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1 INTRODUCTION

In contrast to “conscious”, reasoned behaviors, we
consider behaviors that are automatic and unrea-
soned to be “unconscious”. The latter are com-
monly found in behavior-based AI models [Bro90,
Mae90]. We are developing an architecture that
models agents with both “conscious” and “uncon-
scious” behaviors. Furthermore, we are interested
in modeling agents that learn behaviors from their
successful interactions with the world. We call these
learned behaviors “emergent behaviors”. We present
an architecture for intelligent autonomous agents
which we call GLAIR (Grounded Layered Architec-
ture with Integrated Reasoning) [HLS92, HCBS93,
HLS93, HLCS93, LHS ]. GLAIR is a general multi-
level architecture for autonomous agents with sensory
and motor capabilities. GLAIR offers “unconscious”
layers for modeling tasks that exhibit a close affin-
ity between sensing and acting, i.e., behavior-based
AI modules, and a “conscious” layer for modeling
tasks that exhibit delays between sensing and act-
ing, and require deliberation on the part of the agent.
GLAIR provides learning mechanisms that allow for
autonomous agents to learn emergent behaviors and
add them to their repertoire of behaviors. In this pa-
per we will describe the principles of GLAIR, and an
application we have developed that demonstrates how
GLAIR-based agents acquire and exhibit a repertoire
of behaviors at different cognitive levels.

2 OVERVIEW OF GLAIR

What goes into an architecture for an autonomous
agent has traditionally depended to a large extent
on whether we are butlding a physical system, un-
derstanding/modeling behaviors of an anthropomor-
phic agent, or integrating a select number of intell:-
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gent behaviors. The organization of an architecture is
also influenced by adopting various philosophical po-
sitions like Fodor’s modularity assumption [Fod83],
or a connectionist point of view, e.g. [MRHS86], or an
anti-modularity assumption as in Brooks’s subsump-
tion architecture [Bro85]. The modularity assumption
supports (among other things) a division of the mind
into a central system, i.e. cognitive processes such as
learning, planning, and reasoning, and a peripheral
system, i.e. sensory and motor processing [Cha90].
QOur architecture is characterized by a three-level or-
ganization into a Knowledge Level (KL), a Perceptuo-
Motor Level (PML), and a Sensori-Actuator Level
(SAL). This organization is neither modular, anti-
modular, hierarchical, anti-hierarchical, nor connec-
tionist in the conventional sense. It integrates a tra-
ditional symbol system with a physically grounded
system, i.e. with a behavior-based architecture. The
most important difference with a purely behavior-
based architecture like Brooks’s subsumption archi-
tecture is the presence of three distinct levels with
different representations and implementation mech-
anisms for each, particularly the presence of an ex-
plicit KL. Representation, reasoning (including plan-
ning), perception, and generation of behavior are dis-
tributed through all three levels. Our architecture is
best described using a resolution pyramid metaphor
as used in computer vision work [BB82], rather than
a central vs. peripheral metaphor. Architectures for
building physical systems, e.g. robotic architectures
[ABN81], tend to address the relationship between a
physical entity (like a robot) and sensors, effectors,
and tasks to be accomplished. Since these physical
systems are performance centered, they often lack
general knowledge representation and reasoning tech-
niques. These architectures tend to be primarily con-
cerned with the body, that is, how to get the physi-
cal system to exhibit intelligent behavior through its
physical activity. These architectures address what
John Pollock calls Quick and Inflezible (Q&I) pro-



cesses [Pol89).

Architectures for understanding/modeling behav-
iors of an anthropomorphic agent, e.g., cognitive ar-
chitectures [And83, Pol89, LMA91], tend to address
the relationships that exist among the structure of
memory, reasoning abilities, intelligent behavior, and
mental states and experiences. These architectures
often do not take the body into account. Instead
they primarily focus on the mind and consciousness.
We operationally define consciousness for a robotic
agent as being aware of one’s environment, as evi-
denced by (1) having some internal states or repre-
sentations that are causally connected to the environ-
ment through perception and action, (2) being able
to reason explicitly about the environment, and (3)
being able to communicate with an external agent
about the environment. Our architecture ranges from
general knowledge representation and reasoning to
body-dependent physical behavior, and the other way
around. We are interested in autonomous agents that
are embedded in a dynamic environment. Such an
agent needs to continually interact with and react
to its environment and exhibit intelligent behavior
through its physical activity. To be successful, the
agent needs to reason about events and actions in
the abstract as well as in concrete terms. This means
combining situated activity with acts based on rea-
soning about goal-accomplishment, i.e., deliberative
acting or planning. In the latter part of this paper,
we will present a particular agent based on our ar-
chitecture. This agents is designed with a robot in
mind, but its structure is also akin to anthropomor-
phic agents. Figure 1 schematically presents our ar-
chitecture. There are several features that contribute
to its robustness. We highlight them below. For an
in-depth discussion and comparison with other archi-
tectures see [HLS92, LHS ].

