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Part. I Device Modeling and Fault Diagnosis of VMES 

1. INTRODUCTION 

We are developing a versatile maintenance expert system (VMES) for trouble-shooting 
digital circuits. 

Some diagnosis systems, such as MYCIN [19] for medical diagnosis and CRIB [5] for 
computer fauit diagnosis, are built on· rules which represented empirical associations. 
Though these, systems have had considerable success,. there are some important drawbacks: 

<, ~-legg.e acquisition from domain expe~~fficult, all possible faults (diseases} have to 
be enumer~plicit..ly which results in a limitation of the diagnosis power, and· they 
have almost no capability of system generalization. · 

As a solution to difficulties of empirical-rule-based diagnosis systems, structural and 
functional descriptions have been widely used by Al researchers in the domain of fault 
diagnosis [3, 4]. The knowledge needed for building such a system is well-structured and 
readily available at the time when a device is designed. There is no need to explicitly 
enumerate all possible faults since they are defined generically as violated expectations at 
the output ports. This approach makes the adaptation for the system to a new device much 
easier, because the only thing needed is to describe the device to the system. 

To rest this idea, we have implemented a diagnosis system that has successfully pin 
pointed the l'au l tv part of a multiplier/adder board, a favorite example for researchers in 
this field (<;ee e.g_, [3].) 

An important aspect of our research is to find a good knowledge-representation 
scheme to support the diagnosis and the construction of a versatile maintenance system. 
We have implemented our system in the SNePS Semantic Network Processing System [16]. 
Advantages are: ( 1) structural and functional knowledge is integrated into a single net 
work; (2) reasoning is done by rule-based inference; (3) diagnosis assumptions can be han 
dled in a natural way; (4) the deduction process can be monitored; (5) inference can also be 
traced graphically; (6) the representation can easily be expanded and modified; (7) pro 
cedural knowledge is represented and used; (8) it is smoothly interfaced with USP. 

Version 1 of our implementation uses a hand-coded description of the device. An 
intermediate user, who adapts the system to a specific device, needs to hand-code all the 
structural and functional details of the device, even that a lot of parts are of the same com 
ponent type. Since versatility is a goal, the system was redesigned as Version 2. It contains 
a kind of type declaration to build a component library. This has enhanced the versatility 
of the system quite significantly. We successfully adapted the system to a new device with 
minimum effort by just adding the descriptions of new components to the system. 

A brief description or the implementation of Version 1 appears in the next section. 
Section 3 contains a· detailed description of our current implementation. (Version 2) along 
with an annotated demonstration. Section 4 and 5 are discussions and future work. 

2. VERSION 1 

This section contains a brief description of our early implementation of VMES. A 
board of three multipliers and two adders was used as the target object to be diagnosed. 

The structural description was hierarchical, which made it possible to focus on the 
relevant part of the device at any time during the diagnosis. The structural description 
was hard-wired, every detail of the device needed to be entered by hand. Examples are: 

1-1 



in SNePS codes 

(build object Dl 
type M3A2 
inpl Dlinpl 
inp2 Dl inp2 
inp3 D1inp3 
outl Dloutl 
out2 Dlout2 
sub-part (DlMl D1M2 D1M3 

D1Al D1A2) 
super-part NIL) 

(build object D1Ml 
type MULT 
inpl DlMlinpl 
inp2 D1M1inp2 
out l D1M1outl 
sub-part NIL 
super-part D1) 

In English 

The object Dl is of M3A2 type; 
it has three inputs and two outputs 
named in order as Dlinpl, Dlinp2, 
Dlinp3, Dloutl and Dlout2; 
it is consists of 5 sub-parts: DlMl, 
D1M2, D1M3, D1A1 and DlA2. 

The object DlMl is a MULTiplier, 
it has two inputs and one output 
named in order as Dlinpl, Dlinp2, 
and Dloutl. It has no sub-part and 
it is part of Dl. 

(build from 
to 

Dlinpl 
(D1 M 1 inpl Dl M2inpl)) 

There is a wire connection from 
Dlinpl to DlMlinpl & D1M2inpl. 

Only one wire connection description, which actually represented two wires, is shown 
here. And similar codes for D1M2, D1M3, DlAl and D1A2 were required since the struc 
tural description was hand-coded. 

lefinition was implemented as a template of the SNePSUL function node 
[ 1 7]. Unlike the structural description, the functional description was associated with each 
type of the components rather than the parts themselves. An example was: 

In SNePS code: 

(dp ADDER (inpl inp2 outl) 
(cond (Ceq (plus inpl inp2) oun ) (succeed true)) 

( t (succeed false)))) 

in English: 

For an adder, it is good if the two inputs sum to the output, 
it is bad otherwise. 

The function description gave an explicit definition to decide whether a component was 
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malfunctioning. It did not explicitly depict what the function of an adder was, which was 
required in order to simulate the behavior of an adder. And for every type of component, 
it needed its own rule for finding violated expectation at the output ports. The rules, in 
English, looked like: 

If an object is an adder and all its input and output values are 
known, then one and only one of the following is true: 
1 ). the object is functioning well, which can be infered from 

the adder function description; 
2). there is a violated expectation at its output. 

The inference engine for fault diagnosis followed a simple control structure. It is 
similar to that of the current implementation, and is discussed in the next section. 

