should also be useable to infer the values of the input ports in terms of
the values of other 1/0 ports .. This is important if hypothetical reasoning is used for
fault diagnosis. Though we have only used the functional description to calculate
the value at the output port, our representation scheme can be used both ways.

The functional description is implemented as a LISP function, which calculates
the desired port value in terms of the values of other ports. Every port of a com
ponent type has such a function associated with it, the link between the port and
the function had been described in the structural description. Since different ports of
different. component types might have the same function, some functions can be
shared. Several examples of the functional description as well as the SNePS rule
which finds the violated expectation are as follows:

All annotations are shown in italics.

: Below is the Junction for the first output port of M3A2 type objects

(defun M3A2out1 (inpl inp2 inp3)
(plus (product inpl inp2)

1-6

(product inpl inp3)))

; Below is for the single output port of MULTiplier type objects

(defun MULToutl (inpl inp2)
(product inpl inp2))

; Below is an artificial example to show a function shared by several
; diff erenl component types such as the super-buffer, the wire or the
; I-to- 1 transformer. All these component types show the same behavior
; at ow level of component abstraction: echo the input to the out put.

(defun ECHO (inpl)
inpl)

; The SNePS rule below is the only rule for concluding a violated
; expectation, it is actually part of the inference engine. It is
; displayed here lo show the benefit of the functional description of
; our current implementation.

in SNePS code:

(build
avb ($p $vc $vm)
&ant ((build port *p value *vc source calculated)

(build port *p value *vm source measured))
cq (build

min 1 max 1
arg (build name: THEY-MATCH pl *vc p2 *vm)
arg (build port *p state vio-expct]

in English:

If the calculated and measured values of port pare known as vc & vm,
one and only one of the follows is true:

1). vc and vm match;
2). port p displays a violated expectation.

As depicted above, the functional description is versatile in that it supports the
simulation and the inference of the device behavior; it supports hypothetical reason
ing; and the representation scheme is quite simple.

3.2. Inference Engine

The inference engine for fault diagnosis follows a simple control structure. It
starts from the top level of the structural hierarchy of the device, tries to find the out
put ports which show a violated expectation, and then uses the structural description to
find a subset of components at next hierarchical level which might be responsible for

1-7

the bad outputs. The process is then mapped down to the suspicious parts, and a part is
declared faulty if it shows some violated expectation at its output port and it is at the
bottom level of the structural hierarchy, i.e. it is the smallest replaceable unit and
there's no need to examine its details.

The inference engine is a rule-based system implemented in the SNePS Semantic
Network Processing System. The control flow is enforced by a LISP driving function
called "diagnose". SNePS can do both forward and back ward inference, and it is capable
of doing its own reasoning to diagnose the fault. The LISP driving function is intro
duced for execution efficiency.

A smal 1 set of SNePS rules is activated qt every stage of the diagnosis. For exam
ple, three rules are activated when reasoning about a possible violated expectation of a
specific port of a device. -One rule is to deduce the measured value -of the port; If the
value can not be deduced from the wire connections, the rule would activate a LISP
function which asks the user to supply one. A similar rule is for the calculated value,
and the last rule is to compare the two values to decide if there is a violated expecta
tion. The last rule has been shown in the section on functional description.

The diagnosis strategy along with the combination of a LISP driving function and
SNePS rules turns out to be very effective. The diagnosis can be monitored by the
SNePS text or graphic inference trace. The graphical trace is only available for Version
1, but will be implemented for Version 2. Another new feature of Version 2 is that it
warns the user if the diagnosis is incomplete due to insufficient information.

3.3. Demonstration Example
An annotated demonstration is shown below. The target device is an M3A2 type

board. The board has three input ports and two output ports, and it has five sub-parts:
three multipliers and two adders. The multipliers and adders are DRU's, thus the device
has only two levels in its structural hierarchy. The structure of the test device Dl is
shown in Fingu re. 1.

; All anrcr v'on» at> shown in italics.

; Many output listings were removed and the SNePS inference trace
; was turned off so that the demonstration did not get too long.

; Run the SNePS system which is written in Franz LISP.
; The computer used is a VAX 111750 at Dept. of CS, SU NY at Buffalo.