o We differentiate conscious reasoning from uncon-

scious Perceptuo-Motor and Sensori-Actuator
processing.

o The levels of our architecture are semi-

autonomous and processed in parallel.

e Conscious reasoning takes place through explicit
knowledge representation and reasoning. Un-
conscious behavior makes use of several different
mechanisms.

e Conscious reasoning guides the unconscious be-
havior, and the unconscious levels, which are
constantly engaged in perceptual and motor pro-
cessing, can alarm the conscious level of impor-
tant events, taking control if necessary. Control
and generation of behavior are layered and not
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Figure 1. Schematic representation of the
agent architecture. Width of control and data
paths suggests the amount of information
passing through (bandwidth). Sensors in-
clude both world-sensors and proprio-sensors.

exclusively top-down.

o Lower level mechanisms can preempt higher level
ones (this is almost subsumption [Bro85] on its
head).

e There is a correspondence between terms in
the Knowledge Representation and Reasoning
(KRR) system on one hand, and sensory per-
ceived objects, properties, events, and states of
affairs in the world and motor capabilities on the
other hand. We call this correspondence align-
ment.

e The level at which any given behavior is gener-
ated and/or controlled is not fixed, but can vary
in the course of learning, or depending on the
particular goals and capabilities of the agent in
question.

One major objective for GLAIR is learning emer-
gent behaviors. In accordance with Agre’s improvised
actions [AC87] and Brooks’s subsumption [Bro85] we
believe that complex behaviors emerge from interac-
tion of the agent with its environment without plan-
ning. However, previous work in this area hard-coded
primitive actions and did not attempt to learn the
improvised behavior. We include mechanisms in our
architecture for detecting emergent behavior at the
unconscious layers and study how corresponding con-
cepts can be learned at the conscious layer. As an



example of the interaction between reflexes and other
types of behavior, consider a mobile robot going down
a hall. Keeping to the middle of the hall is imple-
mented at the PML, while obstacle avoidance is a re-
flex at the SAL. In case the robot comes too close to
an obstacle, the reflex takes control, stops the robot,
makes it retreat some, and changes its orientation
slightly. Simultaneously a signal is sent to the PML
and the KL to signify that a reflex has occurred. A
good choice of reflex behavior (the retreat and orien-
tation change in this case) will in most cases result in
obstacle avoidance even if the reflex is ignored (after
repeated trial and error, somewhat like a mechanical
toy with a simple sensor avoids falling off the edge of
a table). Compared to Brooks’s approach, the main
difference is that the subsumed behavior (forward mo-
tion) is notified of the event, and may or may not take
that into account subsequently. This is more psycho-
logically realistic in our opinion, as well as a more
flexible control strategy.

Another major objective for GLAIR is to study
how symbolic Knowledge Level concepts can be
grounded in perception and action, giving these con-
cepts an embodied semantics for the robotic agent.
We believe that if one wants to use symbolic mod-
eling as part of an autonomous agent architecture,
one has to make sure the symbols in those models
are meaningful to the agent, rather than to the de-
signer of the system, and to insure this, we need a set
of grounded or embodied symbols that can function
as a basis of meaning for all symbols in the model.
We define embodiment as the meaning or extension
of high level symbols being determined both by the
agent’s own physiology (bodily functions) and by its
interactions with the world [HLS93]). For instance, a
KL symbol “grasp” which is aligned with a PMA for
grasping has an embodied semantics, but a symbol
“fly” for which there is no alignment is not. A KL
symbol “red” which is aligned with a particular re-
gion in the agent’s perceptual color space at the PM
level is embodied, but a symbol “beautiful” for which
there is no alignment is not. Embodied symbols are
intrinsically meaningful to the agent, non-embodied
ones can only be by virtue of being systematicaily re-
lated to embodied ones. The latter kind of symbols
we consider to be indirectly grounded, after [Har90].

