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Abstract

Resolution theorem proving provides a useful paradigm for the exploration of question answering. A partition of the clauses
generated during resolution refutation based on their syntactic structure is presented. The three classes comprising this partition
correspond to semantically intuitive types of answers. This work encompasses and expands upon previous work on question an-
swering in a theorem proving paradigm, which began with the association of answers with proofs. A complete, formal definition
of what is meant by answer in the context of resolution theorem proving is presented. In this context, clauses that are relevant are
all identified as answers, where relevance is determined with respect to a question and knowledge base: any clause descended from
the clause form of a negated question is deemed relevant. This definition of relevance is not in and of itself novel; rather, it is the
way in which the set of relevant clauses is partitioned that provides the key to interpreting clauses as answers. The three answer
classes identified are: specific, generic, and hypothetical. These classes are formally distinguished by the way in which literals in a
clause share variables, with class membership based on a property termed the closure of variable sharing of a literal. The results
presented provide a foundation for further work by establishing a context-independent logical pragmatics of question answering.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Theorem proving as question answering

This article presents a complete, formal characterization of answers in the context of resolution theorem proving. As
such, it builds upon previous question-answering work in logic and theorem proving. While the results we present are
formal, our interpretation of answer forms is based on work in linguistics and cognitive science. Although we have
worked within the context of resolution theorem proving, the results have implications for all question answering
systems. It is not that the form of answers has revealed an intrinsic meaning; rather, an interest in and knowledge of
human question answering has led us to recognize novel forms as answers. Further, the approach we present can be
viewed as a logical pragmatics of question answering by broadening the notion of answer.

Our exploration of answers takes place in the context of automated reasoning. Resolution refutation, along with
many variations and enhancement, is widely employed for automated reasoning tasks [7,23,26,29,37]. Resolution plus
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factoring is refutation complete for first order predicate calculus (FOPC) [7,26]: given a consistent knowledge base K
and a proposition p, it can be determined if K ∪ {¬p} is inconsistent. This in turn means that p follows from K.

Automated theorem proving served as an early model for question answering in the field of AI [19,21,27]. In this
model, a question Q is represented as a proposition, and a traditional proof is initiated by adding the negation of the
clause form of Q to a consistent knowledge base K. If an inconsistency is found, then Q has a “yes” answer. The use
of theorem provers to answer questions established an analogy between the notions of “proof” and “answer” that has
proved remarkably persistent [4,19–21,27–29,32,33,36,39]. For our purposes we will use the term “proof” to refer
to the termination of resolution and the corresponding production of the empty clause (or, in case an answer literal
is employed, the production of a clause containing only answer literals). We also assume the use of a set of support
strategy, meaning that resolution must involve clauses that descend from the original negated question clauses.

Our view of resolution refutation is one in which every reasoning step produces an answer: sometimes a reasoning
step happens to be that which represents the culmination of a proof. In such a case, we know the precise form of the
answer generated, but do not view it as the only possible answer. A failed proof attempt is no longer a failure; rather,
it is associated with a (possibly incomplete) set of answers that are the resolvents generated as resolution proceeded.
A proof does not necessarily signal the production of a complete set of answers, rather, it indicates the discovery of a
particular type of answer. The notion of failure in terms of question answering is an empty set of relevant clauses: this
is only possible when no clause in a knowledge base may be resolved with those derived from a question.

1.2. Motivation

It is clear that the centrality of question answering to the issue of intelligence makes it a worthwhile topic for
any AI researcher. Theorem-proving approaches to question answering remain pervasive in the field: consider the
widespread use of Prolog as one example. Question answering in the context of theorem proving is many layers
removed from the complexity of human question answering, and FOPC fails to provide the representational richness
of natural language. What, then, is the motivation for a formally limited investigation of question answering? Despite
efforts at many levels of investigation, there is still no consensus as to what constitutes an answer. There are clearly
answers that we provide daily in conversation that are not represented by question answering systems. Even at the level
of theorem proving, the picture remains incomplete. The purpose of this investigation is, therefore, to expand upon
proposed logical formalisms for question answering from the foundation of theorem proving. When the complexity
of natural language is set aside and the well-understood formalism of FOPC as a representation language is employed
to its full extent, the question of what constitutes an answer is more easily investigated. The discovery, even in this
simplified world, of a cohesive, complex definition of answer that expands upon that which is currently accepted is
valuable. Moreover, all resolution theorem proving systems are already generating these “answers”.

This introduction has served as an overview of the work presented. In Section 2 a complete exploration of answer
generation in a resolution theorem prover is provided. The answer classes specific, generic, and hypothetical are
introduced and formally characterized. Section 3 presents the conclusions.

2. Resolvents as answers

2.1. Overview

When a resolution theorem prover is used as a question-answering system, a question is expressed as a proposition
in first order predicate calculus (FOPC). The proposition is negated and converted to clause form [10], the resulting
clauses are added to a consistent set of clauses, and a refutation proof is initiated [7,23,26,37]. A successful refutation
is signaled by the derivation of the empty clause. When a refutation succeeds it is interpreted as a “yes” answer to
the original question [19]. In the absence of a refutation, the search proceeds until all possibilities are exhausted:
this potentially infinite search is in practice constrained by the finiteness of computational resources. Given a ground
query, the interpretation of the failure to find a proof is an answer of “no” when a closed world assumption is made
[34], and “unknown” otherwise.

Using a theorem prover to provide “yes” answers to questions requires nothing above and beyond the machinery
used for proving theorems. For example, given the question, “Is John home?”, the first step is to express this question
as the proposition “John is home”. Answering the question now amounts to showing that this proposition follows from
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what is known. If a contradiction is derived by asserting that it is not the case that John is home, it means that the
knowledge base contains the information that John is home; thus, the question has a “yes” answer.

Interest in expanding the question answering capabilities of resolution theorem provers led to a focus on two
types of answers: extensional [19–21,24,27–29,32,33,36,39] and intensional [3,8,9,16,18,22,30–33]. Both of these
answer types are associated with questions whose logical form contains variables. Extensional answers are associated
with ground terms corresponding to variable substitutions that enable the generation of the empty clause. Like “yes”
answers, extensional answers are associated with the existence of a refutation. We refer to the aforementioned ground
terms as satisfying individuals, because they designate individuals in the knowledge base that satisfy the properties
specified by the predicates in a question. In addition to signaling a “yes” answer, these satisfying individuals provide
the information that explains why the answer is “yes”. When there is more than one substitution that leads to the
empty clause, we refer to a set of satisfying individuals, each of which is associated with an extensional answer. The
query feature in Prolog provides a user with the ability to generate the elements of this set sequentially. It is the set
of satisfying individuals that is identified as a more informative answer than a simple “yes” in the early question
answering work by Green and Raphael [19–21]. Some identify extensional answers with satisfying individuals, while
others consider extensional answers to be the proposition associated with the original question with the satisfying
individuals appropriately substituted for variables. Given the question, “Is someone at home?”, extensional answers
would include all entities that satisfy the properties “is a person” (someone) and “at home”. If John and Mary are
individuals that satisfy these properties, then {John,Mary} is a set of satisfying individuals. “John”, or “John is at
home”, and “Mary”, or “Mary is at home”, are extensional answers.

In contrast to extensional answers, intensional answers are rules that characterize satisfying sets of individuals.
In the literature, the hallmark of an intensional answer is that it has the form of a rule. Intensional answers are not
associated with the empty clause: their existence depends neither on the presence nor the absence of a refutation.
Intensional answers depend on the presence of rules in a knowledge base that are relevant to a question. Given the
question, “Is someone at home?”, an intensional answer might be “All children are at home”, provided this rule is
contained in or inferable from the knowledge base.

Luckham and Nilsson [27] extended Green’s work on extensional answers to include answers containing uni-
versally quantified variables while still requiring a proof: their answers do not conform to the traditional notion of
intensional answers because they do not have the form of a rule. Given the question, “Is someone at home?”, an
answer of this type could be, “Everyone is at home”.

In addition to extensional and intensional answers, there has been some investigation of conditional, or qualified,
answers [11,12,17,40,45,47]. These answers have been characterized as rules with all ground antecedents, where the
antecedent is consistent with, but does not follow from, the knowledge base. Green mentions conditional answers as
an interpretation of clauses containing literals in addition to answer literals, but does not fully explore the concept
[20]. Sergot recognized the utility of conditional answers in terms of providing follow-up questions to a user [40].
Given the question “Is John at home?”, a conditional answer could be “If Mary is at home then John is at home”, with
the associated follow-up question, is “Is Mary at home?”.

