
THE COMPUTABIUlY OF DESIGN 

1986 SUNY BUFFALO SYMPOSIUM ON CAD 
DECEMBER 6 - 7 1986 
CENTER FOR TOMORROW 
STATE UNIVERSITY OF NEW YORK AT l)UFFALO 

.; 

2-129 



1986 SUNY BUFFALO SYMPOSIUM ON CAD 
THE COMPUTABILITY OF DESIGN 

December 6-7 1986 

Center For Tomorrow 
State University of New York at Buffalo 
Buffalo, New York 14214 

Editors: Anton C. Harfmann 
Yehuda E. Kalay 
Bruce R. Majkowski 
Lucien M. Swerdloff 

• 

2-130 



ARTIFICIAL INTELLIGENCE AND AUTOMATED DESIGN 

Stuart C. Shapiro 
James Geller 

Department of Computer Science 
State University of New York at Buffalo 
226 Bell Hall 
Buffalo, NY 14260 

Artificial Intelligence (AI) offers to the design task the use of powerful systems that can be 
knowledgeable assistants to the human designer. Knowledge Representation techniques can be . 
used to specify. the ontology and epistemology of the particular design task so an Intelligent 
Interface. in general. and an Intelligent Drafting assistant. in particular. can discuss the task 
with the designer using the same concepts that he uses. Investigating Knowledge 
Representation formalisms for such aids in the context of developing a Versatile Maintenance 
Expert System (VMES) has uncovered a number of interesting concepts that seem useful for a 
wider class of design domains. These concepts are presented after a general discussion of the 
role of AI in design. and an introduction to a particular AI Knowledge Representation system. 
The role of design aids and Intelligent Interf aces in VMES is presented as an example of the 
use of such systems.1 

2-131 



0 ARTIFICIAL INTEILI GENCE AND DESIGN 
The task of design presents intelligent humans with a large number of complicated problems. 
Artificial intelligence (Al) is the research area which attempts to discover how toprogram 
computers to· solve the sort of problems intelligent humans tackle. One use of AI. in design 
might be to have an AI system that would do the design itself. perhaps viewing design as a 
search through a design-problem space. In this paper. however. we will discuss two aspects of 
the application of AI as design aids for human designers - the application of Knowledge 
Representation to drafting systems, and the use of Intelligent Interfaces. After some 
introductory remarks. we will give a brief introduction to the AI system we are using, present 
some results of our investigations into the applications of Al to design, and, finally. show how 
this fits into a Maintenance Expert System we are developing. 

The Role of Kn?wledge Representation 
Modern computerized drafting systems supply their users with a wealth of powerful 
modeling tools. A typical drafting system deals with objects, their visual and non-visual 
attributes, and their mappings into graphical representations. However, such a system ~ only 
a powerful set of pens, it is not an assistant that "knows" what the designer is talking about. 
To be intelligent, an assistant must be knowledgeable. Knowledgeable computer systems are 
known as "Knowledge-Based Systems" (KBSs), and are a very active area of Al research and 
development. · 

We can identify three roles. that people play in the design and use of KBSs. First, there are 
people who design and implement KBSs without regard to any particular application domain. 
We can refer to such people as the KBS Designers, and to the results of their efforts, using 
terminology from the field of Expert Systems (ESs), as "KBS shells." Second. there are those 
who particularize KBS shells to given application domains. They are called "Knowledge 
Engineers" (KEs) in the ES world, and we can refer to the results of their efforts as KBSs 
sim pliciter, Finally, there arc the .. end-users" who use KBSs as tools to get particular jobs 
<lone. .. 
The job of a KE is usually perceived to be interviewing a person already knowledgeable (at an 
expert level) in the application domain, and recording that person's knowledge in a form that 
the KBS shell can use. However. if the KBS shell is flexible enough, there is an additional task 
for the KE: to design the .. form" in which the knowledge is to be recorded. This task is the 
Knowledge Representation (KR) task. and we will refer to the KE performing this task as the 
"Knowledge Representation Engineer" (KRE). (The KR.ts task has jocularly been called 
"notational engineering,") 

The KRE's first task is an analysis of the knowledge primitives in the domain. He ~~ define 
the domain's ontology (the kinds of objects and attributes contained in the domain), and its 
epistemology (the sorts of things one may know about the domain. and the ways of knowing 
them). A flexible KBS shell will permit the KRE to do this declaratively. Le. without re 
programming the shell. 