2.1 Perceptuo-Motor Automata

At the perceptuo-motor level, the behaviors result-
ing in physical actions are generated by an automa-
ton, which we will call a PM-automaton (PMA)
[HN92, HLCS93]. In other words, PMAs are repre-
sentation mechanisms for generating behaviors at an
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“unconscious” level. PMAs are finite state machines
represented by <Rewards, Goal-Transitions, Goals,
Action-Transitions, Actions, Sensations>. Goals, Re-
wards, and Goal-Transitions in a PMA can be empty.
The primary mode of acquiring a PMA is intended to
be by converting plans in the knowledge level into a
PMA by a process described in [HN92]. In Section 3,
we describe a stepwise learning scheme for acquiring
PMA transitions.

2.2 Color Perception

As a particular instance of symbol grounding and em-
bodied symbolic concepts, we have been working on
a model of color perception and color naming, which
will provide grounding for some of the symbolic rep-
resentations at GLAIR agents’ Knowledge level. This
model allows an agent to (1) name colors shown to
it, and express a typicality judgement, (2) point out
examples of named colors in its environment, and (3)
learn new names for colors. This model provides the
perceptual grounding for a set of basic color terms
[BK69] represented at the Knowledge Level. The
color domain was chosen as a case study for embod-
ied perception because of the relative abundance of
psychological, psychophysical and neurophysiological
data in the literature. It is a complex enough area to
allow the usefulness of embodiment for computational
models of perception to be demonstrated, yet feasi-
ble enough to be implemented in actual autonomous
agents. Our research draws on work in the neuro-
physiology of color perception, particularly [DAJ66],
in semantic universals for natural languages, partic-
ularly [BK69], and other work in AI and cognitive
science.

At the most general level of description, our model
has to explain (and reproduce) a signal-to-symbol
transition, going from light entering a sensing device
(camera) to symbols representing the perceived color
at any point in the image. To make our problem
manageable, we make some simplifying assumptions.
We are only concerned with single-point determina-
tion of color, thus disregarding spatial interactions in
color perception. We also assume foveal cone pho-
toreceptors as our neurophysiological reference. Fur-
thermore, we restrict the problem to any given fixed
state of adaptation of the vision system, thus avoiding
issues of color constancy [Boy79, WS82]. In the phys-
ical agent implementations we are developing we will
deal with these issues to some extent, using a scal-
ing technique. Conceptually, we break the model up
into two parts: the first part which takes us from the
visual stimulus (SA level) to color space coordinates
(PM level), the second from color space coordinates



to a set of color names (K level).

Since we hypothesize that the nature of the color
perception mechanism underlying human color nam-
ing determines to some extent the existence and the
nature of the semantic universals of color, we want to
use a color space which is based on the neurophysiol-
ogy of color perception. Based on data published in
[DAJ66], we have reconstructed 3D models of the re-
sponse of 4 types of color-opponent cells and 2 types
of non-opponent cells in the Macaque LGN. Response
is a function of both spectral composition and radi-
ance of the stimulus. By pairwise combining these
functions, we have derived new 3D response functions
that we take as the basis of an opponent color space:
Green-Red and Blue-Yellow opponent functions and
a non-opponent Brightness function (Fig. 2). We will
refer to this newly defined space as the Valois color
space. We have reasons to believe that existing op-
ponent color models as used in computer vision and
computer graphics (for instance [JH55]) are not ac-
curate as models of color perception, but we will
not discuss that here. Most work in Color Science
[WS82] and color computer vision is based on the
CIE XYZ color space and derivatives thereof, so we
want a transformation from XYZ coordinates to Val-
ois space. The transformation we are experimenting
with reduces to an equation of the form

v = (Mg - s(My -1) W
where v represents the 3 x 1 matrix of Valois coor-
dinates, M; represents a 3 x 3 matrix for stage j, i
represents the 3 x 1 matrix of XYZ input coordinates,
and s represents the sigmoid activation function com-
monly found in artificial neural networks:

1

2
14 (75 ®

s(z) =

with £ € R (the input), A € R (the half-response
input), and ¢t € [0, 1] (the “temperature”, determin-
ing the steepness of the curve). Figure 3 shows the
optimal color stimuli solid [WS82] in different color
spaces, including a preliminary version of the Valois
space. Note the different shapes of the solid, and how
it is “warped” in the L*a*b* and Valois spaces. In
the Valois space, the shape is not unlike that of the
Ostwald and Munsell color spaces (which are psycho-
logical ones, based on observation rather than mea-
surement or explicit mathematical models), but this
remains to be investigated in detail. We have derived
tentative measures for the psychophysical variables of
hue, saturation, and brightness from the Valois space.