We propose the following three classes of answers that account for, and expand upon, previous work on question
answering in a resolution theorem prover.

• Specific answers: Specific answers correspond to Green’s original answers and are equivalent to the category
commonly referred to as extensional answers. These answers may be viewed as “factoid” or “fact finding” in the
context of more recent corpus-based work on question answering [13,43].

• Generic answers: Generic answers include and expand upon the category of intensional answers. We include
Luckham and Nilsson’s non-ground answers that are associated with proof in this category.

• Hypothetical answers: Hypothetical answers include and expand upon what have previously been identified as
conditional or qualified answers. According to our definition, the antecedent of a hypothetical answer is not
purely ground but may contain quantified variables.

Recognizing these three answer classes allows us to decouple the notion of answer from the notion of proof.
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2.2. Preliminaries

This section introduces basic terminology used in the subsequent discussion and formalizes our underlying assump-
tions about the way in which a resolution theorem prover is employed for the question answering task. We assume
the use of an answer literal [21] that serves to identify clauses descended from the clause form of the original ques-
tion. However, we employ a variant of the expanded notion of answer literal proposed by Shapiro [41] that replaces a
question of the form ∃x P (x) with ∀x (P (x) ⇒ ANSWER(P (x))). This formula is then converted to clause form and
resolution can proceed directly. A distinguishing feature of Shapiro’s answer literal is the fact that the entire predicate
structure of the question is included as the argument to the answer predicate and that there are no limitations imposed
on the form of a question, which may include existential and universal quantification. Our variation on this technique
removes the quantifiers from the question prior to translation into clause for according to the following steps [5]:

(1) Put the proposition in prenex normal form so that it has the form QxP(x), where Q are all of the quantifiers from
the original question, x are quantified variables, and P are predicates.

(2) Swap the universal and existential quantifiers. This is justified because it reflects the fact that the proposition is
negated before it is added to the knowledge base. As the negation is pulled through the quantifiers to the matrix,
it has the effect of swapping universal with existential by the standard quantifier definitions.

(3) Replace the matrix P(x) with [P (x) ⇒ ANSWER(P (x))].
(4) Convert the resulting proposition to clause form and proceed directly with resolution.

A question that has been transformed according to steps 1–3 (above) we term an augmented negation. Clauses gener-
ated from the augmented negation (step 4) we term question clauses.

For the most basic question types, Table 1 shows a proposition corresponding to a question, the associated aug-
mented negation, and the associated question clause. The notation employed in many of our examples is non-standard.
The form (Px1, x2, . . . , xn) should be interpreted as the standard P(x1, x2, . . . , xn).

The use of answer literals is critical to our characterization of the answer classes specific, generic, and hypothetical.
A clause contains an answer literal if and only if it is a question clause or is descended from a question clause. Note
that step 3 above is where the answer predicate is introduced. We make use of answer literals in defining relevance:

Definition 1 (Relevance). Given a knowledge base KB, a question Q, and question clauses QC, a clause C is relevant
to Q if and only if the following is true:

C ∈ Th(KB ∪QC) \ Th(KB)

Note that Th(KB) means the theory of KB, namely, the set of all propositions implied by KB.

Table 1
Questions, augmented negations, and question clauses

Question proposition Augmented negation Question clause

(dog fido) [(dog fido)

⇒ (ANSWER (dog fido))]
{(¬(dog fido)),

(ANSWER (dog fido))}
∃x (dog x) ∀x [(dog x)

⇒ (ANSWER (dog x))]
{(¬(dog x)),

(ANSWER (dog x))}
∀x (dog x) ∃x [(dog x)

⇒ (ANSWER (dog x))]
{(¬(dog S10)),

(ANSWER (dog S10))}
a

∀x ∃y (Rxy) ∃x ∀y [(Rxy)

⇒ (ANSWER (Rxy))]
{(¬(RS513x)),

(ANSWER (RS513x))}
b

∃x ∀y (xy) ∀x∃y[(Rxy)

⇒ (ANSWER (Rxy))]
{(¬(Rx(S521x))),

(ANSWER (Rx(S521x)))}
c

a S10 is a Skolem constant.
b S513 is a Skolem constant.
c S521 is a unary Skolem function.
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The import of this definition is that question clauses and their descendents are relevant to a question since they all
contain at least one answer literal. Finally, we provide a broad definition of answer.

Definition 2 (Answer). All relevant clauses except for the question clauses are answers.

The import of this definition is that our notion of answer fails to accord with answer definitions proposed by
linguists and philosophers. It does so by classifying information that does not necessarily answer a question as “an-
swers”. The efficacy of these “not really an answer” answers that we term hypothetical answers ranges from unhelpful
to providing information necessary for the questioner to connect something he or she knows to the question: the
degree to which such answers are helpful clearly depends on context. While such consideration are not included in
this definition it does capture the way in which people respond to questions in that they will try to be as informative
as possible. Whether or not hypothetical answers are “answers”, they are valid responses to questions, and as such
should be regarded as answers by a question answering system. We now examine the three answer classes in greater
detail.

2.3. Specific answers

We identify specific answers with what have previously been characterized as extensional answers. In this section,
we describe the form of a specific answer in our framework and provide some examples of specific answers. A spe-
cific answer is associated with a substitution that replaces all the variables in the proposition representing the original
question with non-Skolem constants, thereby producing a ground proposition. The prohibition on Skolem constants
is in keeping with Luckham and Nilsson’s work [27], in which they prove that Skolem constants and functions may,
outside the context of active reasoning (i.e., during a proof-tree annotation or in an answer), be interpreted as univer-
sally quantified variables. Specific answers are associated with a proof: it is the derivation of the empty clause, or in
our case, of a clause containing only answer literals, that signals a possible specific answer. In order to qualify as a
specific answer, there must be neither variables nor Skolem functions in the answer literals. Table 2 shows a simple
knowledge base from Rich and Knight [36, p. 192] that is used to demonstrate specific answering. With respect to
this KB, Rich and Knight [36, p. 192] pose the question, “What does Puss like to eat?”. A logic representation of this
question and corresponding question clause are shown in Table 3, where the question clause is numbered as clause 7
following the numbering above. Given the knowledge base shown in Table 2 and the question clause shown in Table 3,
a refutation proof is initiated with steps shown in Table 4. Note that variables in clauses have been renamed after each
resolution step.

Table 2
Simple knowledge base

Logic form English gloss Numbered clause

∀x (∀y (cat(x) ∧ fish(y)

→ likestoeat(x, y)))

cats like to eat fish 1.{(¬(CAT ?5)), (¬(FISH ?7)),

(LIKESTOEAT ?5 ?7)}
∀x (calico(x) → cat(x)) calicos are cats 2.{(¬(CALICO ?11)), (CAT ?11)}
∀x (tuna(x) → fish(x)) tunas are fish 3.{(¬(TUNA ?15)), (FISH ?15)}
tuna(Charlie) Charlie is a tuna 4.{(TUNA CHARLIE)}
tuna(Herb) Herb is a tuna 5.{(TUNA HERB)}
calico(Puss) Puss is a calico 6.{(CALICO PUSS)}

Table 3
Question

Logic form English gloss Numbered question clause

∃x

(likestoeat Puss x)

what does Puss
like to eat

7.{(¬(LIKESTOEAT PUSS ?46)),

(ANSWER (LIKESTOEAT PUSS ?46))}
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Table 4
Specific answers: complete refutation proof example showing two different proofs

Numbered clause Justification/
substitution

1.{(¬(CAT ?5)), (¬(FISH ?7)),

(LIKESTOEAT ?5 ?7)}
assumption

2.{(¬(CALICO ?11)), (CAT ?11)} assumption
3.{(¬(TUNA ?15)), (FISH ?15)} assumption
4.{(TUNA CHARLIE)} assumption
5.{(TUNA HERB)} assumption
6.{(CALICO PUSS)} assumption
7.{(¬(LIKESTOEAT PUSS ?46)),

(ANSWER (LIKESTOEAT PUSS ?46))}
question

8.{(ANSWER (LIKESTOEAT PUSS ?150)),

(¬(CAT PUSS)), (¬(FISH ?150))}
R 1,7/a

{?46/?7,PUSS/?5}
9.{(ANSWER (LIKESTOEAT PUSS ?270)),

(¬(CALICO PUSS)), (¬(FISH ?270))}
R 8,2/

{PUSS/?11}
10.{(ANSWER (LIKESTOEAT PUSS ?285)),

(¬(FISH ?285))}
R9,6/

{ }
11.{(ANSWER (LIKESTOEAT PUSS ?523)),

(¬(TUNA ?523))}
R 10,3/

{?285/?15}
12.{(ANSWER

(LIKESTOEAT PUSS CHARLIE))}
QED

R 11,4/

{CHARLIE/?523}

13.{(ANSWER (LIKESTOEAT PUSS HERB))}
QED

R 11,5/

{HERB/?523}
a R stands for “resolve”, and the numbers following R are the numbers of the

parent clauses.