% sneps
Franz Lisp, Opus 38.79
Thu Sep 12 20:37:18 1985

sneps

; The SNePS prompt is the asterisk.

; Bring in all arc definitions used by the network:
* (intext ARCS)
(done reading from AI\CS)

1-8

A TEST PROBLEM

1 - -
1- 2 ~

1
- 6 -

3 -
'

expectation 1-.a

1-.a

1-9

exec: 0.95 sec gc: 0.00 sec

; Bring in the COMPonent library:
* (intext COMP)
(done reading from COMP)
exec: 19.08 sec gc: 0.00 sec

: Bring in the CONTrol rules, i.e., the inference engine:
* (intext CONT)
(done reading from CONT)
exec: 7.03 sec gc: 0.00 sec

; Load in the functional descriptions:
* (~(load 'FUNC))
t
exec: 1.21 sec gc: 0.00 sec

; Declare the device DJ to be an M3A2 type object:
* (device-setup Dl M3A2)
; This activates the leoel-I instantiate rule of the M3A2 type,
; and build the I 10 ports and their function pointers as follows:
(m121 (state (TBI-Ll)) (type (M3A2)) (object (D1)))
(ml 22 (inp-id (3)) (in port-of (Dl)))))
Cm123 (inp-id (2)) (inport-of (Dl)))))
(m124 (inp-id (1)) (inport-of (D1)))))
(m126 (p3 (m122 (inp-id (3)) (inport-of (Dl))))

(p2 (m123 (inp-id (2)) (inport-of (Dl))))
(pl (m124 (inp-id (1)) (inport-of (D1))))
(pn (3))
(I-rule (M3A2out2))
(port (m125 (out-id (2)) (outport-of (D1)))))

(rn128 (p3 (m122 (inp-id (3)) (inport-of (D1))))
(p2 (m123 (inp-id (2)) (inport-of (D1))))
(pl (m, ~4 ,;r;p-,c.: (1)) (in port-of (D1))))
(pn (3))
(f-rule (M3A2out1))
(port (m127 (out-id (1)) (outport-of (Dl)))))

done
exec: 32.06 sec gc: 3.30 sec

; The follows builds the values of 110 ports of DJ:
* (build port (find inport-ofD'l inp-id 1)

· value 1 source measured]
* (build port (find inport-of D1 inp-id 2)

value 1 source measured]
* (build port (find inport-of Dl inp-id 3)

value 3 source measured]
; Next one should be 4, but a 2 is observed for this case:
* (build port (find outport-of Dl out-id 1)

value 2 source measured]
* (build port (find outport-of Dl out-id 2)

value 6 source measured]

1-10

; Begin the diagnosis session for device D 1:
The messages prefixed by @@@ are from the driving function.

* (diagnose Dl)

@@@ diagnose DJ: finding vio-expct
; 1 f the SNePS inference trace were on, it would show that the system found
; the first out put o JD 1 was a violated expectation, and the other was not.

(ciJ@@ adding TBI-L2 for Dl
; DJ is instantiated at leoel-Z since further investigation is needed.

@@@ adding TFS for D1
; Now. a state called TFS (To Find Suspects) is addedJor DJ. This
; activates the rules which find suspicious sub-parts of DJ:

@t@@ suspects created: (DlAl D1Ml D1M2)
: Note that DJA2 and DJM3 are not suspects.

; The diagnosis process is mapped down lo each suspect:

@@@ diagnose Dl A 1: finding vio-expct

What is the value of port
(m155 (in port-of (Dl A 1)) (inp-id (1)))
value/nil? 1

What is the value of port
(m156 (in port-of (DJ Al)) (inp-id (2)))
value/nil? 3
; The system asks the user to supply measured values of ports if they
; can not be deduced from the wire connections:

@@@ adding TBl-L2 for DlAl

@@@ DlAl is faulty by vio-expct & DRU
; DIA] is found to be faulty since it is a DRU and behaves abnormally.