The KRE can supply a vocabulary of conceptual objects. relations, and attributes without a 
limit on the level of object abstraction. For example, one can take the system's representation 
of an object. arid its representation of the depiction of the object on the screen. and create an 
explicit non-procedural mapping between them. This mapping itself can be reified, which 
makes it in tum amenable to serving as an object in a. propositional context. This example 
only involves two Ievels of abstraction and is frequently useful. For instance. it may be used 

2-132 



to assert the validity of a mapping that might be limited to particular circumstances. 

The declarative representation of these objects has the additional benefit of placing them in the 
domain of possible end-user queries. Whatever is a concept for both system and user can be 
discussed by them. The user can ·tell the system about them, and can ask the system what it 
currently knows about them. The system can have rules that specify how to reason about 
them, how to derive new attributes from old ones, and even under what circumstances to 
infer the existence of objects it hasn't been explicitly informed about.. 

A Knowledge-Based drafting system can be an intelligent assistant to a designer, rather than 
just a powerful drawing tool. · 

In tclligen t Interfaces 
Recently, there has been increased interest in the contributions Al can make to the design of 
interfaces. There was both a workshop and a panel on Intelligent Interfaces at the 1986 
AAAI sponsored National Conference on Artificial Intelligence, and DARPA has recently 
funded a program on Multi-media Interfaces. 

Our own view, [Shapiro 1986a] is that an intelligent interface needs the following capabiliti~ 
it should know about the topic under discussion, not merely be an isolated, modular, general 
purpose interface; it should know about communication· issues, including what is on the screen, 
and the relationship between what is being communicated and the way it is being 
communicated; it should have a user model, so it has an idea of what the user knows, doesn't 
know, and what the user is trying to accomplish. The KBS-bascd drafter we are developing 
can be seen as an appropriate intelligent interface to a more extensive design system. 

General Introduction to SNePS 
The SNePS Semantic Network Processing System [Shapiro 1979; Shapiro 1986b] is the KBS 
shell we use, and we will use the SNePS formalism in the remainder of this paper. For the 
reader not familiar with SNePS, we will first give a short introduction to the basic properties 
that distinguish it from other semantic network systems. 

SNePS, unlike semantic network systems of the KL-ONE, KRYPTON family, [Brachman 
1985;Brachman 1983] but like Anderson and Bower's HAM, [Anderson 1973] is a propositional 
semantic network system. l.e; the main ingredient of SNePS networks are assertions, 
constructed "from case grammar-like frames. (Fillmore 1968] This does not imply that SNePS 
cannot support KL-ONE type class hierarchies and inheritance, [Tranchell 1982) but that this · 
feature is less prominent in SNePS. SNePS is a fully intensional knowledge representation 
system [Shapiro 1986b] - it can represent imaginary, non-existing, and even impossible objects. 
as well as abstract objects, and multiple guises of a single object as if they were separate 
objects. 

SNePS handles full predicate logic with universal, existential, and numeric quantification. A 
number of non-standard connectives that improve expressibility are available. including both a 
default operator and a true negation. SNePS supports forward, backward, and bidirectional 
inference, in contrast to many other systems which permit reasoning in only one direction. 
For instance. the OPS5 expert system shell does only forward inference. whereas PROLOG does 
only backward inference. In SNePS. the same rule syntax can be used for either type of 
reasoning; there are no specific forward or backward rules, SNePS permits the use of recursive 
rules, either directly recursive or indirectly recursive.' [McKay 1981) A relevance logic based 
[Anderson 1975; Shapiro 1976) extension to SNePS permits its use as a truth maintenance 
system [Martins 1983t 

2-133 



01M2 

DlMl OlAIFl 

DIAIF2 

D1M3 
D1Al 

Dl 

Figure 1: The Adder Multiplier and one of its parts. 

[§]_ 

.. ;('~~··\ 
object type object * M,lti 1;cc ~ 

~fpm~ 

J ·~v. foll type ob~ 

IT;] 

type 

/ I Addc.; 

type 

1d!.21 

Figure 2: A piece of semantic net. 