The form of a specific answer is P(a), where P are the predicates in the question and a are ground terms. In this
example, the two specific answers are:

(LIKESTOEAT PUSS CHARLIE)

(LIKESTOEAT PUSS HERB)

English glosses of these are Puss likes to eat Herb and Puss likes to eat Charlie, respectively.
With respect to existentially quantified questions, any specific answer entails the original question: all that is re-

quired to prove an existentially quantified formula is to find a “witness”, which is precisely a satisfying individual. In
this example, we have two specific answers, both of which entail the original question:

(LIKESTOEAT PUSS CHARLIE) ⇒ ∃x (LIKESTOEAT PUSS x)

(LIKESTOEAT PUSS HERB) ⇒ ∃x (LIKESTOEAT PUSS x)

Because specific answers are associated with the existence of a proof, a formal definition of specific answer might
be a clause that contains only answer literals: such clauses signal the completion of a proof. This is clearly incorrect
based on the results obtained by Luckham and Nilsson [27], who also associate the presence of non-ground answer
literals with a proof. The following definition clarifies the form of clauses that are related to specific answers:

Definition 3 (Specific answer clause). A specific answer clause is a clause with the following properties:

(1) It contains at least one answer literal.
(2) It contains no non-answer literals.
(3) All literals are ground.
(4) There are no Skolem functions or Skolem constants present.

We will say that specific answer clauses are associated with specific answers.
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Definition 4 (Specific answer). A specific answer is the disjunction of the arguments of all of the answer literals in a
specific answer clause.

In terms of their semantics, specific answers mention individuals that satisfy a question. Specific answers are
useful when it is important to know the identity of these individuals. There are two primary reasons that account for
the pervasiveness of specific answers. First, specific answers are associated with the presence of a proof, which is
clearly the focus of theorem proving. Question answering in AI emerged from the theorem proving paradigm, and the
norms of that paradigm have persisted. Second, existentially quantified questions are extremely common, and specific
answers are inextricably tied to existential quantification.

Specific answers persist as the most commonly considered form of answers despite the fact that they are not always
appropriate. A problem noted by Webber [46, p. 379] is related to answers that are veritable laundry lists of individuals:
“. . . an enumeration of those elements in a set that have property P implicates that there are also set elements with
property ¬P, even though the enumeration is consistent with it covering all the elements”. When questions involving
universal quantification are of interest, it may be misleading to provide a specific answer unless it is qualified with a
specification that the list comprises all such individuals. This type of specification is referred to by Belnap and Steel
[2] as a “completeness-claim”. This shortcoming of specific answers in some situations points to the need to consider
other types of answers.

2.4. Generic answers

The foregoing definition of specific answers fails to account for all clause forms. If clauses containing only ground
answer literals are associated with specific answers, which clauses might be associated with generic answers? The
idea of “generics” is that they capture generalities that hold for groups of individuals or classes. Such generalities are
formally represented by rules. A clause containing answer literals plus some non-answer literals can be written in rule
form by considering the non-answer literals as the rule antecedent and the answer literals as the consequent. These
answers are clearly not associated with a proof because they contain non-answer literals. The question is whether all
such clauses represent generic answers, and, if not, what distinguishes those clauses that do. In addition, we show that
there are some clauses associated with generic answers that are associated with a proof.

In his description of intensional answering, Imielinski [22, p. 229] proposes the use of rules to facilitate intelligent
querying, stating that, “Conceptually, rules are often more informative and easier to comprehend than the corre-
sponding sets of derived tuples”. In the deductive database model, rules can be retrieved from the IDB (intensional
database) and the ICs (integrity constraints) [22,31,33]. These sets are generally small relative to the size of the EDB
(extensional database), which may contain a huge number of facts [22,33].

Cholvy and Demolombe [8] define intensional answers as those that provide sufficient conditions for tuples to
satisfy a query. Their work was done in the context of theorem proving and focused on clauses that can be written in
rule form. The antecedent of a rule can be seen as specifying sufficient conditions for class membership, while the
consequent (the query) provides a class description. For example, given the query what barks?, a rule of the form
dog(x) → barks(x) defines a sufficient condition for an entity to be a member of the class of barking things, namely,
that it is a dog. We build upon this work by showing that not all generic answers are rules, and not all rules are generic
answers.

We defer a formal definition of generic answer until some examples have been examined. To illustrate generic
answering, consider once again the example from Rich and Knight [36] from the previous section. Clauses generated
during the proof, excepting those associated with specific answers, namely, 12 and 13, are shown in Table 5.

These clauses contain answer literals, so they are descendents of the question clauses and are therefore relevant to
the question by our previous definition. They contain other literals in addition to the answer literals, so they represent
rules. Clauses 8 and 9 are syntactically subsumed by 10, thus are neither as informative nor as interesting as 10.
A clause A syntactically subsumes a clause B if there is a substitution σ such that the literals in Aσ are a subset of
the literals in B .

Clauses 10 and 11 are descendents of the question clauses and are not syntactically subsumed by other clauses
in Table 5. Subsumption is often considered a taxonomic phenomenon, relying on semantic relations among objects
[48], but in our discussions we use subsumption to refer strictly to considerations of syntax. Taxonomic subsumption
is clearly, however, an important consideration in the overall question answering endeavor.
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Table 5
Generic answers and resolution

Numbered clause Justification/
Substitution

8.{(ANSWER (LIKESTOEAT PUSS ?150)),

(
= (CAT PUSS)), (¬(FISH ?150))}
R 1,7/

{?46/?7,PUSS/?5}
9.{(ANSWER (LIKESTOEAT PUSS ?270)),

(¬(CALICO PUSS)), (¬(FISH ?270))}
R 8,2/

{PUSS/?11}
10.{(ANSWER (LIKESTOEAT PUSS ?285)),

(¬(FISH ?285))}
R 9,6/

{ }
11.{(ANSWER (LIKESTOEAT PUSS ?523)),

(¬(TUNA ?523))}
R 10,3/

{?285/?15}

Table 6
Clauses as rules

Numbered clause Rule

10.{(ANSWER (LIKESTOEAT PUSS ?285)),

(¬(FISH ?285))}
(FISH ?285)

⇒ (LIKESTOEAT PUSS ?285)

11.{(ANSWER (LIKESTOEAT PUSS ?523)),

(¬(TUNA ?523))}
(TUNA ?523)

⇒ (LIKESTOEAT PUSS ?523)

Table 7
Rules as answers

Clause Answer

10. ∀ ?285 [(FISH ?285) ⇒ (LIKESTOEAT PUSS ?285)]
11. ∀ ?523 [(TUNA ?523) ⇒ (LIKESTOEAT PUSS ?523)]

Table 6 shows the relationship between the clause form of a generic answer and its associated (unquantified) rule
form. When rewriting a clause as a rule, the consequent of the rule is the disjunction of the arguments of the answer
literals, and the antecedent is the conjunction of the negation of the non-answer literals. The rule forms for clauses
10 and 11 are shown in Table 6. It is generally accepted that such rules should be written as closed sentences, where
all of the variables are universally quantified [8,9,22,30]. Universal quantification is appropriate, because all variables
in clauses are implicitly universally quantified. The final forms for clauses 10 and 11 are shown in Table 7. English
glosses for these rules are Puss likes to eat fish and Puss likes to eat tuna, respectively. Each of these rules characterizes
a set of specific answers. The first, associated with clause 10, means that any individual that is a fish is a (specific)
answer, while the second, associated with clause 11, means that any individual that is a tuna is a (specific) answer.
This accords with Cholvy and Demolombe’s [8] definition of generic answers as specifying “sufficient” conditions
for specific answer tuples.