3. VERSION 2 
This section contains a full description of our current system implementation. The 

system consists of two major parts: the device representation and the inference engine. The 
device representation is further divided into structural and functional descriptions. An 
annotated demonstration of the system is at the end of this section. 

3.1. Device Representation 
The current implementation of VMES includes a complete redesign of the device 

representation in both the structural and functional description. The disadvantages of 
the hand-coded description have been removed, and major progress has been made 
toward an ultimately versatile system. 

3.1.1. Structural Description 
Once again, only the logical structure of the device is represented and used for 

diagnosis in our current implementation. Instead of hand-coding every detail of the 
device, the system keeps a component library which know every "type" of com 
ponent. Each component type is abstracted at two levels and represented by two 
SNePS rules which are categorized as instantiation rules. The structure of the device 
is still represented in a hierarchical way through the parts hierarchy. Sub-parts of 
the device are instantiated only when they are needed. This increases memory 
efficiency . 

. At level-1 instantiation, an object is built as a module (a black box) with its 
I/0 ports and a pointer to its functional description. The functional description is 
implemented as a LISP function which simulates/infers the value of one port in 
terms of the others. This will b_e discussed later. 

At Jevel-2, the sub-parts of the object at the next hierarchical level is built, and 
the wire connections between the object and its sub-parts, as well as those among the 
sub-parts themselves are made. Each sub-part is assigned a name which is an exten 
sion of the name of its super-part (the object), and it is instantiated at level-] so that 
its 1/0 ports are available for the wire connections. 

Several typical instantiation rules are as follows: 

.. ,-, 

All annotations are shown in italics. 
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All types of components are described as: 
level- I description: I /0 ports and functions. 
level-2 description: sub-parts and connections. 

; The following two SNePS rules describe 
; the M3A2 type components: 

(build 
avb Sx 
ant (build object *x type M3A2 state TBL-Ll) 
cq (build inport-of *x inp-id l) = vlNPl 
cq (build inport-of *x inp-id 2) = vINP2 
cq (build inport-of *x inp-id 3) = vlNP3 
cq (build ou tport-of *x out-id 1) = vOUTl 
cq (build outport-of *x out-id 2) = v0UT2 
cq (build port *vOUTl f-rule M3A2outl 

pn 3 pl *vINPl p2 *vlNP2 p3 *vINP3) 
cq (build port *v0UT2 I-rule M3A2out2 

pn 3 pl *vINPl p2 *vINP2 p3 *vINP3] 

: The first three lines says that "if xis an M3A2 and is to be 
instantiated at leoel-I (T Bl- L 1), then do the follows:" 

: The next five lines instantiate the ilo ports. 
: The last two "builds" link the output ports to the functional 

description of the object. The first one says "to simulate the 
value of first output, uses the function M3A2outl which takes 
three parameters: the inputs of the object x in order." 

; Similar links can be done for all input ports if we want lo infer 
their values from other ilo ports. 

(build 
avb *x 
ant (build object *x type M3A2 state TBI-L2) 
cq (build 

avb ($xpl $xp2 $xp3 $xp4 $xp5) 
ant (build name: Give-PID-M3A2 object *x 

pl *xpl p2 *xp2 p3 *xp3 p4 *xp4 p5 *xp5) 
cq ((build object *xpl type MULT state TBI-Ll) 

(build object *xp2 type MULT state TBI-Ll) 
(build object *xp3 type MULT state TBI-Ll) 
(build object *xp4 type ADDER state TBI-Ll) 
(build object *xp5 type ADDER state TBI-Ll} 
(build super-part *x 

sub-parts (*xpl *xp2 *xp3 *xp4 *xp5)) 
(build from *vlNPl 

to ((build inport-of *xpl inp-id 2) 
(build inport-of *xp2 inp-id l))) 

; to save space, not all wire connections are shown here. 
(build from (build outport-of *xp3 out-id l) 

to (build inport-of *xp5 inp-id 2)) 
(build from (build outport-of *xp5 out-id 1) 

to *vOUT2] 
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; The first seven lines say: "if xis an M 3A2 at T BI-L2, uses the 
function Give-PI D-M 3A2 to get the names for its sub-parts" 

; The next seven lines declare the types of the sub-parts and will 
activate appropriate rules to instantiate them at their leuel-I 
instantiation. The super-part/ sub-parts hierarchical relation 

; between the object x and its sub-parts is built also. 
; The remainders connect the wires between x and its sub-parts as 

well as those among the sub-parts themselves. 

; The following two SNePS rules describes 
; the MU L'I'iplier type components: 

(build 
avb $x 
ant (build object *x type MULT state TBI-Ll) 
cq (build inport-of *x inp-id 1) = vINPl 
cq (build inport-of *x inp-id 2) = vINP2 
cq (build outport-of *x out-id 1) = vOUTl 
cq (build port *vOUTl I-rule MULToutl 

pn 2 pl *vINPl p2 *vINP2] 

(build 
avb *x 
ant (build object *x type MULT state TI3l-L2) 
cq (build super-part *x sub-parts lamDRU] 

; Please note that the leoel-Z instantiation will not instantiate any 
sub-part since a multiplier is regarded as a Depot Replaceable 
Unit (DRU) and there is no need to re present its details. 