2-134 



Another advantage of SNePS is the total order Independence of rules and clauses in the rules. 
in effect eliminating the painful mixed procedural-declarative semantics of PROLOG. This 
higher degree of flexibility permits very natural representations. especially for natural 
language rule expressions. However, the required computation times arc much longer than for 
PROLOG programs. 

Although the major purpose of SNePS is not to be a functional model of the brain. as opposed 
to. for instance. Anderson's ACT system, (Anderson 1983] SNePS has been designed with a high 
degree of cognitive validity in mind. This is expressed by a differentiation between conceptual 
and non-conceptual relations. by the impossibility of PROLOGish retract-like forced forgetting 
(except for debugging purposes). and by the accessibility of all information about a concept 
from the concept itself. 

A number of different SNePS interfaces have been designed. containing several natural 
language parser/generators for subsets of English, a frame-like editor. a logic programming 
language. and several graphics interfaces. In our description of knowledge structures we will 
liberally use the "Lispish" notation of the SNePS User Language (SNePSUL). or our standard 
graphical representation of SNePS networks. 

Knowledge Representation in SNePS 
In this section, we will discuss an example SNePS · network to introduce the syntax and 
semantics of some of the representational structures we use in our work on VMES. the 
Versatile Maintenance Expert System. [Shapiro 1986c] Figure 1 shows an Adder-Multiplier, a 
simple experimental device that has been used in the field of hardware maintenance research 
by a number of people. This object consists of three multipliers and two adders. Figure 2 
shows part of the semantic network that describes this device. Rectangles in Figure 2 
represent concepts of real or imaginary objects. Circles represent propositions about these 
objects. The network can be· read as follows: D1 is an object of type M3A2; DlAl is of type 
Adder and is a part of 01; OlMl is of type Multiplier and is a part of 01; DlAtFl is a Full 
Adder and is part of 01Al; etc. · 

The SNePSUL commands that=create the network of Figure 2 are: 

(define part-of object type) 

(build object DlAl 
type Adder 
part-of Dl) 

(build object D1Ml 
part-of Dl 
type Multiplier) 

(build object Dl 
type M3A2) 

(build object DlAlFl 
part-of DlAl 
Type· Full Adder) 

(build object DlAlF2 
part-of DlAl 
type- Full Adder) 

2-135 



The first define command defines the arcs to be used in the system. Arcs can be followed. 
for retrieval purposes. in either the forward or backward direction, guaranteeing the universal 
accessibility of every node from every other node that is related to it. 
The set of build commands creates the actual network. Note that every build command 
will result in the creation of one " m ••• " node. These nodes. as described earlier, correspond 
to propositions in the system and cannot be created directly by the user. In other words. it is 
not possible for the user to create an arc connecting two nodes named by him, guarding users 
against creating non-conceptual propositions. objects the SNePS theory of mind docs not permit. 

0 AN ANALYSIS OF IMPORTANT ELEMENTS OF DESIGN 
KNOWLEDGE 
Having introduced the SNePS KBS shell, we will now discuss the ontology and 
representational constructs that we, in our role as KREs, have found to be necessary for 
creating descriptions of _graphical depictions of simple circuit boards. 

Objects and Forms 
The first fundamental unit we need to deal with is the displayable object. In order to create a 
picture of an object it is necessary to specify a form for it. Every form has a dual role. On 
the one hand, it can be used to create a picture of that form. On the other hand, it is a 
conceptual unit in the knowledge representation system and can be manipulated as such. 
Picture creation is done by a Lisp graphics function whose name is identical to the form 
concept in the network, and whose arguments are the coordinate positions of the place the 
form is to be drawn. So, if the form of a particular gate is specified by the function gate 
form, the gate would be drawn at position (100, 300) by evaluating the Lisp form: 

(gate-form ioo 300) 

The degree of specificity of a form varies. While the form of an integrated circuit or a 
transistor is totally fixed, the form of a wire is dependent on the position of the ports it 
connects. If a user wishes to display an abstract object then he has to supply a symbolic form 
for it. 