@@@ diagnose D'l Mk finding vio-expct

cgl@@ Dl Ml shows no problem

@<,v@ diagnose D1M2: finding vio-expct

Ciil@@ Dl M2 shows no problem

; Note that both DIM 1 and DJM2 are not instantiated al level-2
; since they do not show any violated expectation at their outputs.
; Also note that the values of their 1 /() ports are not requested since
; they can be deduced by the system.

1-11

; A final report is given by the system:
>>>>> I GOT THE FAULTY PARTS AS >>>>>
(m237 (state (faulty)) (object (DlAl)))

· (dumped)
exec: 398.35 sec gc: 74.73 sec

-; The user can check all intermediate and final results:
; only a small part of it is shown below.
* (desc *nodes - *oldnodes)
(m255 (arg

(m254 (state (vio-expct))
(port Cm 150 (ou t-id (1)) (ou tport-of (Dl M2))))))

(max (0))
(min (0)))

; The first output of DIM2 shows no violated expectation.
(111253 (source (calculated))

(value (3))
(port (m150 (out-id (1)) (outport-of (D1M2)))))

; The calculated value of the first output of DJM2 is 3.
(m 187 (to (m 125 (out-id (2)) (outport-of (Dl))))

(from (ml 86 (out-id (1)) (outport-of (D1A2)))))
; A wire runs from]st output of DIA2 to 2nd output of DJ.
(m166 (sub-parts (D1Ml) (D1M2) (D1M3) (D1Al) (D1A2)) (super-part (Dl)))
; The sub-parts of DJ are DlMl, DIM2, DIM3, DlAl and DlA2.
(m165 (state (TBI-Ll)) (type (ADDER)) (object (D1A2)))
; DJA2 is an ADDER, and has been instantiated at level-I.
(dumped)
exec: 15.25 sec gc: 0.00 sec

* (exit)
No files updated.
%

4. DISCUSSION

An important aspect of our research is to find a good knowledge-representation
scheme to support diagnosis. Many researchers use standard predicate logic, but this has
several drawbacks: the representation, the resolution: technique, and the diagnosis assump
tions seem fairly unnatural. We have implemented our system in the SNePS Semantic Net
work Processing System [16]. Advantages are: (1) structural and functional knowledge are
integrated into a single network; (2) reasoning is done by rule-based inference; (3) diagnosis
assumptions are 'handled in a natural way; (4) the deduction process can be monitored; (5)
inference can also be traced graphically; (6) the representation can be easily expanded and
modified; (7) procedural knowledge is represented and used; (8) it is smoothly interfaced
with LISP.

The structural description is represented by instantiation rules at two different levels.
This scheme turns out to be very effective and flexible. It can be used to pre-instantiate the
target device with only little change. We ran the same example as the one used in the last
section in both regular mode, which did the instantiation only when needed, and the pre
instantiation mode. As expected, the former was memory efficient, and the latter was good

1-12

for diagnosis speed. For the example of the M3A2 type device, the latter was four times
faster than the former.

The main feature of our device representation scheme is the versatility of the system.
To adapt the system to new devices, the only thing that needs to be done is to add new
components to the system's libraries. In order to test this idea as well as the suitability of
hierarchical structural representation, we invented a new device type called XM3A2 and
put it into the system. The XM3A2 type has three inputs and two outputs, and only has a
single sub-part which is of M3A2 type. Actually, it is a device which has an extra layer
of packaging on an M3A2 type device. The M3A2 type has been known to the system,
thus only the XM3A2 needed to be described to the system, and the description is two sim
ple instantiation rules. There is no-need for new functional description since the function
of XM3A2 is the same as M3A2. The device has three levels of structural hierarchy, and
our test successfully found the faulty part at the lowest level. Though the example of
XM3A2 is somewhat simple, it displays the capability of the system to deal with a wide
range of devices in the domain with arbitrary complexity.

5. FUTURE WORK

A potential problem is that this approach to fault diagnosis is only good for digital
circuitry without feedback. There are many devices that are mixtures of digital and ana
log circuitries. To adapt the system to those devices may require some modification of the
device representation scheme. The representation and use of second principle rules should
also be introduced for better system performance.

ln our current scheme, similar component types, which have the same function but
different specifications, are represented individually. An example is the representation of
l -to-1, l -to-2, and l -to-J transformers. It would be better to represent all types of
transformers by a single representation with a parameter to specify the transforming rate.