All instantiation rules are stored in a file, which is regarded as a components 
library. Representing the structure of a device via the instantiation rules and the 
use of a components library give the system several important advantages. We do 
not have to hand-code three almost identical multipliers on our example digital cir 
cuit board; the information is generated by the system only when required during 
the course of diagnosis. This should minimize the construction effort during the sys 
tem development period, and .shou ld also gain some memory efficiency during diag 
nosis. This is especially important in a memory critical environment. · 

Although instantiation· during diagnosis is good for memory efficiency, it is 
slower during diagnosis. To overcome this problem without degrading the benefit of 
fast system construction, we designed the representation in a way which allows 
pre-instantiation of the device before diagnosis. This can be done easily by changing 
all TBI-L2 nodes in the components library to THI-Ll. Since the instantiation rules 
are used in a forward way, if a device is declared to be some type at its level-I 
instantiation, it would activate all required instantiation rules throughout its struc 
tural hierarchies and build every detail of the device. This design give the system 
one more dimension of versatility, namely that the system is versatile in both 
memory-critical and diagnosis-speed-critical situations. 
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The most important advantage of the current implementation is the extreme 
ease in adapting the system to other devices. All that the system adapter has to do is 
to add the structural and functional information of the "new" component types to 
the components library and the functions library, which will be discussed later. A 
new component type is defined as a component type which has not been described to 
the component library. The new device itself is a new component type by our 
definition. The effort required to adapt the system to new devices should be minimal 
since digital circuit devices have a lot of common components, and the structural and 
functional description should be readily available at the time when a device is 
designed. 

3.1.2. Functional Description 

In Version 1, the functional description was actually a testing procedure which 
could only be used to decide whether a component was malfunctioning. It had two 
main drawbacks: the description could not be used to simulate the behavior of the 
component, and every component type required its own associated SNePS rule for 
finding violated expectation at its output ports. 

Version 1 offended a theoretical basis of fault diagnosis. Jt implemented the 
strategy: 

If the component is malfunctioning, 
there is violated expectation at its output. 

But it should be the other way around: 
If some violated expectation is observed at the outputs, 
the component is malfunctioning. 

And the violated expectation should be defined generically as: 
If there is a mismatch between the expected (calculated) value and the 
observed (measured) value at some output, it is a violated expectation. 

The functional description should be useable to simulate the component 
behavior, i.e., to calculate the values of output ports if the values of the input ports 
are given. It should also be useable to infer the values of the input ports in terms of 
the values of other 1/0 ports .. This is important if hypothetical reasoning is used for 
fault diagnosis. Though we have only used the functional description to calculate 
the value at the output port, our representation scheme can be used both ways. 

The functional description is implemented as a LISP function, which calculates 
the desired port value in terms of the values of other ports. Every port of a com 
ponent type has such a function associated with it, the link between the port and 
the function had been described in the structural description. Since different ports of 
different. component types might have the same function, some functions can be 
shared. Several examples of the functional description as well as the SNePS rule 
which finds the violated expectation are as follows: 

All annotations are shown in italics. 

: Below is the Junction for the first output port of M3A2 type objects 

(defun M3A2out1 (inpl inp2 inp3) 
(plus (product inpl inp2) 
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(product inpl inp3))) 

; Below is for the single output port of MULTiplier type objects 

(defun MULToutl (inpl inp2) 
(product inpl inp2)) 

; Below is an artificial example to show a function shared by several 
; diff erenl component types such as the super-buffer, the wire or the 
; I-to- 1 transformer. All these component types show the same behavior 
; at ow level of component abstraction: echo the input to the out put. 

(defun ECHO (inpl) 
inpl) 

; The SNePS rule below is the only rule for concluding a violated 
; expectation, it is actually part of the inference engine. It is 
; displayed here lo show the benefit of the functional description of 
; our current implementation. 

in SNePS code: 

(build 
avb ($p $vc $vm) 
&ant ((build port *p value *vc source calculated) 

(build port *p value *vm source measured)) 
cq (build 

min 1 max 1 
arg (build name: THEY-MATCH pl *vc p2 *vm) 
arg (build port *p state vio-expct] 

in English: 

If the calculated and measured values of port pare known as vc & vm, 
one and only one of the follows is true: 

1 ). vc and vm match; 
2). port p displays a violated expectation. 

As depicted above, the functional description is versatile in that it supports the 
simulation and the inference of the device behavior; it supports hypothetical reason 
ing; and the representation scheme is quite simple. 

3.2. Inference Engine 

The inference engine for fault diagnosis follows a simple control structure. It 
starts from the top level of the structural hierarchy of the device, tries to find the out 
put ports which show a violated expectation, and then uses the structural description to 
find a subset of components at next hierarchical level which might be responsible for 
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the bad outputs. The process is then mapped down to the suspicious parts, and a part is 
declared faulty if it shows some violated expectation at its output port and it is at the 
bottom level of the structural hierarchy, i.e. it is the smallest replaceable unit and 
there's no need to examine its details. 

The inference engine is a rule-based system implemented in the SNePS Semantic 
Network Processing System. The control flow is enforced by a LISP driving function 
called "diagnose". SNePS can do both forward and back ward inference, and it is capable 
of doing its own reasoning to diagnose the fault. The LISP driving function is intro 
duced for execution efficiency. 

A smal 1 set of SNePS rules is activated qt every stage of the diagnosis. For exam 
ple, three rules are activated when reasoning about a possible violated expectation of a 
specific port of a device. -One rule is to deduce the measured value -of the port; If the 
value can not be deduced from the wire connections, the rule would activate a LISP 
function which asks the user to supply one. A similar rule is for the calculated value, 
and the last rule is to compare the two values to decide if there is a violated expecta 
tion. The last rule has been shown in the section on functional description. 