Positions 
The next essential ingredient for a drafting system is the concept of 'positions. There are 
several possible ways of specifying positions, In a traditional CAD system, positions are only 
expressed in an absolute or relative manner based on coordinate values. This is an ability that 
a KUS should also have. However, knowledge-based design systems should also be able to deal 
with relational specifications. such as the specification that a certain clement should be near or 
to the left of another element. This, of course, introduces a certain fuzzyness in the 
representation. However, in many cases this is exactly what a designer would like. It permits 
him to think in concepts that are natural to him, and it avoids. unnecessary specificity. In 
other words, a knowledge-based drafting system permits one to specify spatial relations with a 

2-136 



reaso nable degree of imprecision. 

The following SNePSUL commands show first our represe ntation for relative coo rdinate 
pos itions, and then for fuzzy posi tion: 

(build object 
relpos 
rel-to 
modality 

(build object 
relpos 
rel-to 
modality 

gate-1 
(build X 100 y 200) 
gate-5 
function) 

gate-2 
left· 
gate-1 
function) 

The first SNePSUL command will create a piece of SNePS network representing the proposition 
that gate-1 is 100 units to the right and 200 units above gate-5. The second one asserts that 
gate-1 is to the left of gate-2. The modality slot is used to differentiate between different 
arrangements of an object in a functional representation ( wire plan) and a physical 
representation (picture of the board). 

Attributes 
Attributes can either be of objects or of pictures of objects. An example of an attribute of a 
picture is blinking. A blinking picture can help a user focus his attention on a currently 
interesting object. without expressing anything about the object itself. 
An example object attribute we have been using is the faultiness of a gate. The proposition 
that Gate-I is faulty would be represented by the network built by the command: 

(build ob~ect 
attr 

gate-1 
(build atrb-.cls 

atrb 
modality 

state 
faulty 
function)) 

In order that the system k.now how to display a faulty gate, we tell it that the state 
attribute maps to the state-to-color function: 

(build attr state 
mod-func state-to-color) 

Each attribute function, such as state-to-color, is actually a functional that takes a 
form function and an attribute value as arguments. and returns a modified form function. So. 
again, if gate-1 had the form represented by the function gate-form, and given that gate-1 is in 
the state of being faulty, and that the attribute function for state is state-to-color, gate-1 
would be displayed as faulty at coordinate position (100, 300) by evaluating the Lisp form: 

(funcall (state-to-color t'gate-form 'faulty) 
100 300) 

Notice that representing different attribute dimensions (state, color, size, etc.) by different 
attribute functionals explicates the way that different attribute dimensions are, in fact. 

2-137 



different. 
In this technique. the information of how to display a faulty gate is procedurally encoded in 
the state-to-color functional. An alternative is to store the information 
declaratively in the network. such as by a proposition built by the command: 

(build attr 
atrb 
mod-val 

state 
faulty 
red) 

This proposition says that the attribute of being in a faulty state is to be shown by making 
the display red. The fact that red is a value of the color attribute is stored by a separate 
proposition. 

Class Hierarchy 
An important feature of most knowledge representation systems is their ability to han.S,le 
classes of objects (and also hierarchies with many levels of classes). This permits a user to 
associate an attribute with an entire class instead of a single object. For example. one could 
express the fact that all integrated circuits expect· ground potential on their pin O by 
associating this fact with the class of all integrated circuits. 

Classes have two important features that are valuable for design systems (and KR systems in 
general). The first is that by asserting that an object belongs to a certain class, a lot of new 
knowledge is immediately available about it. This is called inheritance along a class 
hierarchy. The other valuable feature is that this type of representation seems to correspond 
to the way people organize their knowledge. Therefore the naturalness of the use of classes 
also improves the general communication between user and system. 

Part Hierarchy • 
Another feature that is common in Al systems is the use of part hierarchies. Much of the 
knowledge about physical objects can be organized as facts that express a part-whole relation 
between different objects. This applies also and especially to design systems. 
Our own research has shown that the concept of inheritability which was mentioned for class 
hierarchies is also applicable to part hierarchies. but with a difference that we have not seen 
discussed in the previous literature. For instance, the attribute of a special transistor of being 
"twice as large as an average transistor" is inheritable by its parts. On the other hand. if a 
circuit board is known to be faulty, nobody would want this attribute to be inherited by all 
its parts. That would defeat the very purpose of a diagnosis system. 

In class hierarchies. the only attributes that are not inheritable. are those that apply only to 
classes. For example. the cardinality of a class is not applicable to. let alone inherited by, its 
individual members. In the part hierarchy. however. there are non-inheritable attributes, such 
as faultiness. that are applicable to sub-parts. just not to be inherited by aU of them. 