There is no user interface for adding new components so far. The development of a
formal language for device representation may solve this problem as well as others. The
language should support all diagnosis related activities, such as device simulation and struc
ture retrieving. It should also support the system construction and adaptation.

1-13

Part. II Graphical Interface of VMES

1. INTRODUCTION
The main mode of communication between the SNePS reasoning mechanism used for

the VMES project and the user is intended to be a graphical interface. We have imple
mented a new version of such an interface called "SENDING". - This version supersedes the
version of SENDING that has 'been described in our final report of the Post Doctoral project
(SCEEE) [18].

The first change noticeable between these two versions is the changed domain. In our
effort to construct a versatile program we have changed the "device" of diagnosis. While
the SCEEE world consisted of a small- number of logic gates which were only partially
connected, we have since then tackled two new devices.

The first one of these devices is a little Adder/Multiplier that has been a test object of
several researchers in the field of trouble shooting. The second one is piece of a real device,
a 6 channel PCM board. This change of domain however was not the crucial step.

Only insignificant improvements have been made to the representation of visual
knowledge. The basic case frames are still the same as described in the SCEEE report, and
so are the used relations. The significant changes in the second generation of SENDING are
an improvement in speed by approximately a factor of seven of the display program, and a
considerable expansion of the power of both, the display and the readf'orrn function. This
section of our report will first make some general comments on "visual knowledge" and
will then continue by describing the new options of "display".

While visual knowledge has been dealt with implicitly in computer vision and from
a different aspect in computer graphics, and in cognitive psychology for quite some time,
we lately have been experiencing a growing interest in an explicit treatment based on
Knowledge Representation methods (9, 2). The crucial point here is the interest in a natural
representation that lends itself to reasoning processes as opposed to a representation for ease
of "recognition" or of "display". Some more references on this subject are given in the spe-
;:,_1 SP"':'-'Jn on "Other Activities", at the end of this paper, dealing with the acquisition of
background knowledge.

2. THE GRAPHICAL INTERFACE

2.1. Motivation
Why should somebody want to implement a program like "SENDING" (SEmantic

Network Domain Interface Graphics)? Our interst in this interface is twofold.
Currently there is a growing interest in multi media communication [14]. Technical
literature would be impossible without charts, diagrams and drawings. lt seems that
also a dialog between a technician and an advisory expert system about a technical
object like a circuit board would profit very much from a graphical component.

One can even go so far to say that diagrams are the "interlingua" of the technical
literature. The display of the device under repair can be used in our system by both the
user and the computer to refer to parts which are currently under discussion.

The second source or our interest in graphical interfaces is of theoretical nature.
We are investigating principles of visual know ledge representation. In computer vision
or computer graphics, representations are mainly designed in order to permit efficient

2-1

recognition or display of objects. We are interested in representations that can be used
in reasoning, about forms as well as for display purposes.

2.2. Components of the Interface
The SENDING graphical interface contains several parts, the most important of

which are the "display" function and the "readform" function. The readform function
is our (simple) version_ of a CAD device. It permits a user to create a simple object, con
sisting 'of arcs, lines, circles, -boxes, text, etc. by drawing them on the screen of a graphics
terminal. Objects can contain several unconnected parts and are stored immediately as
named objects, namely as LISP functions.

Although it is not our purpose to compete with any of the very fancy existing
CAD systems; considerable improvements to readform have been made over the last
year. Currently work is done on the third generation of readf'orrn. Only the introduc
tion of arcs made it possible to design most of the common logic symbols (AND and OR
gates) and of transformers. In earlier described versions of SENDING a separate libarary
was necessary for round objects.

Improvements currently worked on are commands that make the creation of
repetitive structures easier. Also earlier defined objects can be loaded into currently
built up more complex objects.

The logical counter part of readform is the "display" function. Display takes one
or more nodes of a semantic network as arguments. These nodes can be either base
nodes, representing objects, or assertion nodes, representing simple propositions about one
object. Assuming the semantic network contains propositions about form, position and
attributes of an object, "display" can retrieve this information and create a picture of
the object on the screen. Displayable propositions also have to say something about
form/position of an object, and the display of the proposition is done by showing the
described object.