The diagnosis strategy along with the combination of a LISP driving function and 
SNePS rules turns out to be very effective. The diagnosis can be monitored by the 
SNePS text or graphic inference trace. The graphical trace is only available for Version 
1, but will be implemented for Version 2. Another new feature of Version 2 is that it 
warns the user if the diagnosis is incomplete due to insufficient information. 

3.3. Demonstration Example 
An annotated demonstration is shown below. The target device is an M3A2 type 

board. The board has three input ports and two output ports, and it has five sub-parts: 
three multipliers and two adders. The multipliers and adders are DRU's, thus the device 
has only two levels in its structural hierarchy. The structure of the test device Dl is 
shown in Fingu re. 1. 

; All anrcr v'on» at> shown in italics. 

; Many output listings were removed and the SNePS inference trace 
; was turned off so that the demonstration did not get too long. 

; Run the SNePS system which is written in Franz LISP. 
; The computer used is a VAX 111750 at Dept. of CS, SU NY at Buffalo. 

% sneps 
Franz Lisp, Opus 38.79 
Thu Sep 12 20:37:18 1985 

sneps 

; The SNePS prompt is the asterisk. 

; Bring in all arc definitions used by the network: 
* (intext ARCS) 
(done reading from AI\CS) 
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A TEST PROBLEM 

1 - - 
1- 2 ~ 

1 
- 6 - 

3 - 
' 

expectation 1-.a 

1-.a 
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exec: 0.95 sec gc: 0.00 sec 

; Bring in the COMPonent library: 
* (intext COMP) 
(done reading from COMP) 
exec: 19.08 sec gc: 0.00 sec 

: Bring in the CONTrol rules, i.e., the inference engine: 
* (intext CONT) 
(done reading from CONT) 
exec: 7.03 sec gc: 0.00 sec 

; Load in the functional descriptions: 
* (~(load 'FUNC)) 
t 
exec: 1.21 sec gc: 0.00 sec 

; Declare the device DJ to be an M3A2 type object: 
* (device-setup Dl M3A2) 
; This activates the leoel-I instantiate rule of the M3A2 type, 
; and build the I 10 ports and their function pointers as follows: 
(m121 (state (TBI-Ll)) (type (M3A2)) (object (D1))) 
(ml 22 (inp-id (3)) (in port-of (Dl ))))) 
Cm123 (inp-id (2)) (inport-of (Dl))))) 
(m124 (inp-id (1)) (inport-of (D1))))) 
(m126 (p3 (m122 (inp-id (3)) (inport-of (Dl)))) 

(p2 (m123 (inp-id (2)) (inport-of (Dl)))) 
(pl (m124 (inp-id (1)) (inport-of (D1)))) 
(pn (3)) 
( I-rule (M3A2out2)) 
(port (m125 (out-id (2)) (outport-of (D1))))) 

(rn128 (p3 (m122 (inp-id (3)) (inport-of (D1)))) 
(p2 (m123 (inp-id (2)) (inport-of (D1)))) 
(pl (m, ~4 ,;r;p-,c.: ( 1 )) (in port-of (D1 )))) 
(pn (3)) 
(f-rule (M3A2out1 )) 
(port (m127 (out-id (1)) (outport-of (Dl))))) 

done 
exec: 32.06 sec gc: 3.30 sec 

; The follows builds the values of 110 ports of DJ: 
* (build port (find inport-ofD'l inp-id 1) 

· value 1 source measured] 
* (build port (find inport-of D1 inp-id 2) 

value 1 source measured] 
* (build port (find inport-of Dl inp-id 3) 

value 3 source measured] 
; Next one should be 4, but a 2 is observed for this case: 
* (build port (find outport-of Dl out-id 1) 

value 2 source measured] 
* (build port (find outport-of Dl out-id 2) 

value 6 source measured] 
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; Begin the diagnosis session for device D 1: 
The messages prefixed by @@@ are from the driving function. 

* (diagnose Dl) 

@@@ diagnose DJ: finding vio-expct ..... 
; 1 f the SNePS inference trace were on, it would show that the system found 
; the first out put o JD 1 was a violated expectation, and the other was not. 

(ciJ@@ adding TBI-L2 for Dl ..... 
; DJ is instantiated at leoel-Z since further investigation is needed. 

@@@ adding TFS for D1 ..... 
; Now. a state called TFS (To Find Suspects) is addedJor DJ. This 
; activates the rules which find suspicious sub-parts of DJ: 

@t@@ suspects created: (DlAl D1Ml D1M2) 
: Note that DJA2 and DJM3 are not suspects. 

; The diagnosis process is mapped down lo each suspect: 

@@@ diagnose Dl A 1: finding vio-expct ..... 

What is the value of port 
(m155 (in port-of (Dl A 1)) (inp-id (1))) 
value/nil? 1 

What is the value of port 
(m156 (in port-of (DJ Al)) (inp-id (2))) 
value/nil? 3 
; The system asks the user to supply measured values of ports if they 
; can not be deduced from the wire connections: 

@@@ adding TBl-L2 for DlAl ..... 

@@@ DlAl is faulty by vio-expct & DRU 
; DIA] is found to be faulty since it is a DRU and behaves abnormally. 