- . . 

The representation that we are using for inheritable attributes is the same as the representation 
for non-inheritable attributes, and is. in fact. identical to the example of faultiness-given in an 
earlier section. However it is possible to assert in the network about a certain attribute that it 
is inheritable, simply by pointing to it w.ith an inheritable arc. For example: 

(build inheritable size) 

2-138 



The display program which interprets the network. automatically queries for inhcritability if 
it has to expand an object with attributes into parts. The results of this query determine 
whether or not the parts of the object are displayed as having the attribute. 

Inheritabifity, as an attribute of other attributes. is a meta-attribute. The fact that we arc 
representing it explicitly and declaratively gives the user the power to experiment with 
different attributes. and to postpone the decision about which of them is inheritable. 

Our findings about inheritance can be extended to other hierarchies. which we refer to as 
relevance hierarchies. Relevance hierarchies are an abstraction of a number of different 
hierarchies used in the literature. including topic hierarchies [Haan 1986] and hierarchies of 
spatial universes (containment hierarchies). [Fahlmann 1979] 

0 TI-IE VMES SYSTEM 
The research described in this paper is a part of the VMES (Versatile Maintenance Expert 
System) project. which deals with hardware maintenance for mixed analog and digital circuit 
boards. By using the features of a knowledge based architecture. a high degree of versatility 
has been ar+.ieved. [Shapiro 1986c] 
The specific significance of our work is that frequently electronic devices have fairly short life 
cycles. A new board is designed and quickly comes into use in the field. There is little time to 
design elaborate test procedures or equipment. or to educate a large number of technicians and 
users. Usually, the only real expert on the device is its designer. and he is already involved 
with another project when the first problems in the field come up. Our research is directed 
toward the design of a KBS-based drafter that the designer will use to help design a new 
device. This design stage w:ill be the "Knowledge Acquisition" stage of the VMES, which will 
then be able to advise maintenance technicians on the maintenance and repair of the device 
that it helped design. · 

The maintenance system can. also be used as a part of the design system. since it can be used to 
detect impossible designs which do not conform to certain integrity constraints. An example 
of such an impossible design in the circuit board domain would be if a new device that is 
described to the system has two chips with their input ports connected to each other. but 
neither connected to an outport of any other chip (Figure 3). Another example would be if 
two points are electrically connected to each other by two separate wires (Figure 4). 
VMES implements a large number of the concepts which have been described in the previous 
sections. i.e. part and class hierarchies. inheritance. attributes. etc. It expects to talk to two 
different types of end-users, On the one hand are maintenance technicians with a limited 
amount of education and training. On the other hand are the designers that enter a description 
of a new device into the system. These two types of end-users have different user interfaces. 
but both interfaces are required to be natural and user-friendly. 
The need to create descriptions of circuit boards quickly and without "programming" requires 
a system that has fairly general knowledge about circuit boards. and that can be adapted to a 
new device in a short time and with a natural dialogue. To achieve this the system has to 

. understand much about the objects of the domain, like wires. inverters or integrated circuits. 
The use of a Knowledge Representation language is -a precondition for achieving such 
understanding. Use of a component library also permits a rapid change from one device· to 
another. If a new device does not contain any new components. then it is only necessary to 
describe the new wiring. 
Our approach to the design of Intelligent Interfaces may be explained by a description of three 
interfaces that are part of VMES. The main user interface is a Knowledge-Based graphics 
component. This program. named display, takes a piece of semantic network as argument 

