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CHAPTER 16

Integrating Skill and Knowledge
in Expert Agents

Henry Hexmoor & Stumrt C. Shapire

Intreduction

An empirical characteristic of the development of expertise is the transionma-
tion of deliberative, "conscious” aclivity to more automatic [orms. In this
chapter, we will discuss knowledge organizalion and representation for skills.
and the integration of skills with knowledge. We will illusiraie cur concepts
by discussing a few implemented agents in hardware and soltware. An under-
lying theme for our formal representations is embodiment of knowledge. “We
define embodiment as the notion that the represeniation and extension of concepts
is in part determined by the physiology (the bedily [unctions) of an agent. and
in part by the interaction of the agent with its enviromment” {Hexmoor, Lam-
mens and Shapiro 1993, p. 326). With this prior definition. all computer rep-
resentations are embodiments of their hardware and how they are vsed in in-
teraction with other agents. We intend our definition to apply o agents that
physically mampulate the environment and themselves have physically mov-
ing parts. Furthermore, we use our definition as a prescription for developing
representations tnstead of a description of all possible represemations. We
have developed an autcnomous agent architecture that incorporales action
and perception which are embodied in terms of the moving parts and the dy-
namics of the moving parts when the agent interacts with the world.

It seems clear that book knowledge diflers from practical knowledge. For
example, an automobile driver uses a combination of his book knowledge of
driving rules and tips as well as practical knowledge in his actual driving. In
this chapter, we will not focus on this distinction. Instead, we are concerned
with the balance of using knowiedge and skill over time as two compenents
of expertise. Henceforth, skills in this chapter refer to motor skills. For us,
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skills are that part of expertise that is acquired through practice. Further-
mote, once a skill is acquired 1t is largely inaccessible to explanation, without
rellection and reasoning.

This maccessibihty leaves an unclear breakdown of expernse mio book
knowledge and pracncal knowledge By [ocusing on the distmenon berween
knowledge and skills, one can see that the expernise of a medical specialist
hes mostly 1n s knowledge about hus area of specialization, while the exper-
tise of a surgean includes hes skills m surgical procedures The experuse of
an athlete 1s mostly his skills Skaills are often hard to put into words. Athlenc
coaches ofien speak m strange jargon that does not refer to body paris Ex-
amples from bowling are over-turn, “applying too much spin to the ball and
not enough fnger lift”; loafimg, “not lifung or turmng the ball properly with
the result that the ball lags and lacks action”, and yanking the shot, “hanging
onto the hall too long and pulling 1 1o across the body™ (Taylor 1991) Bu
what are skills and how does an agent possess them? Why 1s 1l sometumes
hard to verbahze skills? Can skill knowledge be represented by a production
system or a declarauve representation? Anderson’s (1983} Act* assumes Lhe
answer is yes (o the last question Instead of empincal tests and psycholog-
cal nvestiganon, we build computer models that seem o mimic the mernal
mechamsmis of an experl in acquinng skill and knowledpge (ie., experise)
We hope thal our computanonal models and synthetic agents will provide an
alternative mecharusm for explormg 1ssues about knowledge and skili which
1s somewhat independent of ethnomethodology and ological organisms

Traditionally, expert systems addressed the knowledge component of ex-
peritse. These systems were ofien designed with an impovenshed ontology of
percepts and acuons (e.g , IF symptoms A and B are present THEN prescribe
medication C}. We posit that the knowledge used in experuse 15 necessanly
embodied in the expert and ought Lo be represented in terms of the agents
physiology and the inieraction ol the agent wilh ils environment We don’
use embodiment as merely meanmng thal the agent has a body Knowledge re-
sides In various parts ol the expert agent {¢.g., cevebellum versus cerebral
coriex), and 1s used n different cognitive processes

Omnce a skill is acquired, it changes with experience. However, natural lan-
guage plays an important role for skills that are primarily acquired through
commurucatior. We hypothesize that the human brain’s natural language
comprehension mechanism translates representations to embodied represen-
tations which are more natural {or representing skills. We believe thal many
current mmplemented natural language comprehension sysiems ignore the
role of body-centered understanding With tins hypothesis we believe we
need to model multi-level representanons withm an agent This chapter fo-
cuses on embodied representations of knowledge that are "natural” for the
agent, and leaves the natural language abstractions which make communica-
tion easier as a separale problem.