@@@ diagnose D'l Mk finding vio-expct ..... 

cgl@@ Dl Ml shows no problem 

@<,v@ diagnose D1M2: finding vio-expct ..... 

Ciil@@ Dl M2 shows no problem 

; Note that both DIM 1 and DJM2 are not instantiated al level-2 
; since they do not show any violated expectation at their outputs. 
; Also note that the values of their 1 /() ports are not requested since 
; they can be deduced by the system. 
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; A final report is given by the system: 
>>>>> I GOT THE FAULTY PARTS AS >>>>> 
(m237 (state (faulty)) (object (DlAl ))) 

· (dumped) 
exec: 398.35 sec gc: 74.73 sec 

-; The user can check all intermediate and final results: 
; only a small part of it is shown below. 
* (desc *nodes - *oldnodes) 
(m255 (arg 

(m254 (state (vio-expct)) 
(port Cm 150 (ou t-id ( 1 )) (ou tport-of (Dl M2)))))) 

(max (0)) 
(min (0))) 

; The first output of DIM2 shows no violated expectation. 
(111253 (source (calculated)) 

(value (3)) 
(port (m150 (out-id (1)) (outport-of (D1M2))))) 

; The calculated value of the first output of DJM2 is 3. 
(m 187 ( to (m 125 (out-id (2)) (outport-of (Dl)))) 

(from (ml 86 (out-id (1)) (outport-of (D1A2))))) 
; A wire runs from ]st output of DIA2 to 2nd output of DJ. 
(m166 (sub-parts (D1Ml) (D1M2) (D1M3) (D1Al) (D1A2)) (super-part (Dl))) 
; The sub-parts of DJ are DlMl, DIM2, DIM3, DlAl and DlA2. 
(m165 (state (TBI-Ll)) (type (ADDER)) (object (D1A2))) 
; DJA2 is an ADDER, and has been instantiated at level-I. 
(dumped) 
exec: 15.25 sec gc: 0.00 sec 

* (exit) 
No files updated. 
% 

4. DISCUSSION 

An important aspect of our research is to find a good knowledge-representation 
scheme to support diagnosis. Many researchers use standard predicate logic, but this has 
several drawbacks: the representation, the resolution: technique, and the diagnosis assump 
tions seem fairly unnatural. We have implemented our system in the SNePS Semantic Net 
work Processing System [16]. Advantages are: ( 1) structural and functional knowledge are 
integrated into a single network; (2) reasoning is done by rule-based inference; (3) diagnosis 
assumptions are 'handled in a natural way; (4) the deduction process can be monitored; (5) 
inference can also be traced graphically; (6) the representation can be easily expanded and 
modified; (7) procedural knowledge is represented and used; (8) it is smoothly interfaced 
with LISP. 

The structural description is represented by instantiation rules at two different levels. 
This scheme turns out to be very effective and flexible. It can be used to pre-instantiate the 
target device with only little change. We ran the same example as the one used in the last 
section in both regular mode, which did the instantiation only when needed, and the pre 
instantiation mode. As expected, the former was memory efficient, and the latter was good 
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for diagnosis speed. For the example of the M3A2 type device, the latter was four times 
faster than the former. 

The main feature of our device representation scheme is the versatility of the system. 
To adapt the system to new devices, the only thing that needs to be done is to add new 
components to the system's libraries. In order to test this idea as well as the suitability of 
hierarchical structural representation, we invented a new device type called XM3A2 and 
put it into the system. The XM3A2 type has three inputs and two outputs, and only has a 
single sub-part which is of M3A2 type. Actually, it is a device which has an extra layer 
of packaging on an M3A2 type device. The M3A2 type has been known to the system, 
thus only the XM3A2 needed to be described to the system, and the description is two sim 
ple instantiation rules. There is no-need for new functional description since the function 
of XM3A2 is the same as M3A2. The device has three levels of structural hierarchy, and 
our test successfully found the faulty part at the lowest level. Though the example of 
XM3A2 is somewhat simple, it displays the capability of the system to deal with a wide 
range of devices in the domain with arbitrary complexity. 

5. FUTURE WORK 

A potential problem is that this approach to fault diagnosis is only good for digital 
circuitry without feedback. There are many devices that are mixtures of digital and ana 
log circuitries. To adapt the system to those devices may require some modification of the 
device representation scheme. The representation and use of second principle rules should 
also be introduced for better system performance. 

ln our current scheme, similar component types, which have the same function but 
different specifications, are represented individually. An example is the representation of 
l -to-1, l -to-2, and l -to-J transformers. It would be better to represent all types of 
transformers by a single representation with a parameter to specify the transforming rate. 

There is no user interface for adding new components so far. The development of a 
formal language for device representation may solve this problem as well as others. The 
language should support all diagnosis related activities, such as device simulation and struc 
ture retrieving. It should also support the system construction and adaptation. 
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Part. II Graphical Interface of VMES 

1. INTRODUCTION 
The main mode of communication between the SNePS reasoning mechanism used for 

the VMES project and the user is intended to be a graphical interface. We have imple 
mented a new version of such an interface called "SENDING". - This version supersedes the 
version of SENDING that has 'been described in our final report of the Post Doctoral project 
(SCEEE) [ 18]. 

The first change noticeable between these two versions is the changed domain. In our 
effort to construct a versatile program we have changed the "device" of diagnosis. While 
the SCEEE world consisted of a small- number of logic gates which were only partially 
connected, we have since then tackled two new devices. 