2.4.1. An unconstrained generic answer
The idea that rules and generic answers are the same, while initially attractive, fails to include everything that

is appropriately classified as generic, and includes rules that are clearly not generic. Examples from Nilsson [32]
provide generic answers whose form is the same as the initial question and whose presence is indicated by a proof.
This type of answer contains non-ground terms, hence is not considered to be a specific answer. In order to illustrate
this type of answer, we examine one of Nilsson’s examples [32, pp. 184–185]. Table 8 shows the initial knowledge
base containing information about parents and children: Nilsson [32, p. 184] poses the question, “For any x, who is
the parent of x?”, with respect to this KB. The logic form of the question and corresponding question clause are shown
in Table 9, where the question clause is numbered as clause 3 following the numbering above. A refutation proof that
answers this question with respect to the “Parent and Child” knowledge base is shown in Table 10.

In the example shown, “S24” is a Skolem constant. Luckham and Nilsson [27] offer a proof that Skolem constants
and functions in an answer statement (corresponding to the answer literal) can be replaced by universally quantified
variables and extend this result to any clause related to the answer statement. The important point is that this replace-
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Table 8
Parent and child

Logic form English gloss Numbered clause

∀x (C(x,p(x))) for all x, x is the 1.{(C ?4 (PARENT-OF ?4))}a

child of p(x)
∀x ∀y ((C(x, y)) for all x and y, if x 2.{(¬ (C ?10 ?12)), (P ?12 ?10)}
⇒ (P (y, x))) is the child of y,

then y is the parent of x

a Note that the monadic function p (lower-case p) from the original text is here rewritten as the
function PARENT-OF to distinguish it from P, which represents the binary predicate is a parent
of. The function will return a parent of its argument, while the predicate asserts that first argument
is a parent of the second argument.

Table 9
Question

Logic form English gloss Clause
number

Question clause

∀x ∃y (P (y, x)) For any x, who is
the parent of x

3. {(¬(P ?26 S24)),

(ANSWER (P ?26 S24))}

Table 10
Generic answers: refutation proof example

Numbered clause Justification/
Substitution

1.{(C ?4 (PARENT-OF ?4))} assumption
2.{(¬ (C ?10 ?12)), (P ?12 ?10)} assumption
3.{(¬ (P ?26 S24)), (ANSWER (P ?26 S24))} question
4.{(ANSWER (P ?60 S24)), (¬ (C S24 ?60))} R 3,2/

{S24/?10, ?12/?26}
5.{(ANSWER (P (PARENT-OF S24) S24))} R 4,1/

{(PARENT-OF S24)
/?60,
S24/?4}

QED

ment does not affect the reasoning process. This is achieved by Luckham and Nilsson [27] by their refutation-tree
annotation procedure, which effectively constructs answer literals after the fact. In our procedure, answers that are
rewritten and returned to a questioner are not added back into the reasoner: they do not affect the reasoning process.
The answer clause from Table 10 can be expressed replacing the Skolem constants with universally quantified vari-
ables:

∀x (P (parent-of x)x)

This closed sentence may be interpreted to mean that, for all x, the parent-of function applied to x yields the parent
of x, which is an appropriate answer given the knowledge base and question.

Answers such as this, where an answer literal contains variables at the time a proof is completed and there are no
non-answer literals in the clause, we term unconstrained generic answers. As previously discussed, the antecedent of a
generic answer, when present, describes sufficient conditions for individuals to be considered as answers to a question.
This non-rule for of a generic answer describes properties of all individuals: there are no constraints regarding their
properties. Variables occurring only in answer literals may be instantiated by any individual in the domain.

2.4.2. A rule that is not a generic answer
In order to see that there are relevant rules generated in the course of resolution that are not generic answers,

consider the question What does Boots like to eat? in conjunction with the knowledge base in Table 2. Note that
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Table 11
Clauses as non-generic rules

Clause Rule

{(ANSWER
(LIKESTOEAT BOOTS HERB),

(¬(CAT BOOTS))}

(CAT BOOTS)

⇒ (LIKESTOEAT BOOTS HERB)

{(ANSWER
(LIKESTOEAT BOOTS ?285)),

(¬(TUNA ?285)), (¬(CAT BOOTS))}

((TUNA ?285) ∧ (CAT BOOTS))

⇒ (LIKESTOEAT BOOTS ?285)

“Boots” is not mentioned in the knowledge base: we have no idea what “Boots” is other than some individual. If
we add the new information to the knowledge base and proceed with resolution refutation a number of clauses are
generated, two of which are shown in Table 11. Rewriting these clauses as rules yields the following:

• (cat Boots) ⇒ (likestoeat Boots Herb)

If Boots is a cat then Boots likes to eat Herb.
• ∀x [((tuna x) ∧ (cat Boots)) ⇒ (likestoeat Boots x)]

If Boots is a cat then Boots likes to eat tuna.

Neither of these rules has the flavor of a generic, which is meant to provide an intensional set description that can
be used to identify individuals in a particular category. Lacking variables, the first rule is clearly not generic, yet it
contains a non-answer literal, which excludes it from the specific answer category. The second rule contains a variable
shared between the argument of the answer literal and one of the other literals, and the piece of information conveyed
by those two literals is generic. The problem is the presence of the other ground, non-answer literal: its presence
means that this answer is not purely generic. In Section 2.5, we will see that these rules are hypothetical answers.

2.4.3. A characterization of generic answers
The purpose of a generic answer is to provide a characterization of individuals that satisfy a given set of criteria.

The genericity is indicated by the presence of variables in answer literals: these unbound variables are akin to arbitrary
individuals [14,15,42]. Non-answer literals in a clause can be viewed as additional specifications of what must hold
in order for the arguments of the answer literals to constitute answers.

Imielinski’s definition of “rules as answers” given previously [22] posits predicate sharing as a way of connecting
conditions on an answer and the answer itself. We have already seen that predicate sharing does not necessarily
accompany a generic answer when answering a question in a resolution theorem prover, rather, what we see is variable
sharing as a means to connect literals to one another.

It seems reasonable to identify non-answer literals that should count as the antecedents in a generic answer by
looking at their variables. These variables represent individuals satisfying a question; that is, they should match the
variables in the answer literals. Identifying generic answers with literals containing variables from the original ques-
tion can be viewed as an issue of relevance: the literals that are relevant to a generic description of the arbitrary
individuals mentioned in the answer literals are those that mention the individuals. Anderson and Belnap [1, pp. 32–
33] discuss relevance in a logic of entailment as depending on variable sharing:

So we propose as a necessary, but by no means sufficient, condition for the relevance of A to B in the pure calculus
of entailment, that A and B must share a variable.

The notion of variable sharing has to be clarified. The following examples show non-answer literals that contain
variables, not all of which overlap the variables in the answer literals. The rule base consists of the following fact and
rule:

(1) (university Michigan)

(2) ∀x∀y∀z[((university x) ∧ (sport y) ∧ (athlete z) ∧ (playsWell z y)) ⇒ (providesScholarshipFor x z)]
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Table 12
Question

Logic form Clause

∃x(providesScholarshipFor
Michigan x)

{(¬(PROVIDESSCHOLARSHIPFOR
MICHIGAN ?22)),

(ANSWER (PROVIDESSCHOLARSHIPFOR
MICHIGAN ?22))}

Using these two pieces of information, a question about scholarships may be asked: For whom does Michigan provide
scholarships?. The logical representation and clause form for the question are shown in Table 12. This answer in
clause form is:

{(¬(ATHLETE ?123)), (¬(PLAYSWELL ?123 ?125)), (¬(SPORT ?125)),

(ANSWER (PROVIDESSCHOLARSHIPFOR MICHIGAN ?123))}
The answer written in rule form is:

∀x ∀y [((athlete x) ∧ (playsWell x y) ∧ (sport y)) ⇒ (providesScholarshipFor Michigan x))]
The variable x is the only variable in the answer literal: it occurs in two of the literals in the antecedent of the rule and
not the other. This rule has the “feel” of a generic because it describes conditions related to the (somewhat) arbitrary
individual satisfying the question: this individual must be an athlete who plays a sport well. While y, the variable
representing any sport, does not occur in the answer literal, it occurs in a non-answer literal with x. The criteria for
including non-answer literals must account for those containing variables that occur with variables from the answer
literals. The non-answer literals that are included in a generic answer are in a set that we term the closure of variable
sharing of the answer literals. In order to define this set, some preliminary results are required. We begin by defining
the variable sharing set of a literal.

Definition 5 (Variable sharing set of a literal). The variable-sharing set of a literal l with respect to a set of literals C,
is a set of literals VS(l) such that each literal in VS(l) is an element of C and shares at least one variable with l.