3%4




T

SKILL AN KNOWLEDGE IN EXPERT AGENTS 385

We believe that in order to understand expernse, 1L 1s important 1o under-
stand the ability to use, coordinate, and learn the knowledge involved m duf-
ferent cognitive processes that exist in different parts of the expert agents
body. In our investigations, we are examinung the mechanisms for acquiring
knowledge and skill, the migration of knowledge in the agent, and the nature
of expertise, by designing and implementing an agent architecture. In this
chapter, we describe our architecture and give an ontology of concepts mn our
approach. We also describe a representanonal formalism for encoding skills.
We then describe “agents” that have been developed using our architecture.
We demonstrate several of our concepts about expertise coneretely using our
implemented agents. Thuis will be followed by a discussion of knowledge mi-
gration in our architecture and impiemented agents as examples. We wall
canclude this chapter by pointing out how agents use and gain knowledge
and skills with our architecture.

Architecture

To model an expert, we have developed an architecture called grounded lay-
ered architecture with integrated reasoning, GLAIR (Hexmoor, Lammens and
Shapiro 1992), schematically presented in hgure |

The hgure shows three disunct levels: knowledge, perceptuo-motor, and
sensory-actuator. These levels provide a framework {or modeling distinct
rypes of behavior generation. The Knowledge Level (KL} 1s considered to
contain the agents “conscious” beliefs and plans. The KL ts the only level in
GLAIR accessible (o natural language use and generation. This accessibility to
natural language sets the KL apart from the other levels. We use the SNePS
Knowledge Representation and Reasoning system {Shapiro and Rapaport
1992, Shapiro and Group 1992) 10 represent the knowledge at the KL,
Knowledge representation and reasoning systems such as SNePS are general
purpese tools to explicitly and symbolically encode the contents and pro-
cesses of a cognitive agents “mind.” These systems have tormal properties
that help 1n the analysis of what is represented.

The other 1wo levels, Perceptuo-Motor Level (PML) and Sensor-Actuator
Level (SAL), are considered to contain “unconsclous”™ processes. The PML is
used (o model skills. The SAL models the actuator hardware and all un-
changing and least complex agent-centered processing of actuator input and
ourput. For detalled discussions of GLAIR and comparisons with competing
archutectures see (Hexmoor et al. 1992},

We have adopted an ontology of terms used i various parts of GLAIR
which primarily reflects our choice of levels for modeling various parts of an
autonomous agent. In the next section, we describe our terms.
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Figure 1. Schematic representation of the GLAIR architecture. Width of contrel and
data paths suggests the amount of information passing through (handwidth). Sen-
sors mclude both world-sensors and propio-sensors.

An Ontology

The entinies modeled at the KL are plans, goals, actions, acts, wtentions, and be-
liefs. These terms are described elsewhere {e.g., Kumar and Shapiro 1991},
and m this chapler the reader can thmk ol them as having their common
sense meanings. The entines modeled at the PML are sensations, actuators,
commands, behaviors, and tendencies. We use sensations as atomic terms used
n describing perception. Actuators are the eflecting parts of the agent {e.g |
muscies or molors). We assume that actuators can be commanded 1ndepen-
dently.! A command 15 an mstantaneous alomic control signal for an acruator.
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In the case of continuously changing actuator parameters, a command is a
centrol signal tor the rate of change of the values for the actuator. By a behav-
wr we mean a cluster of possibly simultaneous commands, at most one for
each actuater? A tendency 15 2 measure of an agent’s preference when there
are alternattve commands. This preference 1s computed and maintained
based on the agent’s prior experiences.