The first one of these devices is a little Adder/Multiplier that has been a test object of 
several researchers in the field of trouble shooting. The second one is piece of a real device, 
a 6 channel PCM board. This change of domain however was not the crucial step. 

Only insignificant improvements have been made to the representation of visual 
knowledge. The basic case frames are still the same as described in the SCEEE report, and 
so are the used relations. The significant changes in the second generation of SENDING are 
an improvement in speed by approximately a factor of seven of the display program, and a 
considerable expansion of the power of both, the display and the readf'orrn function. This 
section of our report will first make some general comments on "visual knowledge" and 
will then continue by describing the new options of "display". 

While visual knowledge has been dealt with implicitly in computer vision and from 
a different aspect in computer graphics, and in cognitive psychology for quite some time, 
we lately have been experiencing a growing interest in an explicit treatment based on 
Knowledge Representation methods (9, 2). The crucial point here is the interest in a natural 
representation that lends itself to reasoning processes as opposed to a representation for ease 
of "recognition" or of "display". Some more references on this subject are given in the spe- 
;:,_1 SP"':'-'Jn on "Other Activities", at the end of this paper, dealing with the acquisition of 
background knowledge. 

2. THE GRAPHICAL INTERFACE 

2.1. Motivation 
Why should somebody want to implement a program like "SENDING" (SEmantic 

Network Domain Interface Graphics)? Our interst in this interface is twofold. 
Currently there is a growing interest in multi media communication [14]. Technical 
literature would be impossible without charts, diagrams and drawings. lt seems that 
also a dialog between a technician and an advisory expert system about a technical 
object like a circuit board would profit very much from a graphical component. 

One can even go so far to say that diagrams are the "interlingua" of the technical 
literature. The display of the device under repair can be used in our system by both the 
user and the computer to refer to parts which are currently under discussion. 

The second source or our interest in graphical interfaces is of theoretical nature. 
We are investigating principles of visual know ledge representation. In computer vision 
or computer graphics, representations are mainly designed in order to permit efficient 
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recognition or display of objects. We are interested in representations that can be used 
in reasoning, about forms as well as for display purposes. 

2.2. Components of the Interface 
The SENDING graphical interface contains several parts, the most important of 

which are the "display" function and the "readform" function. The readform function 
is our (simple) version_ of a CAD device. It permits a user to create a simple object, con 
sisting 'of arcs, lines, circles, -boxes, text, etc. by drawing them on the screen of a graphics 
terminal. Objects can contain several unconnected parts and are stored immediately as 
named objects, namely as LISP functions. 

Although it is not our purpose to compete with any of the very fancy existing 
CAD systems; considerable improvements to readform have been made over the last 
year. Currently work is done on the third generation of readf'orrn. Only the introduc 
tion of arcs made it possible to design most of the common logic symbols (AND and OR 
gates) and of transformers. In earlier described versions of SENDING a separate libarary 
was necessary for round objects. 

Improvements currently worked on are commands that make the creation of 
repetitive structures easier. Also earlier defined objects can be loaded into currently 
built up more complex objects. 

The logical counter part of readform is the "display" function. Display takes one 
or more nodes of a semantic network as arguments. These nodes can be either base 
nodes, representing objects, or assertion nodes, representing simple propositions about one 
object. Assuming the semantic network contains propositions about form, position and 
attributes of an object, "display" can retrieve this information and create a picture of 
the object on the screen. Displayable propositions also have to say something about 
form/position of an object, and the display of the proposition is done by showing the 
described object. 

It should be noted that this approach to image generation is different from the 
techniques usually employed by computer graphics programs. Our object descriptions 
are given in a declarative format, incorporating them together with a part and a type 
hierarchy into a single network. We- are' comparing this approach to graphics with 
language generation from an internal knowledge representation. Such a language gen 
eration program takes a semantic network as its input and generates a surface utterance 
from it. The difference here is, that a picture is generated. 

2.3. How display works 

The "form" itself is a LISP function (created by readform), which is represented in 
the semantic network as a base node whose node label is identical to the function name. 
(For explanations of the SNePS terminology refer to the given reference about SNePS 
[ 16] ). 

The detailed process of' displaying an object is: first the part hierarchy is used to 
retrieve subparts of the given object; then forms and positions of all parts are retrieved. 
We are permitting several different methods of positioning which are expressed with 
different case frames in the network. The simplest case is absolute positioning in device 
coordinates. More involved are relative position of an object to another object or to its 
super-object. The most complicated version retrieves the relative position of a part rela 
tive to its super-part by using the type hierarchy that part and super-part belong to. 

2-2 



After knowing pos1t1011 and form, attributes of objects are retrieved. Attributes 
can be either symbolic attributes or iconic attributes. An iconic attribute is directly 
displayable, and the simplest form of such an attribute is "color". Symbolic attributes 
have to be mapped into iconic attributes, in order to make them displayable. For 
instance we are marking faulty objects by changing their genuine color into a signal 
color (red). In this case the same medium (color) is used to express a different fact. 

Attributes in our system are teated in a way that we have not seen described in 
the literature before, namely ·by making the attribute class itself a LISP function. An 
attribute value is passed to this USP function as an argument (sometimes a dummy 
value), together with the form function, effectively making the attribute-class function 
a functional. The returned value of the attribute-class function is again a form func 
tion, but it is modified according to the given attribute. 