For example, given the clause C = {R(x, z),P (x),Q(z)}, we have VS(P (x)) = {R(x, z)}, and VS(R(x, z)) =
{P(x),Q(z)}. The definition of the variable sharing set of a literal is made with respect to a single clause (i.e. a set
of literals): because variables in different clauses are renamed apart from one another, there is no variable sharing
between clauses. By this definition, the variable sharing set of a ground literal is the empty set. We compute the
variable sharing set of the answer literals in a clause in order to determine the form of the answer associated with a
clause. It is important that the variable sharing set of a literal with respect to a particular set of literals is unique.

Theorem 6 (Uniqueness of the variable sharing set of a literal). The variable sharing set of a literal with respect to a
clause C is unique.

Proof. Assume that there are sets VS(l) and VS ′(l) such that VS(l) 
= VS ′(l), and both VS(l) and VS ′(l) are variable
sharing sets of literal l with respect to clause C. There must be some literal lk such that either lk ∈ VS(l) and lk /∈
VS ′(l), or vice versa. By definition, lk shares at least one variable in common with l. But that means that lk is in the
variable sharing set of l. Therefore, either VS(l) or VS ′(l) is not a variable sharing set of l, which contradicts our
assumption. �
Definition 7 (Variable sharing set of a set of literals). The variable sharing set of a finite set of literals S =
{l1, l2, . . . , ln} is the union of the variable sharing sets for each of the literals: VS(S) = ⋃

li∈S VS(li).

For example, with respect to the clause C = {R(x, z),P (x),Q(z)}, the variable sharing set for the literals R(x, z)

and P(x) is the union of their variable sharing sets, namely, {R(x, z)}∪{P(x),Q(z)}, which is {R(x, z),P (x),Q(z)}:
the entire clause C. Given any finite set of literals, the variable sharing set can be computed.
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The next notion to be introduced is the closure of variable sharing of a set of literals. Intuitively, this includes not
only the literals from the variable sharing set of the set of literals, but also the literals from the variable sharing set of
the literals in that variable sharing set, and so on.

Definition 8 (Closure of variable sharing of a set of literals). The closure of variable sharing of a set of literals L,
denoted CVS(L), is the fixed point of the VS operator: VS(CVS(L)) = CVS(L). It is inductively defined as follows:

CVS0 = VS(L)

CVS1 = VS(CVS0)

...

CVSn = VS(CVSn−1)

CVSn+1 = CVSn

At this point in the computation, a fixed point has been reached, and no more literals can be added to the set. The
maximum number of literals in this set is the number of literals in the clause C with respect to which CVS(L) is
computed.

Note that VS(L) is not always the same as CVS(L). For example, given the clause C = {R(x, z),P (x),Q(z, y),

S(y)} we have VS(R(x, z)) = {P(x),Q(z, y)}, and CVS(R(x, z)) = {P(x),Q(z, y), S(y)}.
Based on the definition of the closure of variable sharing of a set of literals, we define the closure of variable

sharing of the answer literals. This definition is used to identify clauses that are associated with generic answers.

Definition 9 (Closure of variable sharing of the answer literals). The closure of variable sharing of the answers literals
A in a clause C is CVS(A) with respect to the clause C \A.

In other words, only non-answer literals may be included in the closure of variable sharing of the answer literals.
At this point, we can note the following characteristics of clauses associated with generic answers: the answer

literals cannot all be ground, the non-answer literals must contain variables, and all non-answer literals must be in the
closure of variable sharing of the answer literals.

What of the case where the variable sharing between answer and non-answer literals is partial? One such case
shows why there is no requirement for every variable in the answer literals to appear in every non-answer literal.
Consider a rule representing that if x is green and y is blue then x loves y:

∀x ∀y [((green x) ∧ (blue y)) ⇒ (loves xy)]
Given this rule, and the question Is there is something that loves something? written in FOPC as ∃x∃y(loves xy), what
answer is found? The clause representations of the rule and question are as follows:

(1) {(¬(GREEN ?6)), (¬(BLUE ?8)), (LOVES ?6 ?8)}
(2) {(¬(LOVES ?17 ?19)), (ANSWER (LOVES ?17 ?19))}

The answer clause is:

(3) {(ANSWER (LOVES ?54 ?56)), (¬(GREEN ?54)), (¬(BLUE ?56))}

The rule form of which is ∀x ∀y [((green x) ∧ (blue y)) ⇒ (loves xy)]. In other words, if x is green and y is blue
then x loves y. While two variables appear in the answer literal, ?54 and ?56, the non-answer literals (¬(green ?54))

and (¬(blue ?56)) each contain only one of the variables. As long as a single variable in a non-answer literal is shared
with the answer literals, that is sufficient to connect them, which accords with our definition of the closure of variable
sharing of the answer literals.

Another case of partial overlap of the variables in the answer and non-answer literals is found when there are
variables in the answer literals that do not occur in the non-answer literals. According to the definition of the variable
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sharing of the answer literals, not every variable in the answer literals is required to appear in the non-answer literals.
Given the rule everyone who loves Bob loves everyone, and the question Is there someone who loves everyone? the
answer is everyone who loves Bob loves everyone. The clause representation of the rule, question, and answer are as
follows:

(1) {(¬(LOVES ?6 BOB)), (LOVES?6 ?8)}
(2) {(¬(LOVES ?17 ?19)), (ANSWER (LOVES ?17 ?19))}
(3) {(ANSWER (LOVES ?56 ?58)), (¬(LOVES ?56 BOB))}

The answer is simply a reiteration of the rule that anyone who loves everyone. In this case, the variables ?56 and
?58 appear in the answer literal, but only ?56 appears in the non-answer literal. The “everyone” corresponds to the
unconstrained generic portion of the answer, namely, the variable ?58.

Finally, there may be variables in the non-answer literals that are not found in the answer literals. A question asked
about a single object with a particular property may evoke an answer that involves a long chain of variable sharing,
where there is little overlap between the variable in the question and those in the antecedent of the rule that comprises
the answer. The following example illustrates not only how this may come about, but also the way in which complex
object descriptions may constitute generic answers. Given the question What is valuable? a possible answer is Items
in a locked cabinet where the key is held by a senior manager are valuable. A logic representation of this question
and answer is:

Question: ∃x (valuable x)

Answer: ∀(xyzkl)

[((item x) ∧ (cabinet y) ∧ (senior-manager z)

∧ (key k) ∧ (lock l) ∧ (locks ly)

∧ (key-to kl) ∧ (held-by kz) ∧ (in xy))

�⇒ (valuable x)]
The literals in the antecedent give a set of sufficient conditions for an object to be considered valuable and are con-
nected to the consequent by the closure of variable sharing property.

We are now in a position to define what it means for a clause to be considered a generic answer clause.

Definition 10 (Generic answer clause). A generic answer clause is a clause with the following properties:

(1) There is at least one answer literal that contains a variable, a Skolem constant, or a Skolem function.
(2) All non-answer literals must be in the closure of variable sharing of the answer literals.

We will say that generic answer clauses are associated with generic answers. Note that this definition encompasses
unconstrained generic answers as well as answers that include partial overlap between the variables in the answer and
non-answer literals. A question that arises here is whether sharing of Skolem constants or functions between answer
and non-answer literals should be considered as a type of variable sharing. The answer is no, and a full discussion of
this issue is presented in the section describing hypothetical answers.

Definition 11 (Generic answer). A generic answer is a universally quantified formula associated with a generic answer
clause. The (possibly empty) antecedent is the conjunction of the negations of all of the non-answer literals in the
clause. The consequent is the disjunction of the arguments of all of the answer literals in the clause. Skolem constants
and functions are replaced by variables. Variables local to the consequent are universally quantified with narrow scope.
All other variables are universally quantified with wide scope over the entire formula.

Note that the variables local to the antecedent could be narrowly scoped with an existential quantifier: this would
simply be a logically equivalent variant form. The form using all universal quantifiers was selected as best capturing
the idea of a generic.
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2.4.4. Discussion of generic answers
Generic answers describe satisfying individuals, capturing generalities and referring to categories or kinds: as such,

they are often desirable. In a system that provides generic answers, the need to introduce individuals just so that an
answer can be found (e.g., a particular fox, a particular wolf, etc., in formulations of Schubert’s Steamroller [44]) is
obviated. There are many circumstances under which a generic answer is preferable to a specific answer. Even when
there is not a preference, a generic answer may be given in the absence of a specific answer, conveying information
that would otherwise be lost. When backward chaining is employed in the search for specific answers, generic answers
may be discovered “along the way” to these answers, meaning that they require less time or resources to generate.
Generic answers may be more succinct than lists of individuals. They are more appropriate than specific answers when
a question is universally quantified [46].