I order to transfer information between levels, either all terms in the lev-
els have a one-to-one cortespondence, or some terms do not correspond to
anything in the other levels For example, a sequence of commands at the
PML may map wnte a single primitive act {see Kumar and Shapire 1991} at
the KL. For another example, intentions do not map to anything at the PML
because ntentions at the KL reler to a decision to execute that action. At the
PML there 15 no need to consider decisions about actiens.

When there 1s a one-io-one correspondence, there is a correspondence be-
rween terms in the Knowledge Representation and Reasoning (KRR) system
on one hand and percetved objects, properties, events, and motor capabilities
on the other hand. We call this correspondence alignment

Obviously, beyond what the ontology dictaies, there 15 no domain-inde-
pendent way of deciding what goes into each level, We consider the locus of
knowledge and skills to be dynamically changing’ between levels. Perceptual
reductton and action elaboration are two salient features that guide location of
knowledge and skills. Perceptual reduction is the grouping of perceptual data
into perceptual concepts at higher levels. Action elaboranon is the expansion
ol motor actions into finer actuator controls at lower levels.

In addiion to the changing locus of knowledge and skill, the locus of con-
trol also changes We will discuss exact mappings between levels in the con-
text ol projects and domans later wn this chapter.

In the [ollowing subsection we describe Perceptuo-Motor Automata (PMA)
as our representational ool inn the PML, PMA can be considered to be a spe-
ciahized production system as much as Soar (Lawrd [987) is a speciahized pro-
duction system Qur iool is specalized for madeling situated actions in intel-
tigent agency Many tearures, like concurrency of behavior activation,
distinguish 1t from similar systems.

Perceptuo-Motor Automata

[n order to generate commands {or actuators, we have developed a represen-
tation mechanism and a modeling ool for representing and generating be-
haviors (metaphorically at the “unconscious” level) of an autonomous agent
{Hexmoor 1992), PMA is a tool used in modeling the PML behavioral com-
ponents of a GLalR-agent. Behavioral modules that PMA (as a tool) models are
also called PMA. Therefore, we might refer to a PMA for chewing behavior
and a PMA for walking Our use of the term will be clear from the context.
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Figure 2 A command transition s shown on the left thar maps « Situation, s1, and
Behavior, bl, to a Command, c1. A Behavior franstion s shown 1 the right that
maps a pan of Situations, 32, and Behavie; b2, to a Behavioy, b3

PMA as a system 15 designed 1o conslantly produce signalsfimpulses [or
the actualors We consider Lhese signalsAmpulses 1o be instantanecus con-
trots that determine actuator activation levels For example, lor a mobile
robot, signals wauld be activation levels of molors and each signal/impulse
would be @ fracuon of a second wn duragon. in the context of a GLAik-agent,
PM4A models rapid and autemanc behaviors of the agent

We assume that agents have a finite number ol actuators. An actuator 1s an
eflecting part of the agent that can be independently commanded. A behav-
107 15 a sel of commands, one for each actuator. Muluple behaviors can be ac-
tive at the same ume. Therefore, an actuaror can be commanded simultane-
ously by multiple behaviors In PMA as part of a GLAIR-agent, all comumands
[o1 an actuator issued by different hehaviors are passed directly 1o the SAL.

The set of behavioral modules that PMA models in & domain is formally
represented by <Sensarions, Commands, Command Transition, Behawors,
Behavior Transiuion, Rewards> For examﬁle, a Sensauon [or a mobile robot
that walks in building hallways can be us distance to the wall. In A Battle
Simulation (ABS) (Hexmwoor el al. 1993), relative distances from the enemy m X,
Y, and Z axes are Sensations We assume that all possible sitnatons for « PMA
can be specified by a combinatuon ol one or more Sensations We call a pal-
tern of Sensatons that 1s used for mput o 2 PMA a Siuuation, In ABS, mstan-
tiations of <distanceX, distanceY, distanceZ, ornentation> are Siuatons (e.g.,
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<close-front, close-right, close-above, parallels is a Situation). in summary, PMA
put is a Situation, an n-tuple of Sensations, Commands are a set of prim-
tive activahions thar can be sent o actuators, Command Transitions {CT) are
transtormation functions that produce commands for execution for inputs of
situation or situation/behavior pairs. Thus 1s shown in figure 2. CTs are func-
tions since the output of a CT 15 a set of one or more Commands. The sim-
plest CTs are mappings of Sensations (o Commands (Sensations — Com-
mand). CTs can be disabled by inhibiting them. Inhibition 1s useful when the
agent needs to override “unconscious” behaviors generated by PMA with
“conscious” behaviors generated by the KL