Our approach to attributes guarantees that we can apply new predicates to old 
forms, without ever changing the form-functions. Any alternative that comes to mind 
would require adding new parameters to form-functions. More details on the case 
frames used for form/position/attributes can be found in the repeatedly quoted SCEEE 
report. 

2.4. Special display Parameters 

2.4.1. Modality 

The display function permits the user to specify a number of different parame 
ters. One is a "modality" parameter. In our maintenance domain we are dealing 
with structural and functional properties of objects. This implies that it is possible 
and desirable to display objects in both these aspects (or as we say, modalities). The 
user can select which of the stored aspects he wants to see, by specifying the modal 
ity parameter accordingly. Functional display is the default. 

The modality parameter is perfectly general and can be extended to any 
number of different aspects, however we currently ~f.~ no need for others than struc 
tural and functional displays. Assertions for different modalities are not structured 
in a Hendrix type [6] partition system but they contain a modality slot in the object 
description case frame. 

Our current research has led us to the result that structural and functional 
displays should be treated differently, and we will talk about this more in the sec 
tion on future work. 

2.4.2. Pruning the display 
If a display function is used as an intelligent system as opposed to a simple 

mapping from a data structure to a display device, there has to be a way to "prune" 
the display to avoid "overloading" the user, by presenting irrelevant and therefore 
confusing information. (One of our goals in this project is to find a method to create 
a cognitively appealing representation that limits the displayed information to 
relevant objects and relations). 

Several optional parameters for display have been defined, that permit the user 
to control the amount of information that he receives. Our goal is to automatize this 
process entirely, but currently the user has to decide himself what he considers 
appealing. The following paragraphs contain a description of these user options. 
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As mentioned before, our representation uses a part hierarchy. A "level" 
parameter permits the user to limit the number of levels in the part hierarchy that 
are displayed. If, for example, an object has sub-parts which have sub-parts in turn, 
it is possible to limit the display to showing only sub-parts, but not their sub-parts 
(i.e. the the sub-sub-parts of the object are not shown), Any number of levels can be 
represented in the semantic network, and correspondingly any natural number can 
be specified for the level parameter. figure 1 displays our Adder/Multiplier board at 
.level 2. Figure 2 shows the same Adder/Multiplier at .level 3. 

Sometimes the number of effectively visible objects might be responsible for 
overloading of the user. Therefore an "objects" parameter limits the number of 
(sub lobjects displayed. As in the level case, objects are retrieved from the part 
hierarchy by using breadth first selection. If the specified number of objects has been 
shown, display will terminate in the midst of a level. 

In our current representation there is no way to express different importance 
for different sub-parts; therefore an "object" parameter results sometimes in display 
ing "unimportant" parts, a problem which has been criticized by several users. \Ve 
plan to investigate this question in the future. 
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Figure 1: Adder-'Mu ltipl ier at level 2 
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Figure 2: Adder Multiplier at level J 

Objects in the V\1ES system can themselves be of quite varying complexity. A 
simple wire is an object, but a 16 leg integrated circuit is also one object. In order to 
take care of this problem another display option has been programmed thP "r:c..,... 
plex it v" parameter. 

Display's "complexity" parameter extends the ideas developed above by count 
ing not the number of objects, but the number of graphical primitives contained in 
them. So it is possible for the user to limit the number of graphics primitives that 
are displayed. In this way t\VO display calls with the same "complexity" parameter 
might create either a picture of a simple object with five sub-pans, or a picture of a 
complicated object with only one sub-part. 

2.4.3. Optimal screen use 

Another type of display option deals with the use of the given screen space. 
the so called "fil l" option. If display is called with the "fill" option. it dynamically 
computes its own window to v ie v, port mapping to guarantee an optimal use or the 
given (globally specified) vie v, port. This option is also the only way to display 
parts of the world that do not fit into screen coordinates. In this \\·ay a user sees 
small objects at a reasonable size, while large objects still fit into the screen. Still he 
does not have to know anything about view ports and windows, 

The "fill" option also permits us to avoid another common problem in computer 
graphics. Ir a window is defined arbitrarily, chances are that some or the displayed 
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objects will be cut into two parts, only one of which is inside the window. This 
requires in commonly used graphics packages the very time consuming activity of 
"clipping". We also think that the average user is not interested in half objects. All 
the things that he specifies because he wants to see them, he wants to see in whole. 
All the objects he does not specify he either does not want to see at all, or at least he 
does not mind if they are not shown to him (in halfl), Cutting objects into parts 
disagrees with our whole object oriented approach to Al. 

The way all this is achieved is by having display/fill compute an optimal win 
dow in the-world which complete surrounds all desired objects with the smallest 
possible rectangular extent. This window is mapped into the supplied viewport, 
using the same scale factor for both x and y coordinates. This guarantees filling the 
viewport in one of these two dimensions. (Note that in order - to fill it in both 
dimensions distortions would be necessary, which might show a circle as an ellipsis. 
'fhis is. not only optically undesirable, but also difficult to compute). 

An extension of the "fill" option is the "intell" option. It constitutes another 
step in giving the system possibility to decide what to display. Although the name 
"intel l" seems a little bit pretentious, it is definitely a step towards having the sys 
tem figure out what the user really wants to see as opposed as to what he is asking 
for. The intell option is the solution for the following problem. If a user requests 
to see a certain object, he might at the same time be interested to see where this 
object "fits into the whole". 