In addition to potential gains in computational efficiency provided by generic answers, they are important in terms
of human cognition: generic answers are ubiquitous in human conversation. Given the question, “What barks?”, the
generic answer “Dogs bark.” is a more appropriate answer than a litany of individual dog names. In fact, an exhaustive
list of dogs is not an answer most people would even consider giving. It isn’t difficult to come up with many questions
for which the most natural answers correspond to categories rather than lists of individuals. Work by Rosch showed
that people associate large amounts of information with basic-level categories [38]. Specific answers do not provide
information about categories, while generic answers are capable of doing so. Categories form the basis for description
logics: a KR formalism capable of providing generic descriptions in response to questions. The ability to provide
generic answers at a variety of taxonomic levels is a strength of description logics from the standpoint of question
answering. Note that there are different possible representations of generic information about categories of individuals
in different knowledge representation systems. Rather than representing a category restriction as the antecedent of a
rule, it might be attached as a constraint to a slot that is filled by a satisfying individual. It might also be implicit if
variables are typed.

In the context of databases, Cholvy and Demolombe [8] point out the persistence of intensional answers in contrast
to extensional answers. In most databases, the rules specifying relationships among data and constraints on data are
relatively static, while the facts (corresponding to extensional answers) are frequently updated. This is clearly another
advantage of generic answering, particularly when a set of facts is large and subject to frequent updates.

Thus, generic answers are an important, under-appreciated class of answers that are (for all practical purposes)
already being generated by resolution refutation theorem provers. In many cases, these answers are simply ignored.
There may be circumstances under which they should be acknowledged, even when the goal of reasoning is to find
a proof. In combination with specific answers they comprise the set of individuals and their descriptions that can be
used to satisfy universally and existentially quantified questions.

We have clearly distinguished generic answers from the set of all rules by defining the closure of variable sharing
of the answer literals. In the past, overlap of variables and/or predicates has been suggested as ways in which generic
answers can be identified. However, we have just demonstrated that overlap is not sufficient in defining generic an-
swers.

Generic and specific are not the only possible answer classes. We previously demonstrated two clauses that are
neither generic nor specific according to our definitions. The next section describes how these, along with all other
clauses relevant to a question but not accounted for by the classes specific and generic, fall into the class of hypothetical
answers.

2.5. Hypothetical answers

We have included all answers associated with proof in the categories specific and generic. All that are left are
clauses containing both answer and non-answer literals, so hypothetical answers will all have the form of rules.
Specifically, a hypothetical answer is a rule that is not a generic answer. Given the question What barks? all dogs bark
is a generic answer and if rover barks then all dogs bark is a hypothetical answer.

A hypothetical answer comprises two parts: one part is either a specific or generic answer, and the other is a
condition that must hold in order for the accompanying answer to be considered an answer. In the above example,
the condition is rover barks and the accompanying generic answer is all dogs bark. We refer to the condition as
the hypothetical component of the answer, and the rest of the answer we term the answer component. Hypothetical
answers are divided into specific and generic hypothetical answers, based on the type of the answer component. The
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hallmark of the hypothetical answer is the way in which information belonging to the hypothetical component is
identified: literals not in the closure of variable sharing of the answer literals comprise the hypothetical component of
the hypothetical answer.

Demolombe provides a definition of a conditional answer [11] in terms of logic databases. According to his de-
finition, any answer in rule form is a conditional answer, whether generic or hypothetical. Demolombe partitions
conditional answers into two classes: Intensional and Extensional. Intensional Conditional Answers are derived from
the intensional database, or rules, and Extensional Conditional Answers are derived from the extensional database,
or facts. This partition is related to the division of intensional and extensional information in the database model to
which he refers. Because they contain no variables, Demolombe’s Extensional Conditional Answers are a subset of
our hypothetical answers. Demolombe’s Intensional Conditional Answers include generic answers as well as non-
ground hypothetical answers. In a later paper, Demolombe [12, pp. 104–105] restricts his definition of conditional
answers to those that are all ground, namely, those he terms Extensional Conditional Answers in his previous paper.
As mentioned above, these answers represent the subset of our hypothetical answer class that is characterized by its
lack of variables.

To illustrate hypothetical answers, we use an example from the previous sections. First, the KB to be considered is
that presented in Table 2 (from [36, p. 192]). The question asked was given in the previous section on generic answers,
namely, What does Boots like to eat?. Note once again that the individual Boots is not mentioned in the KB: nothing
whatsoever is known about Boots. Under ordinary circumstances, a query about an unknown individual would fail.
However, when all relevant clauses are considered as answers, Table 13 shows some of the clauses that result. English
glosses for the rules in Table 13 are given below:

(1) If Boots is a cat then Boots likes to eat Herb.
(2) If Boots is a cat then Boots likes to eat Charlie.
(3) If Boots is a calico then Boots likes to eat Herb.
(4) If Boots is a calico then Boots likes to eat Charlie.

Table 13
Hypothetical answers

Clause Rule

1.{(ANSWER
(LIKESTOEAT BOOTS HERB),

(¬(CAT BOOTS))}

(CAT BOOTS) ⇒
(LIKESTOEAT BOOTS HERB)

2.{(ANSWER
(LIKESTOEAT BOOTS CHARLIE),

(¬(CAT BOOTS))}

(CAT BOOTS) ⇒
(LIKESTOEAT BOOTS
CHARLIE)

3.{(ANSWER
(LIKESTOEAT BOOTS HERB),

(¬(CALICO BOOTS))}

(CALICO BOOTS) ⇒
(LIKESTOEAT BOOTS HERB)

4.{(ANSWER
(LIKESTOEAT BOOTS CHARLIE),

(¬(CALICO BOOTS))}

(CALICO BOOTS) ⇒
(LIKESTOEAT BOOTS
CHARLIE)

5.{(ANSWER
(LIKESTOEAT BOOTS ?285)),

(¬(TUNA ?285)), (¬(CALICO BOOTS))}

(CALICO BOOTS) ⇒
(∀x [(TUNA x)

⇒ (LIKESTOEAT BOOTS x)])
6.{(ANSWER
(LIKESTOEAT BOOTS ?270)),

(¬(FISH ?270)), (¬(CALICO BOOTS))}

(CALICO BOOTS) ⇒
(∀x [(FISH x)

⇒ (LIKESTOEAT BOOTS x)])
7.{(ANSWER
(LIKESTOEAT BOOTS ?150)),

(¬(TUNA ?150)), (¬(CAT BOOTS))}

(CAT BOOTS) ⇒
(∀x [(TUNA x)

⇒ (LIKESTOEAT BOOTS x)])
8.{(ANSWER
(LIKESTOEAT BOOTS ?523)),

(¬(FISH ?523)), (¬(CAT BOOTS))}

(CAT BOOTS) ⇒
(∀x [(FISH x)

⇒ (LIKESTOEAT BOOTS x)])
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(5) If Boots is a calico then Boots likes to eat tuna.
(6) If Boots is a calico then Boots likes to eat fish.
(7) If Boots is a cat then Boots likes to eat tuna.
(8) If Boots is a cat then Boots likes to eat fish.

Answers 1–4 are termed specific hypothetical answers because the associated answer component is specific. Similarly
answers 5–8 are termed generic hypothetical answers because the associated answer component is generic.

The rules in Table 13 show the separation of non-answer literals into two sets. When present, non-answer literals
in the closure of variable sharing of the answer literals comprise the antecedent to a generic answer; thus, they appear
in the answer component of the rule. Any other non-answer literals are part of the hypothetical component of the rule.
There are only two distinct hypothetical components across the eight answers: Boots is a cat and Boots is a calico.
Because all calicos are cats, these hypotheses are related taxonomically, however, this information is not contained in
the knowledge base, thus, it would be detrimental to deny “answer” status to an answer with hypothetical component
Boots is a calico simply because we know that it is taxonomically subsumed by Boots is a cat.