CTs use Behaviors and previous Commands i producmg output. When
the latest sensations along with the current Behavior match a command tran-
siton, that command transition activates a command which is then executed.
Our implementation of PMA is object-oriented and written in Common Lisp
and C. Our descriptions of PMA operation therefore consider CTs as objects
that can process their input and activate output nodes. CTs may take into ac-
count an estimated accumulated reward for Commands. We call the latter
“tendencies.” Tendencies are computed using reinforcement based learning
technigues (Sutton 1988). Below is a list of Command Transition types.

* Sersations > Command

* Previous command X Sensations = Command

* Behavior X Sensations — Command

+ Tendency X Sensations - Command

* Previous-command X Behavicr X Sensanons +» Command

+ Tendency X Behavior X Sensations — Command

*+ Previous-command X Behavior X Tendency X Sensations — Command

Behaviors partition @ PMA 1nto smaller PMAs, each a set of command tran-
sions. Behavior Transitions (BT) are transformations that update the Behav-
1or in effect When the agent decides on a different course of action at the
KL, that effects a change in Behavior at the PML, a BT is used to guide the
change ol behavior. Alternatively, a BT can be used at PML without a “con-
scious” decision. BT is Behaviorl X Sensations +»> Behavior? where Behav-
forl and Behavior2 are Behaviors.

Rewards are used for learning, Rewards are static "goodness values” associ-
ated with situations. Eshimated accumulated rewards are estimations of accu-
mulations of rewards over tume used in delayed credit assignment. These are
determined prior to PMA execution and remain unchanged throughout.

Behaviors, Behavior Transitions, and Rewards in a PMA can be empty. The
simplest class of PMA is that in which all three of these elements are empty.
Below is the pattern of combinations of wuples, each defning a class of PMA.
For example, <Sensation, Commands, Command Transttions, NIL, NIL, Nil>




models a PMA consisung of sensation/command pairs It does not mclude
PMAs parlitioned inta behaviors o1 rewards in CTs Therefore 1t aliows Lhe
possibility of nondetermumsm (1 e, one situation can be mapped mto several
commands). The following is the pattern for all possibiliries for CT (ypes.
{Previous command X | [Behavior X | | Tendency X ] Sensations  command sel

The capacity to produce asynchronous and concurrent behaviors and con-
current Commands for actuators allows the modeling of certain mteracuons
wnth the agents in the world. What is interesting 15: (a) the serendipity of be-
havior combinations unbeknownst to the agent (1.e., emergent behaviors},
and (b) the way the agen! makes use ol the successlul interactions 1 the
world by various kinds of learning processes. PMA is used as the agentt low-
est level mecharusm to learn from the positive miteracuions in the world

In the [ollowing section, we describe examples of agents we are developing
that illustrate the principles of the GLAIR archiutecruve. Each agem is de-
signed 1o exemplify different features of owr architecture.

GLAIR Agents

We have deveioped several agenis among which are a player of a video-game
A Battle Simulation (ABS) named Gabby, lor GLAIR Air Batller, and an au-
tonomous mobile robot named Gerry (ithe “G” stands for GLAIR and the two
“r"s stand lor “roving robat”). Gerry and Gabby difler in therr mapping of terms
berween the KL and the PML Ths difference reflects their diflerent modes of
mileraction with the world. We conjecture that Gabby 1s more “mindful” of s
aclions and monitors 1ts actions. We need to turther analyze the mapping of
terms beiween the KL and the PML 10 understand the modes ol mieracuons.