2-139 



output 
IC I 

!Cl output 

rcdundanlconncction 

Figure 3 Figure 4 

and uses it to generate a pictorial representation of the stored knowledge. 0 display· 
works as a generator. quite c.omparable with a natural language generator. Only redundant 
permanent auxiliary storage is used by display. In other words. the semantic network 
plus the Lisp functions describing primitive forms are the only knowledge sources for the 
computation and creation of device depictions. - 
We are working on displaying devices under the assumption that no coordinate positions are 
given. We refer to this activity as intelligent machine drafting (IMO). We are attempting to 
provide a procedural model of some of the knowledge that a draftsman has about space and 
arrangement of electronic components. display tries to arrange components of the system 
in what it .. thinks .. is a graphically appealing way. using several variations of an equal 
spacing algorithm. Unlike VLSI routing or layout programs. which usually try to find some 
space-optimal solution. d issp Lay assumes that there is ample space to solve the placing 
problem. 
The second interface is a natural language understander (NLU). implemented by using an 
augmented transition network (A TN) [Woods 1970; Shapiro. 1982] semantic grammar. A user 
can create classes of objects, assign (predefined) forms to them. name members of these classes. 
assign them attributes. and then display them. all with commands from a (fairly limited) 
subset of natural language. The NLU uses the same KR constructs as are used by display. 
This enables it to demonstrate its understanding of declarative sentences by drawing the 
object(s) mentioned using appropriate graphic indicators of the asserted attributes. 

The third interface is the Preadf orm facility, which allows a user to create Lisp form 
functions simply by drawing objects. readf Orm permits a user to create pictures of objects 
from simple primitives like lines. circles. boxes etc. He can also design a form off to the side, 
on a kind of scratch pad. and then. add this form repeatedly to the object being· designed. 
readform will assume that the form created on the side is the form of a class of objects. 
and that the repeatedly added instances arc members of that class, These members will also be 
assumed to be parts of a main object. consisting of the primitives placed before and after using 
the scratch pad. read.form verifies some of its assumptions by querying the user. e.g. 
asking for a name of the suspected class. If the -user supplies the requested names then 
readform will create a network structure that asserts the class and part relations and will 

2-140 



even store the positions of the parts relative to their super objoct. 

0 CONCLUSIONS 
Al offers to the design task the use of powerful Knowledge-Based System shells. Knowledge 
Representation Engineers particularize these KBS shells to the particular design domain by 
specifying the ontology and epistemology of the domain. This permits the end-users to discuss 
the design task with the KBS as if it were a knowledgeable assistant> 

We discussed two aspects of KBSs useful for design. Intelligent Interfaces know the task being 
performed, know about the objects. relations, and attributes being discussed, and know how to 
express these concepts to the user. Intelligent Machine Drafters (IMDs) are knowledgeable 
assistants to the designer, besides being powerful drafting tools. 
We have been developing a Versatile Maintenance Expert System (VMES) that would be able 
to help a maintenance technician repair a device that had been designed so recently that there 
would not have been time to give the technician training on how to repair it, The VMES 
would acquire its own knowledge of the device by serving as an IMO to the original designer. 
In our roles as KREs for VMES, we have identified the following concepts as useful for an 
IMO and for an Intelligent Interface to a design system: objects; forms of objects; absolute, 
relative and "fuzzy" positions; attributes of objects and of pictures of objects; attribute 
functionals; object attribute to picture attribute mappings; class, part, and relevance hierarchies; 
and meta-attributes, such as inheritability. 

0 ACKNOWLEDGEMENTS 
We would like to thank the other members of the VMES team, Mingruey R. Taie, Satgur N. 
Srihari, and Scott S. Campbell for valuable discussions; Dale Richards from RAOC for 
administrative support; Bill •Eggers, Michael Rosenzweig, and Carl Mercer for working on 
several generations of "Readform"; and finally Lynda Spahr, our secretary, for being a pearl in 
general. 

0 REFERENCES 
AAAI Proceedings of the Fifth National Conference on Artificial Isuelllgence, Morgan 
Kaufmann Publishers, Los Altos. CA, 1986. 
Abbott C. "Introduction to the Special Issue on Computer Music". ACM. Computing Surveys. 
17(2):147-289, June 1985. 

Anderson A. and N. Belnap Entailment: The Logic of Relevance and Necessity, Princeton 
University Press, vol.I, 1975. 
Anderson J.R. "A Spreading Activation Theory·of Memory," Journal of Verbal Learning and 
Verbal Behavior, 22:261-295, 1983. -- - · · 

. Anderson J.R. and G.H. Bower Human Associative Memory. V. H. Winston and Sons. 
Washington, D.C., 1973. 