Not all hypothetical components of answers are ground. The following example shows a universally quantified
hypothetical component with an unconstrained generic answer as a consequent. Given a knowledge base with one
rule:

(1) ∀x ((dog x) ⇒ (barks x))

and the question Does everything bark? the answer generated by our theorem prover is, in clause form, {(¬(DOG S11)),

(ANSWER (BARKS S11))}. The corresponding answer in rule form is (DOG S11) ⇒ (BARKS S11). As previously
discussed, Skolem constants and functions can be replaced by universally quantified variables in clauses outside the
context of an ongoing proof. When should this replacement take place: should it be before or after the answer literals
are divided into the hypothetical, and generic or specific answer component of a hypothetical answer? If it takes place
beforehand, it seems to indicate that S11 in both literals should be replaced with the same variable, thus yielding a
generic answer. This would conflict with our definition of the closure of variable sharing, which stipulates that the
literal (DOG S11)—an all-ground literal, which does not share variables with the answer literal (ANSWER (BARKS
S11))—should appear in the hypothetical position of the answer. A consideration of the original question, and the
semantics of both the question and answer, leads to clarification on this issue. The original question asked whether
everything barks. If S11 is replaced by the same variable in both clauses, thus becoming a shared, universally quan-
tified variable in a generic answer, the answer would be ∀x [(dog x) ⇒ (barks x)]. The meaning of this rule is that
if something is a dog then it barks; it makes no claim about whether or not the arbitrary individual barks. On the
other hand, by first separating the literals into the two components of the answer, and replacing S11 by a universally
quantified variable with local scope in the two answer components, the answer would be ∀x (dog x) ⇒ ∀y (barks y).
The meaning of this rule is that if everything is a dog then everything barks. This is clearly the right answer. The
only way for an answer literal to contain a Skolem function is if a question contains a universally quantified variable.
Typically, the wh-questions (who, what, where, when, why) are associated with existentially quantified variables rep-
resenting individuals. In the case of who, an agent is sought; for what questions, an event or entity; where questions
seek a location; when questions ask for a time; why questions are associated with reasons. Recent work in question
answering has focused on the forms of “wh” questions in order to divide them into different classes [25] in terms of
the types of individuals that might satisfy the questions.

Thus, not only must translation from Skolem functions and constants to variables take place outside the scope of
reasoning, but it must be delayed until the literals in a clause have been properly separated into the hypothetical and
answer components.

2.5.1. Quantification in the hypothetical component of the answer
At this point, an algorithm for translating from clause form to FOPC representation of an answer is nearly in hand.

There is one other consideration concerning quantification in the hypothetical component of the answer: should the
variables in the hypothetical component be existentially or universally quantified? Another example will help elucidate
both the problem and the solution.
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Table 14
Knowledge base for hypothetical answer example

Logic form English gloss Numbered clause

∀x [(American x)

⇒ (consumer x)]
All Americans
are consumers

1.{(¬(AMERICAN ?11)),

(CONSUMER ?11)}
(∀x (∀y [((consumer x)

∧ (bargain y))

⇒ (likes xy)]))

All consumers
like bargains

2.{(¬(CONSUMER ?5)),

(¬(BARGAIN ?7)),

(LIKES ?5 ?7)}
(∀x (∀y [((consumer x)

∧ (junk y))

⇒ ((¬(likes xy))]))

All consumers
don’t like junk

3.{(¬(CONSUMER ?12)),

(¬(JUNK ?14)),

(¬((LIKES ?12 ?14))}
(American Muffy) Muffy is

an American
4.{(AMERICAN MUFFY)}

(bargain cowPitcher) The cow
pitcher is
a bargain

5.{(BARGAIN COWPITCHER)}

(bargain cowPitcher)∨
(junk cowPitcher)

The cow
pitcher is
a bargain or
the cow
pitcher is junk

6.{(BARGAIN COWPITCHER),

(JUNK COWPITCHER)}

Table 14 shows a knowledge base with information that leads to more interesting hypothetical answers. The ques-
tion to be asked is What does Muffy like? The following is a list of some of the answers in rule form along with English
glosses:

1. (LIKES MUFFY COWCREAMER)

Muffy likes the cow creamer.
2. (∀x ((BARGAIN x) ⇒ (LIKES MUFFY x)))

Muffy likes bargains.
3. (¬(JUNK COWPITCHER)) ⇒ (LIKES MUFFY COWPITCHER)

If the cow pitcher isn’t junk then Muffy likes it.

Answer 1 is a specific answer, 2 is a generic answer, and 3 is a (ground) specific hypothetical answer. Two other
answers are found, shown initially in clause form:

4. {(¬(CONSUMER ?22)), (¬(LIKES ?22 COWPITCHER)), (LIKES MUFFY COWPITCHER)}
5. {(¬(AMERICAN ?24)), (¬(LIKES ?24 COWPITCHER)), (LIKES MUFFY COWPITCHER)}

These clauses correspond to hypothetical answers because of the lack of variables in the answer literals: when the
closure of variable sharing of the answer literals is empty, there is no generic answer. Variables in clauses are implicitly
universally quantified. Recall that, during conversion to clause form, all quantifiers are moved out of the matrix,
giving them scope over the entire formula that will ultimately be rewritten as a clause or set of clauses. The last
step in conversion to clause form is to simply drop the universal quantifiers. Reversing the process leads to universal
quantification of variables in the clause. By definition, the variables in the hypothetical component of the answer occur
only in that component: they are not shared with the generic or specific answer component. This leads to the following
possible representation of answer 4, above:

4a. ∀x [((consumer x) ∧ (likes x cowPitcher)) ⇒ (likes Muffy cowPitcher)]

An alternate, logically equivalent representation is:

4b. [∃x ((consumer x) ∧ (likes x cowPitcher))] ⇒ (likes Muffy cowPitcher)
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The first of these answers (interpreting x as “someone”) says that you can take anyone, if the person is a consumer
and likes a particular cow pitcher then Muffy likes it too. The second says that if there is someone who is a consumer
and who likes a particular cow pitcher then Muffy likes it too.

In terms of the form of these answers, the hypothetical component always appears as the antecedent of a rule:
any variables in the hypothetical component appear only in that component and nowhere else in the formula. In this
context, the wide-scope universal quantifier is equivalent to a narrow-scope existential quantifier.

We opt for narrow-scope existential quantification in our proposed representation, because it reflects the semantics
of the hypothetical component: the hypothetical can be viewed in and of itself as an unanswered question, and as such
it should be easily detachable from the rest of the answer in case the answering agent wishes to subsequently pose it.

We now define what it means for a clause to be considered a hypothetical answer clause.

Definition 12 (Hypothetical answer clause). A hypothetical answer clause is a clause with the following properties:

(1) There is at least one answer literal.
(2) There is at least one non-answer literal that is not in the closure of variable sharing of the answer literals.

We will say that hypothetical answer clauses are associated with hypothetical answers. An example of a hypothet-
ical answer clause (from Table 13) is:

{(ANSWER (LIKESTOEAT BOOTS HERB), (¬(CAT BOOTS))}

Definition 13 (Hypothetical answer). A hypothetical answer is a rule associated with a hypothetical answer clause.
The antecedent of the rule is the conjunction of the negations of the non-answer literals in the clause that are not
in the closure of variable sharing of the answer literals. Any variables in the antecedent are existentially quantified
with narrow scope over the antecedent. Any Skolem functions in the antecedent are replaced by universally quantified
variables with narrow scope over the antecedent and wide scope over the existentials. The remaining literals in the
clause correspond either to a specific or a generic answer that comprises the consequent of the rule.

The hypothetical answer associated with the above clause (from Table 13) is:

(CAT BOOTS) ⇒ (LIKESTOEAT BOOTS HERB)

The antecedent of this rule is (CAT BOOTS), which is the hypothetical information. The consequent, representing a
specific answer, is (LIKESTOEAT BOOTS HERB). The antecedent describes conditions that must hold in order for
the associated answer to be true, whether that answer is generic or specific. This example conveys the information
that if Boots is a cat then Boots likes to eat Herb. In contrast to the antecedent of a generic answer, which describes
conditions on the individuals that satisfy the question, the antecedent of a hypothetical answer describes conditions
on the answer itself.

2.5.2. Hypothetical answers and assumption-based truth maintenance systems
The hypothetical component of the answer is similar to what Reiter and de Kleer call a support for a clause [35,

p. 184]:

A clause S is a support for C with respect to Σ iff Σ 
 |= S and Σ |= S ⊃ C

“. . . the conjunction of literals S is an hypothesis which, if known to Σ (and hence to the Reasoner) would sanction
the conclusion C.” Note that this statement makes the assumption that S and C are independently closed formulae.