For The second part of our model, relating Val-
ois coordinates to a set of color names, we need to
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partition the 3D Valois space into a set of volumes
or regions, each corresponding to a named color con-
cept (or category). From a model-theoretical point
of view, we can consider these regions to be the ex-
tensional referents of the symbols representing color
concepts. From the work of [BK69] and others we
know that there exists a set of semantic universals in
the domain of color, known as basic color categories
(BCC), each corresponding to a “basic color term”
(BCT). We want our naming algorithm to learn the
BCTs of a set of different languages (one at the time)
corresponding to (a subset of) the universal BCCs.
Depending on the requirements we impose on the
shape of the BCC regions of our color space, we can
create binary valued or continuous valued “character-
istic functions” for the regions, and have the regions
overlap or not. We could interpret the BCCs as fuzzy
sets {Zad71, KM78], for instance. From the work of
[BK69] and others we know that human BCC char-
acteristic functions are continuous (or at least non-
binary) valued, and that the regions may or may not
overlap, perhaps depending on the particular experi-
mental paradigm used.

2.3 Knowledge Migration

Knowledge in GLAIR can migrate from conscious to
unconscious levels. In our application Air Battle Sim-
ulation (Section 3) we show how a video-game playing
agent learns how to dynamically “compile” a game
playing strategy that is initially formulated as ex-
plicit reasoning rules at the Knowledge level into an
implicit form of knowledge at the Perceptuo-Motor
level, a PMA. When the knowledge level determines
an action for execution, the action reaches the PM-
level. At the PM-level, this knowledge is learned in
the form of PMA transitions. The idea is that the
next time circumstances make this action applicable,
it can be selected for execution without having to re-
sort to “conscious” processes.

2.4 Learning Tendencies

An agent that is able to do one of several things in a
given situation, should choose to do what in the long
run benefits it most. We are interested in how an
agent can improve its skills by improving its choice of
actions. Our premise is that an agent has some basic
skills but does not always choose the best possible
action. We are concerned with unconscious choices
of action, i.e. at the PM level.

Reinforcement based learning, particularly Q learn-
ing [Wat89], is a successful technique that has been
used for learning action consequences, also known as



Figure 2. Derived basis functions for the Valois color space. From left to right: the Green-Red
and Blue-Yellow opponent functions, and the Brightness (Dark-Light) non-opponent function.
On the X axis: Input radiance (I) in log units relative to the threshold response level; Y axis:
wavelength (L) in nm; Z axis: activation (A) in [—1, 1] normalized units.

0CS solid XYZ

OCS solid Lab

OCS solid Valois

Figure 3. The optimal color stimuli {OCS) solid in CIE XYZ space (left), transformed into CIE
L*a*b* space (middle) and a preliminary version of the Valois space (right). On the X,|Y,Z axes
(arbitrary units): CIE X,Y,Z coordinates; CIE a* b* L* coordinates; Valois Green-Red,Blue-

Yellow,Brightness coordinates.

action models.! In learning action models, a Marko-
vian environment is assumed. That is, the agent be-
lieves the world changes only due to its own actions.
In contrast to learning action models, we are inter-