All agents display a variety of integrated behaviors We distinguish be-
tween deliberative, reactve, and refllexive behaviors. These behaviors are
moslly exhibited by the KL, the PML, and the SAL respecuvely. As we move
down from the KL to the PML and the SAL, computauonal and representa-
tional power is traded for better response ume and simpler control The

“agent learns from and awtomates s ineractions with the environment.

Gabby and Air Battle Simulation

Figure 3 schematically presents the structure of the GLAIR agent that plays
the ABS video-game. We will refer to this agent as Gabby. Belore 1 starts
learning, Gabby does not have a PMA and therelore uses "conscious” level
reasorung {1.e., SNePS rules; Kumar and Shapiro 1991), (o decide what move
o make Once transitions ate learned and cached i a PMA, Gabby uses the
PMA [or deciding us nexl move whenever possible. By adding learning
strategmes, a PMA 1 developed that caches moves deaded at the KL for future
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Figuie 3 Schematic representation of the Av Battle Simulation
playing GLAIR agent, Gabby.

use Here agawn, learrung 15 used to mark PMA moves that proved unwise
and (o reinforce moves that wurn out to be successful. Gabby demonstrates
real ume behaviors and the nterlevel alignment mechamsm.

The ABRS wideo game runs on SparcStations and simulates World War [
style air plane dog-hghts between Gabby and a human player The game dis-
play consists of a main window giving a horizontal view, a side window glv-
g a vertical view, and two “damage reports * This is shown o figure 4. The
control pangl window 15 shown in figure 5 The human players plane s al-
ways considered to be in the center ol the two shaded areas. The honzonial
two-chmensional position and onentation of Gabbys plane are displaved hy
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Figure 4. Air Battle Simulation game windows Gabby's plane 1 indicated by the
drawing of a plane in the upper right quadrant of the mawn window and by the
drawing of a planc in the side window. This figure shows Gabby flecing, flving par-
allel to and at a higher altitude than the human The shaded regons denote shoot-
mg range. If Gabby’ plane appears i both shaded vegrons, whichever plane s fac-
ing the other (possibly both} will fire.

the drawing of a plane m the main window, and 1ts height relative 1o the
human’ plane 1s indicated by the drawing of a plane in the side window The
condition of the humans plane 15 indicated by the report labeled “Own Dam-
age,” and the condition ol Gabby’s plane by the report labeled “Enemy’s
Damage.” When the two planes are close tn all three dimensions, as mndicaled
by Gabby’s plane bemng shown in the two shaded areas, whichever plane 1s
facing the other one automatically fires That 1s, neither Gabby nov the
human makes a separate decision about when (o fice

The human player uses the control panel to choose a move, which com-
prises a combinarion of changing altitude, speed, and direction. When the
human player presses the GO button, Gabby also selects a move. The game
simulator then considers the two moves (o detenimine the ouicome, and up-
dates the screen and the accumulated damage to the two planes, thus simu-
latmg simultanecus moves. The game ends when one or both of the two
players’ planes are destroyed.

Gerry

Gerry began as an Omnibot 2000 10y robot {(Ambherst Systems, Inc.). Gerry 15
a 25 [eetl 1all mobile robol with two mdependently drniven wheels, an in-

S
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Figure 5. Alr Battle Instrument Panel window. To select/change a move, the human
player pushes onc of the buttons in each column and adjusts the TURN dial by
repeatedly clicking on it. CUT, NORMAL, and FAST are used for speed selection.

frared transmutier, four infrared sensors, a front and rear bumper, and four
corner whiskers controlled by a 6.270 board developed at MIT for use in
their 6.270 class These boards have a 6811 microprocessor with mulititask-
ing capabilities Gerry has four pnmitive abilites; gomg straight, turnung
right, turning left, and siopping. When a whisker or a bumper senses contact
with an external object, Gerry performs a reflex. There are reflexes corre-
sponding te each whisker and bumper Reflexes are implemented in Gerry’s
SAL. At the PML of Gerry, behaviors are implemented using PMA.