One of the characteristics of question answering is the fact that some hypothetical answers discovered in the process
of reasoning are later found not to be hypothetical answers. Some of the answers we term hypothetical may at some
point further along in the reasoning process be subsumed: this would occur if the hypothetical component is discovered
to either be in or to follow from the KB. It is concerning this point that the analogy between hypothetical answers and
assumption-based truth maintenance systems fails to hold. The potential ephemeral nature of hypothetical answers
is noted by Demolombe [11], who uses the term Extended Conditional Answers to refer to all hypothetical answers,



88 D.T. Burhans, S.C. Shapiro / Journal of Applied Logic 5 (2007) 70–91
including those whose hypothetical component may at some point in the future be subsumed. Demolombe reserves
the term Conditional Answer for those hypotheticals that are never subsumed.

2.5.3. Circumstances under which hypothetical answers arise
In a back-chaining reasoner, hypothetical answers are discovered “along the way” as the search for specific and

generic answers proceeds. Most hypothetical answers function merely as resolution intermediates and are ultimately
subsumed. When the hypothetical component of a hypothetical answer is subsumed, there are two possible outcomes.
One possibility is that the subsuming clause is a hypothetical answer clause. The other possibility is that the subsuming
clause is either a generic or a specific answer clause. In the latter case, we may say that the hypothesis presented by
the hypothetical answer clause has been settled, whereas in the former case it has simply been replaced by a new
hypothesis.

In general, when a hypothetical answer is not subsumed, it stands on its own as both relevant and informative.
It is relevant, because it is connected to the question by a chain of reasoning. It is informative in that it provides the
questioner with new information, namely, a new question for which the reasoner may have or be able to find an answer.
This question comprises the hypothetical part of the answer. When a hypothetical answer clause is converted from
clause form into standard FOPC, the hypothetical part is an independent, closed formula H. The rest of the clause,
namely, the answer part that is associated with either a generic or a specific answer, is itself an independent, closed
formula A. We express the relationship between the hypothetical and answer parts of the clause as H ⇒ A. H is a
new question that has arisen and must be addressed by the reasoner, if possible.

How does this differ, though, from a generic answer, which apparently has the same general form as a hypothetical
answer: G ⇒ Q? If a generic answer is all dogs bark, isn’t the antecedent also associated with a potentially unanswer-
able question for a reasoner, namely, is everything a dog?. The answer to this question is no, because the antecedent
in the formula for a generic answer is not detachable; it is not an independent, closed formula. Rather, it is tied to its
consequent through the property of variable sharing. In addition, the antecedent of a generic answer does not question
whether all known entities are members of some category; rather, it describes a set of properties sufficient to deter-
mine that some entity is the member of the class of objects described by the predicates in the question. The question is
everything a dog? which was discussed previously with regard to Skolem functions, arises from a hypothetical answer
where everything is a dog appears as a closed, independent, fully detachable antecedent.

Hypothetical answers are less informative than specific and generic answers in that they neither present a satisfying
individual for a question nor a general description of a satisfying individual, but they do provide information about
what needs to be known in order for an answer to be forthcoming.

There are two situations under which hypothetical answer arise. In the examples shown earlier in this section, it
is seen that hypothetical answers arise when there is a complete lack of information about individuals mentioned in
a question. Hypotheses about properties of such individuals must be made in order to provide answers. The other
situation under which relevant answers can be found regarding a completely unknown individual is in the presence of
unconstrained generic information. For example, if a knowledge base contains a universally quantified formula such
as ∀x (Px), then (Pa) can be inferred for any individual.

Hypothetical answers will be present when there is disjunctive information in a knowledge base. When neither
disjunct is known to be true or known to be false, yet the disjunction is true, this represents a lack of information.
If A ∨ B is known, and neither A nor B is known to be true, then hypothetical answers will arise, as shown in the
example given in Table 14.

It is clearly not always practical, in the face of lack of information, to generate all possible hypothetical answers:
this can lead to a combinatorial explosion of unwanted information. Recent work with large knowledge bases demon-
strates the gravity of this problem [6]. We have offered a short discussion of some ways in which certain hypothetical
answers may be considered more interesting than others. In particular, if a class of hypothetical answers is deemed
uninteresting then this information can be used to help prune the search space of an answering agent. If the only
available responses from a particular answering agent are hypothetical answers, it is likely that a questioner will go
elsewhere in hope of better results.

In summary, hypothetical answers arise naturally in the course of backward reasoning, and often function solely
as resolution intermediates. When hypothetical answers persist, they indicate a lack of information yet provide new
questions that may ultimately lead a questioner to an answer.
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2.6. A complete characterization of answers in resolution refutation

The following formula provides a complete characterization of answers in a resolution theorem prover in accor-
dance with our previous discussion:

∃(w1 . . .wn1)H(w1 . . .wn1 , a1 . . . am1)

⇒ [∀(x1 . . . xn2 , y1 . . . yn3)[G(x1 . . . xn2, y1 . . . yn3 , b1 . . . bm2)

⇒ ∀(z1 . . . zn4)Q(x1 . . . xn2 , z1 . . . zn4 , c1 . . . cm3)]]
This formula can be schematized as H ⇒ [G ⇒ Q] which makes clear the three components of an answer. The
antecedent, H, is what we referred to in Section 2.5 as the hypothetical component of an answer. It is optional:
when it is present, it indicates a hypothetical answer. The consequent of the formula is what we referred to as the
answer component. All answers have a non-empty answer component. The answer component in turn has two parts.
G is the generic component of the answer. It is optional: its presence indicates a generic answer. Finally, Q is the
question component, which is comprised of the arguments of the answer literals. All answers must contain a question
component; it is the only required part of the formula. An all ground question component indicates a specific answer
component, and a question component that contains one or more variables indicates a generic answer component.
Whenever the hypothetical component is present, it indicates a hypothetical answer. When a proof is required in
order for there to be an answer (Green [20,21], Luckham and Nilsson [27], Prolog, Otter [29], and theorem provers
in general) the answer will always consist of only the question component. This limits these approaches to question
answering to providing either specific or unconstrained generic answers.

2.6.1. The hypothetical component
The existentially quantified antecedent of the formula above is the hypothetical component, and has the form:

∃(w1 . . .wn1)H(w1 . . .wn1 , a1 . . . am1)

The parts of the hypothetical component of the formula are as follows:

• H stands for the predicates in the hypothetical component.
• The wi are variables not shared with the answer component. They may be present or absent, depending on the form

of the hypothetical. If they are present then the hypothetical has the form of a rule or generic; if the hypothetical
contains no variables then it falls into the conditional answer category defined by Demolombe [11,12] as well as
having the flavor of an abducible hypothesis.

• The ami
are constants. As with variables, a hypothetical component may or may not contain constants, depending

on its form.

2.6.2. The generic component
The antecedent G of the answer component is the generic component, and has the form:

∀(x1 . . . xn2, y1 . . . yn3)G(x1 . . . xn2, y1 . . . yn3 , b1 . . . bm2)

The parts of the generic component of the answer are as follows:

• G stands for the predicates in the generic component.
• The xi are variables that overlap with the variables in the question component, that is, the variables shared by

both the generic and question component of the answer. There must be shared variables between the generic and
question components.

• The yi are other variables that are in the closure of variable sharing of the answer literals but do not coincide with
the answer literal variables. Therefore they only appear in the generic component. This set of variables may be
empty.

• The bmi
are constants, and may or may not be present, depending on the form of the generic. When constants

occur with variables in generic answers, these answers coincide with what Motro has termed mixed answers [31].
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2.6.3. The question component
The consequent Q of the answer component is the question component of an answer. The question component has

the form:

∀(z1 . . . zn4)Q(x1 . . . xn2, z1 . . . zn4 , c1 . . . cm3)

The parts of the question component of the formula are:

• Q stands for the predicates in the question component.
• The zi are variables contained only in the question component. When present they signal an unconstrained generic

answer.
• The xi are variables shared with the generic component of the answer.
• The cmi

are constants in the question component, which may or may not appear.

3. Conclusions

We have presented a characterization of resolvents generated in the course of a resolution refutation proof that is
based purely on the syntactic form of clauses, yet reflects an intuitive semantics about different types of answers. When
the idea of what counts as an answer is expanded to include all information relevant to a question, regardless of the
reasoning system employed for question answering, it increases the chances that important and relevant information
is provided to a questioner rather than being overlooked.

In our discussions of the meaning of specific, generic, and hypothetical answers we have clearly demonstrated
their importance and applicability to question answering. We have provided a detailed characterization of each of the
three answer classes, and in doing so have accounted for and moved beyond previous work using the paradigm of
resolution for question answering. We have presented a canonical form for answers that unites the three answer types
in a three-part implication.

The results presented in this article provide a basis for future work in the logic of questions and answers.
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