It should be noted that this approach to image generation is different from the
techniques usually employed by computer graphics programs. Our object descriptions
are given in a declarative format, incorporating them together with a part and a type
hierarchy into a single network. We- are' comparing this approach to graphics with
language generation from an internal knowledge representation. Such a language gen
eration program takes a semantic network as its input and generates a surface utterance
from it. The difference here is, that a picture is generated.

2.3. How display works

The "form" itself is a LISP function (created by readform), which is represented in
the semantic network as a base node whose node label is identical to the function name.
(For explanations of the SNePS terminology refer to the given reference about SNePS
[16]).

The detailed process of' displaying an object is: first the part hierarchy is used to
retrieve subparts of the given object; then forms and positions of all parts are retrieved.
We are permitting several different methods of positioning which are expressed with
different case frames in the network. The simplest case is absolute positioning in device
coordinates. More involved are relative position of an object to another object or to its
super-object. The most complicated version retrieves the relative position of a part rela
tive to its super-part by using the type hierarchy that part and super-part belong to.

2-2

After knowing pos1t1011 and form, attributes of objects are retrieved. Attributes
can be either symbolic attributes or iconic attributes. An iconic attribute is directly
displayable, and the simplest form of such an attribute is "color". Symbolic attributes
have to be mapped into iconic attributes, in order to make them displayable. For
instance we are marking faulty objects by changing their genuine color into a signal
color (red). In this case the same medium (color) is used to express a different fact.

Attributes in our system are teated in a way that we have not seen described in
the literature before, namely ·by making the attribute class itself a LISP function. An
attribute value is passed to this USP function as an argument (sometimes a dummy
value), together with the form function, effectively making the attribute-class function
a functional. The returned value of the attribute-class function is again a form func
tion, but it is modified according to the given attribute.

Our approach to attributes guarantees that we can apply new predicates to old
forms, without ever changing the form-functions. Any alternative that comes to mind
would require adding new parameters to form-functions. More details on the case
frames used for form/position/attributes can be found in the repeatedly quoted SCEEE
report.

2.4. Special display Parameters

2.4.1. Modality

The display function permits the user to specify a number of different parame
ters. One is a "modality" parameter. In our maintenance domain we are dealing
with structural and functional properties of objects. This implies that it is possible
and desirable to display objects in both these aspects (or as we say, modalities). The
user can select which of the stored aspects he wants to see, by specifying the modal
ity parameter accordingly. Functional display is the default.

The modality parameter is perfectly general and can be extended to any
number of different aspects, however we currently ~f.~ no need for others than struc
tural and functional displays. Assertions for different modalities are not structured
in a Hendrix type [6] partition system but they contain a modality slot in the object
description case frame.

Our current research has led us to the result that structural and functional
displays should be treated differently, and we will talk about this more in the sec
tion on future work.

2.4.2. Pruning the display
If a display function is used as an intelligent system as opposed to a simple

mapping from a data structure to a display device, there has to be a way to "prune"
the display to avoid "overloading" the user, by presenting irrelevant and therefore
confusing information. (One of our goals in this project is to find a method to create
a cognitively appealing representation that limits the displayed information to
relevant objects and relations).

Several optional parameters for display have been defined, that permit the user
to control the amount of information that he receives. Our goal is to automatize this
process entirely, but currently the user has to decide himself what he considers
appealing. The following paragraphs contain a description of these user options.

2-3

,' · -.' \: ,(,>

As mentioned before, our representation uses a part hierarchy. A "level"
parameter permits the user to limit the number of levels in the part hierarchy that
are displayed. If, for example, an object has sub-parts which have sub-parts in turn,
it is possible to limit the display to showing only sub-parts, but not their sub-parts
(i.e. the the sub-sub-parts of the object are not shown), Any number of levels can be
represented in the semantic network, and correspondingly any natural number can
be specified for the level parameter. figure 1 displays our Adder/Multiplier board at
.level 2. Figure 2 shows the same Adder/Multiplier at .level 3.