Ballard DJI. and CM. Brown Computer Vision, Prentice Hall. 1982. 
Brachman RJ.. R.E. Fikes and HJ. Levesque "KRYPTON: A Functional Approach to 

2-141 



Knowledge Representation ': IEEE ~mputer. 16(10):67-73. 1983. 
Brachman RJ. and HJ. Levesque Readings in Knowledge Represenuuion ; Morgan Kaufmann 
Publishers. Los Altos, CA. 1985. 
Boden M.A. Artificial l tuelligence: flow Machines Think. Simon & Schuster. NY. 1985. 
Brachman RJ. and J. Schmolze "An Overview of the KL-ONE Knowledge Representation 
System". Cognitive Science. 9(2):171-216, 1985. · 
Charniak E and D. McDermott Iruroductlon. to Artifr.dal Intelligence, Addison Wesley. 
Reading, MA, J 985. · 
Fahlmann SJ:. NEI'L: A System for Representing and Using Real-World Knowledge, MIT 
Press, Cambridge, MA, 1979. 
Fillmore CJ. 'The Case for Case", Universals in Linguistic Theory, ed. E Bach and R. T. 
Harms Holt, Rinehart. and Winston, NY. pp. 1-88, 1968. 

Gardner 14. The Mind's New Science: A History of the Cognitive Revolution, Basic Books, NY, 
1985. 
Haan J. de and LK. Schubert "Inference in a Topically Organized Semantic Net", WilTiam 
Kaufmann, Los Altos, CA, Proceedings of the Fifth National Conference on Artificial. 
Intelligence, pp. 334-338, J 986. 
Hayes-Roth F., D.A. Waterman and D.B. Lenat Building Expert Systems, Addison-Wesley, 
Reading, MA, 1983. 

Hofstadter D.R. and D.C. Dennett The Mind's I, Bantam Books, NY, 1981. 

Hunt M. The Universe Within, Simon & Schuster, NY, 1982. Martins J.P. Reasoning in 
Multiple Belief Systems, 103, SUNY at Buffalo, Dept. of Comp. Sci., 1983. 
IJCAI Proceedings of the Niruh. Lnternational Joint Conference on Artificial Intelligence, 
Morgan Kaufmann Publishers, Los Altos, CA, 1985. 
McCalla G. and N. Cercone "Approaches to Knowledge Representation". Computer, pp12-l8, 
Oct. 1983. ., . 

McKay D.P. and S.C. Shapiro "Using Active Connection Graphs for- Reasoning with Recursive 
Rules", William Kaufmann. Los Altos, CA, Proceedings of the Seventh International Joint 
Conference on Artificial Intelligence, pp. 368-374, 1981. 

Nilson NJ. Principles of Artificial Lntelllgence, Tioga. Palo Alto, CA, 1980. 

Peat F.D. Artificial. Ltuelligence: How Machines Think, Simon & Schuster, New York, 1985. 
Shapiro S.C. and M. Wand The Relevance of Relevance, 46, Indiana University, 1976. 
Shapiro S.C. 'The SNePS Semantic Network Processing System". Associative Networks: The 
Representation. and use of Knowledge by Computers, ed. by Nicholas V. Findler, Academic 
Press, NY, pp. 179-203, 1979. 

Shapiro S.C. "Generalized augmented transition network grammars for generation from 
semantic networks", The American Journal of Compuiational. Linguistics, 8(1):12-25, 1982. 
Shapiro S.C. and J. Geller "Knowledge Based Interfaces". AAAI-86 Workshop_on Intelligence 
in l nierfaces, ed. Bob Neches and Tom Kaczmarek pp. 31-36. August, l98~ 
Shapiro S.C., s.N. Srihari, M.R. Ta.ie and J. Geller "VMES: A Network Based Versatile 
Maintenance Expert System", Applications of AI to Engineering Problems, 1986c. 

Shapiro S.C. and WJ. Rapaport "SNePS Considered as a Fully Intensional Propositional 
Semantic Network", AAAI.I'roceedings of the Flfth Natrona! Conference on Artifidal 

2-142 



Lnielligence, pp. 278-283, 1986b. 

Tranchell LM. A SNePS Lmplementation. of KL-ONE, TR-198. Dept. of Comp. Sci .. SUNY at 
Buffalo, 1982. 
Winston P.A. Artificial /ntelllgence, Addison-Wesley, Reading, MA. 1984. 

Woods W .A. "Transition Network Grammars for Natural Language Analysis", 
Communications of the ACM. 10-S91-606, 1970. 

" 

2-143 