1In Q learning, Utility(S(t),C(t)) is the evaluation of how
appropriate command C is in situation S when C is executed
at time t in response to S at t. R(S(t+1)) is the reward re-
ceived by being in state S(t+1). For the ABS agent (Section 3),
rewards are determined as the game is being played and can-
not be determined beforehand. This is called the immediate
reward. The following equality is maintained and propagated
as each command is executed. At the start of the game, all
Utility(S,C) in the PMA are set to 1.
Utility(S(t), C(t)) = R(S(t+1)) + ~ [} Utility(S(t+1),
C(t+1)) + (1 - ) maxc(py1)Utility(S(t+1), C(t+1))]

v is a parameter to determine how important it is to be in the
state that the pilot ends up in after his move. In reinforcement
based learning this is known as the discount factor. A is known
as the recency/learning factor.
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ested in modeling behavior generation by agents that
function in dynamic environments. The impact of the
agent’s action on itself depends on the situations un-
der which actions are applied and on other agents’ ac-
tions. Other agents’ actions are assumed to be nonde-
terministic. Furthermore, we assume that the agent
is computationally and cognitively resource bounded.
We assume that the agent needs time to think about
the best action, and in general there is not enough
time. In such an environment, we want the agent to
observe its own interactions with the world in order to
learn what action tends to be successful-in light of its
goals and prevailing situations. This is useful when
the agent has to arbitrate among multiple applicable
actions.



2.5 Learning Emergent Routines

We endow the agent with a minimal number of prim-
itive actions and sensations. Our basis of this mini-
mality and choice of primitive actions is physiological.
In other words, in our modeling a computer agent, we
will choose actions that are physically basic for the
robot as primitive actions for the computer agent.
We then instruct the agent to perform tasks and in
the midst of accomplishing them, we expect the agent
to notice basic behaviors (i.e., routines) emerge. An
example of an emergent behavior we will explore is
when a mobile robot learns to move toward an ob-
ject. In our application Mobile Robot Lab (MRL)
[HLCS93] we discuss how a mobile robot agent might
learn emergent behaviors and consequently use them
in its repertoire of actions. We assume that the agent
does not know about the long term consequences of
its actions. Over a finite number of actions, when
the agent observes a substantially improved situation,
chances are it has found a successful routine. We
record such detected routines and as they reoccur,
we increase our confidence in them. When our confi-
dence in a routine reaches a certain level, a concept
is created at the Knowledge level of GLAIR for the
routine and from then on, this routine can be treated
as a single action at that level. Learning routines is
closely related to a variation of learning tendencies as
we discussed in the previous section. Instead of learn-
ing action goodness, to learn a routine we record the
sequence of actions between a significantly bad situ-
ation and a significantly good situation.

3 AN APPLICATION: AIR
BATTLE SIMULATION

We have developed a World War 1 style dogfight
simulation game we call Air Battle Simulation (ABS).
Figure 4 schematically presents the structure of the
GLAIR agent that plays the Air Battle Simulation
video-game. We will refer to this agent as “Gabby,”
for “GLAIR air battler.” Initially, Gabby has not
acquired a PMA for the game yet, and so uses con-
scious level reasoning (i.e., SNePS behavioral rules
[SR87]) to decide what move to make. Once transi-
tions are learned and cached in a PMA, Gabby uses
the PMA for deciding its next move whenever possi-
ble. By adding learning strategies, a PMA can be de-
veloped that caches moves decided at the knowledge
level for future use. Here again, learning can be used
to mark PMA moves that prove unwise and to rein-
force moves that turn out to be successful. We are
exploring these learning issues. Gabby particularly
demonstrates real time behaviors and the inter-level
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Figure 4. Structure of the ABS agent.

alignment mechanism.

The ABS video game simulates dog-fights between
Gabby and a human player. The game display con-
sisting of a main window giving a horizontal view, a
side window giving a vertical view, two “damage re-
ports” (see Figure 5), and a control panel window,
(see Figure 6). The human player’s plane is always
considered to be in the center of the two shaded ar-
eas. The horizontal two-dimensional position and ori-
entation of Gabby’s plane is displayed by the trian-
gle on the main window, and its height relative to
the human’s plane is indicated by the drawing of a
plane in the side window. The condition of the hu-
man’s plane is indicated by the report labelled “Own
Damage,” and the condition of Gabby’s plane by the
report labeled “Enemy’s Damage.” When the two
planes are close in all three dimensions, as indicated
by Gabby’s plane being shown in the two shaded ar-
eas, whichever plane is facing the other one automat-
ically fires. (That is, neither Gabby nor the human
makes a separate decision about when to fire.)