Sometimes the number of effectively visible objects might be responsible for
overloading of the user. Therefore an "objects" parameter limits the number of
(sub lobjects displayed. As in the level case, objects are retrieved from the part
hierarchy by using breadth first selection. If the specified number of objects has been
shown, display will terminate in the midst of a level.

In our current representation there is no way to express different importance
for different sub-parts; therefore an "object" parameter results sometimes in display
ing "unimportant" parts, a problem which has been criticized by several users. \Ve
plan to investigate this question in the future.

IMult,
I

add
~

MUlt I
j I

~
I

JJ MU lt

Figure 1: Adder-'Mu ltipl ier at level 2

2-4

MU}t
I

I I
lBiact,j ~--~ -, ~

I
I I

I~ I
1add~ &m----,L---,-

1
· 1
I
I
I

I
I

I
~ r-1!!8---'

!~
lt--~

Figure 2: Adder Multiplier at level J

Objects in the V\1ES system can themselves be of quite varying complexity. A
simple wire is an object, but a 16 leg integrated circuit is also one object. In order to
take care of this problem another display option has been programmed thP "r:c..,...
plex it v" parameter.

Display's "complexity" parameter extends the ideas developed above by count
ing not the number of objects, but the number of graphical primitives contained in
them. So it is possible for the user to limit the number of graphics primitives that
are displayed. In this way t\VO display calls with the same "complexity" parameter
might create either a picture of a simple object with five sub-pans, or a picture of a
complicated object with only one sub-part.

2.4.3. Optimal screen use

Another type of display option deals with the use of the given screen space.
the so called "fil l" option. If display is called with the "fill" option. it dynamically
computes its own window to v ie v, port mapping to guarantee an optimal use or the
given (globally specified) vie v, port. This option is also the only way to display
parts of the world that do not fit into screen coordinates. In this \\·ay a user sees
small objects at a reasonable size, while large objects still fit into the screen. Still he
does not have to know anything about view ports and windows,

The "fill" option also permits us to avoid another common problem in computer
graphics. Ir a window is defined arbitrarily, chances are that some or the displayed

2-5

•

objects will be cut into two parts, only one of which is inside the window. This
requires in commonly used graphics packages the very time consuming activity of
"clipping". We also think that the average user is not interested in half objects. All
the things that he specifies because he wants to see them, he wants to see in whole.
All the objects he does not specify he either does not want to see at all, or at least he
does not mind if they are not shown to him (in halfl), Cutting objects into parts
disagrees with our whole object oriented approach to Al.

The way all this is achieved is by having display/fill compute an optimal win
dow in the-world which complete surrounds all desired objects with the smallest
possible rectangular extent. This window is mapped into the supplied viewport,
using the same scale factor for both x and y coordinates. This guarantees filling the
viewport in one of these two dimensions. (Note that in order - to fill it in both
dimensions distortions would be necessary, which might show a circle as an ellipsis.
'fhis is. not only optically undesirable, but also difficult to compute).

An extension of the "fill" option is the "intell" option. It constitutes another
step in giving the system possibility to decide what to display. Although the name
"intel l" seems a little bit pretentious, it is definitely a step towards having the sys
tem figure out what the user really wants to see as opposed as to what he is asking
for. The intell option is the solution for the following problem. If a user requests
to see a certain object, he might at the same time be interested to see where this
object "fits into the whole".

A user might also want to know if there are several other objects of the same
type. If display is called with the "inte ll" option it will display the user specified
object(s) in one viewport and in another viewport, will show the chain of all
super-objects of the user specified object(s). Currently the default viewports are the
left half of the screen for the object, and the right half of the screen for the super
objects, Every super-object will be shown to two levels depth (see "levels" above).
So il a user displays a leg of an AND gate, then the AND gate with all its ports (
"legs") will be displayed. If the super-object of the AND gate is a board, then the
board will be displayed with all its gates, but not with their legs. The use of the
"intel l" option is shown in Figure 3. Figure 3 and all other figures were created
with a printer that directly dumps a screenfull from a graphics terminal. It shows
a multiplier displayed in the left viewport, and the corresponding Adder/Multiplier
board in the right vie wport. Finally Figure 4 shows the 6 channel PCM board in the
right viewport and one of its PCM chips in the left viewport.