Currently, Gerry has PMAs and some basic knowledge at the KL for
searching for another robot, Garry. Garry 1s one foot tall, has two indepen-
dently driven wheels, an wnlrared transmitter, two infrared sensors, and three
[ront bumper/whiskers controlied by a £.270 board. When a whisker or a
bumper senses contact with an external object, Garry performs a reflex.
Garry is a Lego robot

Figure 6 shows that Gerrys KL knowledge consists of three separate com-
ponents oi knowledge [or spothing Garry, catching up with Garry, and grab-
bing Garry. At the KL, Gerry doesnt know that these are parts of a task for
gewung Garry. Perceptual reduction is implemented by having concepts at the
KL correspond to patterns of stunulus at the PML. For example, “no-garry” at
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Figure 6 Schematic representation of the Gernry’s GLAIR components. The box in
the PML shows a PMA for spotting Gerry. There are athers for catching up with
Garry and grabbmg Garry Variable gi next to each action in the PMA box repre-
sents goodness of action in the context of @ correspondmg situation,

the KL corresponds 1o the pattern of no mfrared beng sensed at the PML At
the KL, no concepts for specific infrared signals as in percetuo-mator level
exist. Each action m the knowledge level 1s expanded inwo a PMA in the per-
cepruo-motar level. This is an implementanon of action elaborauion in whach
aclions at the PML are hner compared to the K1 actions. As shown i Frgure
6, acuon elaboraton s 1mplemented by mapping an action m the KL o a
PMA. For example, “spol-garry” 1s shown Lo map to a PMA in the PML,




h is shown w1 the solid box Transiuons w the PMA map imdrared situa-

to commands Wiath Gerry, each sutuauon i the PMA 15 mapped (o all
wands What determines applicabibity of a command, in a given situa-

15 1ts goodness level shown by g1 in Agure 6.

the SAL, Gerry has six rellexes [or avoiding obstacles Figure 6 shows
monic {orms of these reflexes The actual implementation of acwator
mands 15 given o terms of wheel commands.

oncurrent behaviors at the PML are allowed, as are concurrent reflexes,
wiors and rellexes produce wheel commands All wheel commands are
n 4 prionty level when they are generated. The PML wheel commands
: lower priatity than the ones for reflexes One excepnion is that behav-
have higher priority than reflexes if 2 reflex needs 10 be suppressed For
nple. 1o carch Garry, Gerry needs to have 1ts front bumper touch Garry
sense high levels of infrared radiation with s front sensors. Normally,
shung an object with the tront bumper triggers a reflex to backup and
1 However, we want 1o suppress this reflex. There is a module at the SAL
arbiration and combination of all wheel commands This module exam-
; [lags for suppression and, if reflexes are not suppressed, 1 sums the ef-
ot reflex-generated wheel commands and passes w o the wheels. I no
ex 15 active, it sums all behavior-generated wheel commands and passes
result o the wheels ] rellex suppression s turned on, 1t ignores rellexes
| attends (o the behavior generated commands.
Ne have programmed PMAs and the knowledge at the KL so Gerry will
k for Garry and will stop when it Ainds Garry At the PML, Gerry 1s to te-
ve nondeterminacy using reinforcement based learning Gerrys achions
1 be controlled either completely by the KL or by the PML.
In the lollowing section we desciibe learning in a GLAIR level that 1s based
the contents and nfluence ol a neighboring level, We call this type of
rmmnyg knowledge migration. We will use Gerry and Gabby 1o illustrate this