The human player uses the control panel to choose
a move, which is a combination of changing altitude,
speed, and direction. When the human player presses
the GO button, Gabby also selects a move. The game
simulator then considers the two moves to determine
the outcome, and updates the screen and the accu-
mulated damage to the two planes, thus simulating
simultaneous moves. The game ends when one or



both of the two player’s planes are destroyed.

pry—
INTACT
oemy s Damee:
INTACT

Figure 5. Air Battle Simulation game win-
dows. Gabby’s plane is indicated by the small
triangle in the upper right quadrant of the
main window, and by the drawing of a plane
in the side window. This figure shows Gabby
fleeing, flying parallel, and at a higher alti-
tude than the human. The shaded regions
denote shooting range. If Gabby’s plane ap-
pears in both shaded regions, whichever plane
is facing the other (possibly both) will fire.

ASCEND |

DESCENDJ

Figure 6. Air Battle Instrument Panel win-
dow. To select/change a move, the human
player pushes one of the buttons in each col-
umn and adjusts the TURN dial. CUT,
NORMAL, and FAST are used for speed se-
lection. ASCEND, KEEP, DESCEND are
used for altitude change. Pushing the GO
button submits the move to the game simu-
lator.
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3.1 Knowledge Migration in ABS

In ABS, when the knowledge level determines an ac-
tion, it submits a pair consisting of an action A and
a goal G to the PM-level. At the PM-level of ABS,
goals are one-to-one associated with behaviors. Sim-
ilarly, actions are one-to-one associated with com-
mands. Let’s consider C and B to be the unique
counterparts of A and G, respectively.

If there is no command transition corresponding to
the triple <S, B, C> (with S representing the current
situation), a new command transition CT is learned.
CT isthen S x current goal — C. If G is different from
the previous goal submitted to PMA, a new behavior
transition BT is learned. Let the current situation in
PMA be S. BT is then S x current behavior — B.

We started ABS with an empty PMA and as
the game was played, transitions of the PMA were
learned. Figure 7 shows typical ABS transitions
learned. As the transitions were learned, when simi-
lar situations occurred and there was an appropriate
PMA response, the PMA executed that command.
As the game was played, we observed that the agent
became more reactive since the PMA was used to gen-
erate behaviors instead of the knowledge level. Fig-
ure 7 shows a small sample of learned PMA transi-
tions while playing ABS.

far right, far front, close above, same heading

maintain altitude, turn right, fast

catch-up far left, close front, far below,@_' descend, tum lel, fast

out-turn

ct4

- not-charging
ascend, shift left, fast
far right, close front, close above, opposite heading

Figure 7. Learned Command and Behavior Transitions

3.2 Learning Tendencies in ABS
The rules of a PMA in ABS are pairs of situa-

tion/command. As it turns out, a situation can be
paired up with multiple commands. The object of
learning here is to learn which commands when asso-
ciated with a situation yield a better result, i.e., the
pilot ends up in a more desirable situation.

Some situations in ABS are more desirable for the
pilot than others, e.g., being right behind the enemy
and in shooting range. We assign a reward value to
each situation S between -1 and 1, R(s). As the pi-
lot makes a move, it finds itself in a new situation.



This new situation is not known to the pilot before-
hand since it also depends on the other pilot’s move.
Since the new situation is not uniquely determined
by the pilot’s move, the pilot’s view of the game is
not Markovian.

To test reinforcement based learning in ABS, we
developed a programmed opponent for Gabby that
plays according to a fixed strategy, written to sim-
ulate the strategy a human player might use. We
had the two programs play 25 games without learn-
ing. Gabby won about 30% of these games. We then
turned on Gabby’s reinforcement based learning, and
had the programs play an additional 197 games. Af-
ter the games, Gabby started winning 50% of the
time, and didn’t improve any further. Figure 8 shows
the improvement in Gabby’s game playing ability.

25 i a O 9
20

percent 15

Improvement 10
5

25 50 75 131 192

Number of games played to completion while learning

Figure 8. Learning using reinforcement based Q learning

4 SUMMARY AND CONCLUSION

In this paper we have outlined an autonomous
agent architecture and one of its instantiations. Our
architecture models agents with “conscious” and “un-
conscious” behaviors. The architecture provides for
grounded symbolic representations through embod-
ied perception, and provides a mechanism for learning
behaviors. We discussed how the Air Battle Simula-
tion implements an autonomous agent conforming to
the architecture, and how knowledge migration and
various other features of the architecture apply to it.
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