2.5. Graphical Inference Trace

The SNePS system has a tracing facility which permits a user to watch the reason
ing process of SNePS. The function that is used for traceing is independent of SNePS,
and it is possible to plug different interfaces into this position. An important aspect of
display is that it can be used as such an interface. ln other words, an observer can
watch what SNePS is currently "thinking" about.

In our implementation of a diagnosis system for the Adder/Multiplier board that
we have mentioned above, the system marks parts that it is currently "thinking" about
by displaying a question mark above them, and parts that it found a conclusion about by
showing an exclamation mark above them. The faulty part is shown in the final
display in red.

This is a direct consequence of SNePS figuring out that the part is bad. Using the
attribute mechanism described above, the "state" attribute class is automatically

2-6

.,

I
I MUlt I

lmlt
I
l I add

~
I
l ri,ult

I
MU}t

Figure 3: A Mu ltipl ier and its Board

2-7

11 II

1'Jf---------·

Figure 4: A PC\1 Chip and its Board
8

translated into the signal color red. After the reasoning process has terminated, any
display command of the object found faulty will again be in the new color. This is the
case, because the semantic network has been changed permanently by the reasoning pro
cess. The mechanism of infertrace does of now not work for the PCv1 board for which
we use a much more complicated representation system which has created unexpected
interactions.

3. FUTURE WORK

Our future plans include the investigation of the knowledge representation scheme
for display purposes. We also have noted interesting differences between structural and
functional displays. These differences have to do with the different types of knowledge
that have to be specified, While structural displays require considerably more fixed coordi
nate values, functional displays can replace this type of knowledge by k nowledge about
object clusters and their inner workings.

2-8

,.

Part. III Co-lateral Educational Activities

1. Acquisition of Background Knowledge
Mr. Ming-Ruey Taie has passed his Ph.D. qualifying examination on "automatic fault

diagnosis" at SUNY at Buffalo on March 1, 1985. Automatic fault diagnosis has got more
and more attention of Al researchers recently due to the general shortage of qualified
maintenance experts in a wide range of domains. Versatile fault diagnosis system for digi
tal circuit boards is desirable due to the widespread using of the products and the fast
introducing rate and relatively short market life of new devices. Various techniques used
for fault diagnosis is surveyed, and the drawbacks of classical empirical-rule-based
approach is discussed. A written version of the talk is available on request.

Mr. James Geller has passed his Ph. D. qualifying examination on "visual knowledge"
at SUNY at Buffalo on May 3, 1985. A shortened written version of this talk is available
on request. The field of visual knowledge is not very accepted as a separate field of Al
knowledge. Only recently the interest in treating visual knowledge as a unified field has
been growing [2]. For an earlier attempt to deal with this field see e.g. (13]. Because of this
missing focus in the research literature a wide range of sources had to be used. Literature
related to visual knowledge can be found in many sub areas of computer science, like data
base mangernent for pictorial databases (20] higher level computer vision [11] computer
graphics [7] and combined language/graphics or language/vision interfaces [19]. Relevant
work has been done as well in cognitive science and cognitive psycholgy [8] and deals with
reasoning based on analogical representations. lt was also necessary to study some of the
classical literature on knowledge representation like [1, 10] and many more.

The acquisition of domain related knowledge for the maintenance aspect of the prob
lem was done by studying related conference proceedings and the SlGART Special Issue on
Maintenance, containing papers like [15].

IJCAJ-85 was attended by Drs. Shapiro and Srihari and Mr. Geller, where talks by
authors in the maintenance field were visited, e.g. Bob Milne [12].

An interview with a local domain expert was :,'r,'"st-.ed c':J Dr. Shapiro and Mr.
Geller, however only small amounts of new knowledge about expert behavior have been
contributed by this activity.