A user might also want to know if there are several other objects of the same 
type. If display is called with the "inte ll" option it will display the user specified 
object(s) in one viewport and in another viewport, will show the chain of all 
super-objects of the user specified object(s). Currently the default viewports are the 
left half of the screen for the object, and the right half of the screen for the super 
objects, Every super-object will be shown to two levels depth (see "levels" above). 
So il a user displays a leg of an AND gate, then the AND gate with all its ports ( 
"legs") will be displayed. If the super-object of the AND gate is a board, then the 
board will be displayed with all its gates, but not with their legs. The use of the 
"intel l" option is shown in Figure 3. Figure 3 and all other figures were created 
with a printer that directly dumps a screenfull from a graphics terminal. It shows 
a multiplier displayed in the left viewport, and the corresponding Adder/Multiplier 
board in the right vie wport. Finally Figure 4 shows the 6 channel PCM board in the 
right viewport and one of its PCM chips in the left viewport. 

2.5. Graphical Inference Trace 

The SNePS system has a tracing facility which permits a user to watch the reason 
ing process of SNePS. The function that is used for traceing is independent of SNePS, 
and it is possible to plug different interfaces into this position. An important aspect of 
display is that it can be used as such an interface. ln other words, an observer can 
watch what SNePS is currently "thinking" about. 

In our implementation of a diagnosis system for the Adder/Multiplier board that 
we have mentioned above, the system marks parts that it is currently "thinking" about 
by displaying a question mark above them, and parts that it found a conclusion about by 
showing an exclamation mark above them. The faulty part is shown in the final 
display in red. 

This is a direct consequence of SNePS figuring out that the part is bad. Using the 
attribute mechanism described above, the "state" attribute class is automatically 
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Figure 4: A PC\1 Chip and its Board 
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translated into the signal color red. After the reasoning process has terminated, any 
display command of the object found faulty will again be in the new color. This is the 
case, because the semantic network has been changed permanently by the reasoning pro 
cess. The mechanism of infertrace does of now not work for the PCv1 board for which 
we use a much more complicated representation system which has created unexpected 
interactions. 

3. FUTURE WORK 

Our future plans include the investigation of the knowledge representation scheme 
for display purposes. We also have noted interesting differences between structural and 
functional displays. These differences have to do with the different types of knowledge 
that have to be specified, While structural displays require considerably more fixed coordi 
nate values, functional displays can replace this type of knowledge by k nowledge about 
object clusters and their inner workings. 
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Part. III Co-lateral Educational Activities 

1. Acquisition of Background Knowledge 
Mr. Ming-Ruey Taie has passed his Ph.D. qualifying examination on "automatic fault 

diagnosis" at SUNY at Buffalo on March 1, 1985. Automatic fault diagnosis has got more 
and more attention of Al researchers recently due to the general shortage of qualified 
maintenance experts in a wide range of domains. Versatile fault diagnosis system for digi 
tal circuit boards is desirable due to the widespread using of the products and the fast 
introducing rate and relatively short market life of new devices. Various techniques used 
for fault diagnosis is surveyed, and the drawbacks of classical empirical-rule-based 
approach is discussed. A written version of the talk is available on request. 

Mr. James Geller has passed his Ph. D. qualifying examination on "visual knowledge" 
at SUNY at Buffalo on May 3, 1985. A shortened written version of this talk is available 
on request. The field of visual knowledge is not very accepted as a separate field of Al 
knowledge. Only recently the interest in treating visual knowledge as a unified field has 
been growing [2]. For an earlier attempt to deal with this field see e.g. (13]. Because of this 
missing focus in the research literature a wide range of sources had to be used. Literature 
related to visual knowledge can be found in many sub areas of computer science, like data 
base mangernent for pictorial databases (20] higher level computer vision [11] computer 
graphics [7] and combined language/graphics or language/vision interfaces [19]. Relevant 
work has been done as well in cognitive science and cognitive psycholgy [8] and deals with 
reasoning based on analogical representations. lt was also necessary to study some of the 
classical literature on knowledge representation like [1, 10] and many more. 

The acquisition of domain related knowledge for the maintenance aspect of the prob 
lem was done by studying related conference proceedings and the SlGART Special Issue on 
Maintenance, containing papers like [15]. 

IJCAJ-85 was attended by Drs. Shapiro and Srihari and Mr. Geller, where talks by 
authors in the maintenance field were visited, e.g. Bob Milne [12]. 

An interview with a local domain expert was :,'r,'"st-.ed c':J Dr. Shapiro and Mr. 
Geller, however only small amounts of new knowledge about expert behavior have been 
contributed by this activity. 

2. Unsupported Participants 
Over a period of one semester one unsupported undergraduate student was involved 

in recoding a simple CAD like package that is used as the basis for much of the work done 
in the graphics interface part of the project. Currently two undergraduate students are 
working to extend our graphical routines to our Raster Technology/10 display device and 
to update a package for our Grinnell which was initially written and not maintained 
because of temporary.Grinnell hardware problems. 

3. Audio Visual Technology 
We have investigated and tested methods for creating 35 mm slides and plotted tran 

sparencies for presentations. This investigation has been based on the Dl-3000 device 
independent graphics system, a techniques so far not used in our Dept.; no application of 
these techniques for the VMES project can be reported. 
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