2. Unsupported Participants
Over a period of one semester one unsupported undergraduate student was involved

in recoding a simple CAD like package that is used as the basis for much of the work done
in the graphics interface part of the project. Currently two undergraduate students are
working to extend our graphical routines to our Raster Technology/10 display device and
to update a package for our Grinnell which was initially written and not maintained
because of temporary.Grinnell hardware problems.

3. Audio Visual Technology
We have investigated and tested methods for creating 35 mm slides and plotted tran

sparencies for presentations. This investigation has been based on the Dl-3000 device
independent graphics system, a techniques so far not used in our Dept.; no application of
these techniques for the VMES project can be reported.

3-1

References
1. Ronald J. Brachman and James G. Schmolze, "An Overview of the KL-ONE

Knowledge Representation System," Cognitive Science, 0.
2. Randal I Davis, Howard Shrobe, and al., "The Hardware Troubleshooting Group,"

SIGART Newsletter 93(Jul. 1985).
3. R. Davis, "Diagnostic Reasoning Based on Structure and Behavior," Artificial I ntelli

gence 24 pp. 347-410 (1984).
4. M. R. Genesereth, "The Use of Design Descriptions in Automated Diagnosis," Artificial

Intelligence 24 pp. 411-436 (1984).
5. R. T. Hartley, "CRiB: Computer Fault-finding Through Knowledge Engineering," Com

puter, (March 1984).
6. Gary G. Hendrix, "Encoding Knowledge in Partitioned Networks," pp. 51-92 in Asso

ciative Networks: Representation and Use of Knowledge by Computers, ed. Nicholas
Findler, (1979).

7. E. C. Kingsley, N. A. Schofield, and K. Case, "SAMMIE - A Computer Aid for Man
Machine Modeling," Computer Graphics 15(3)(Aug. 1981).

8. Stephen M. Kosslyn and Steven P. Shwartz, "A Simulation of Visual Imagery," Cogni
tive Science 1 p. 265 (1977).

9. Andrew Latto, David Mumford, and Jayant Shah, The Representation of Shape, IEEE
Workshop on Computer Vision Representation and Control (1984).

10. Hector J. Levesque, "Foundations of a Functional Approach to Knowledge Representa-
tion," AI 23(1984).

11. Alan K. Mackworth, "On Reading Sketch Maps," IJCAI - 77, (1977).
12. Robert Milne, "Fault Diagnosis through Responsibility," IJCAJ, pp. 423-425 (1985).
13. Fanya S. Montalvo, "Visual Knowledge Representation and Acquisition," Second

Annual Meeting of the Cognitive Science Conference, p. Session #12 (1980).
14. Joyce K. Reynolds, Jonathan B. Postel, Alan R. Katz, Gregg G. Finn, and Annette L.

DeSchon, "The DARPA experimental multi media mail system," Computer, pp. 82-Cll
(Oct. 1985).

15. Ethan A. Searl, John R. Jamieson, and Carl I. Delaune, "Process Monitoring and Fault
Location at the Kennedy Space Center," SJGART Newsletter 93(Jul. 1985).

16. S. C. Shapiro, "The SNePS Semantic Network Processing System," pp. 179-203 in Asso
ciative Networks: The Representation and Use of Knowledge by Computers, ed.
Nicholas V. Findler,Academic Press, New York (1979).

17. S. C. Shapiro and The SNePS Implementation group, SNePS User's Manual, Depart
ment of Computer Science, SUNYAB, Buffalo, NY (revised: 1983).

18. Stuart C. Shapiro, Sargur N. Srihari, James Geller, Ming-Ruey Taie, Chi Choy, and
Albert Hariyong Yuhan, "A Graphics Interface to a rule-based system," SCEEE
PDP/84-30 SCEEE-PDP/84-31, Southeastern Center for Electrical Engineering Educa
tion, St. Cloud, FL 32769 (Jan. 1985).

19. E. IL Shortliffe, G. Adorni, A. Boccalatte, and M. DI Manzo, "Cognitive Models for
Computer Vision," COLI NG - 82, American Elsevier/North Holland, (1982).

20. Hideyuk i Tamura, "Image Database Management for Pattern Information Processing
Studies," in Pictorial 1 n formation. Systems, ed. K.S. Fu, 0.

R-1