Ining strategy

Knowledge Migration

1 important {eature of CLAIR 15 that 1t allows knowledge 1o migrate [rom
w© level to another and m doing so change the representation in order to be
msisteru with the representation used at the new level The underlying as-
unpiion here s that parts of an agents knowledge about s world have
atural” loct ewther as deliberative knowledge, as reacnions, or as reflexes 4s
i agent nteracts with the world, the knowledge may be gamed at some
vel and later find ws “natural” locus at a diflerent level and mugraie there in
e following subsection, we will describe learning in the PML from the KL,
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“Conscious” ta “Unconscious™ Migration

"“What Lo do next” is a the alnluy to choose an acuion o perlovm, given the
current swuanon (Heximoor and Nute 1992}, Our migration of knowledge
from the “conscigus” to “unconscious” is mied to “what 10 do next.” As m
automaticity, mugration of knowiedge abowt actons from the KL to the PML
makes the agents reactions m the environment faster and less deliberate.
tn novel siuations or 1N SIMANODS TEGUITING, MOTEN-LO-MOoMment decislons, con-
wrolied processing may be adopted and used 1o perfurm accurately, though slow-
ly Then as the situanons become {amiliar, always requinng the same sequence of
processmng operations, aulomatic processing will develop, auenuon demands will
be eased, other controlled operations can be carmed out i parallel with the auto-
manc processing, and perlormance will improve (Staltnn 1977, p 161}

Knowledge compilation (Anderson 1983} 1s a twofold procedure of procedu-
rahization 1o convert declarative knowledge into productions and compuosition
10 combine several productions mio one. Our knowledge rmgranon 15 sumilar
to Andersons knowledge compilation in that the migration process produces
PMA transitions which are 2 kund of production rules However, unlike An-
derson’s knowledge compilation, our transitions m the PiMA are mainained
separately {rom the mitial knowledge.

We describe two implemeniations of knowledge migration in both, mi-
gration transforms representauens of knowledge into PMA transitions

In the process of knowledge migration, Gabby drops all the mtermediate
reasoning and only retamns the stimuli/response pan in the PML. Further-
more, Gabby adds what it learns in each novel situation 1o the existing struc-
ture of the PML By enriching existing stractures o PML and extracting/re-
{ormatting knowledge existing ar the KL we feel we have modeled a Jorm of
chunkmg (Miller 1956).

Al the PML, commands have a one o one correspondence with KL ac-
uons, and behaviors have a one-to-one correspondence with KL. goals. Con-
sider C and B m the PML 1o be unique counterparts of A and G respecuvely
in the KL and 5 to be the current sttuation if S X B C is not already a CT
in the PML, 1t s made one. B is the hehavior in effect and remains so umtil a
new goal is selected al the “conscious” level. 1t & new & {(corresponding to
niew behavior B in the PMLY} is transmitted Lo the PML, the behavior m effect
1s updated 0 B 1f S X B B is not a BT, 1t is made one.

Example of Migration in the Agents. We starled Gabby with an empty
PMA. Whenever an appropnate PMA CT existed, 1t was used. Otherwise, Lhe
KL handled command generation, and a new PMA was created. As the game
was played, we observed thart (he agent became more reacuive since the PMA
was used more often to generale behaviors insiead of the KL

Figure 7 shows a small, typical sample of PMA transitions Gabby learned
while playmg ABS. Many other transitions were learned Only [our CTs and
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Fgure 7. Sample of Learned Command and Behavior Transttions.

Ts are shown wn the hgure. We narrowly consider knowledge of “what
next” (Hexmoor and Nute 1992;1.e, given the current situation what
should be performed) to ilustrate automancity In GLAIR, migration
ywledge about actions from the knowledge level 1o the PM-level can be
ht of as a form of automaucity.

enn1 Gabby w the knowledge level determines an acuon, it submuts a
f an action A and a goal G o the PML Ar the PM-level, commands are
1 one associated with K-level actons, and behaviors are one o one as-
>d wath K-level goals. Lets consider command C and behavior B to be
ngue counterparts of action A and goal G respectively, and situahon 5
the current siwation S X B+ Cisnota CT, it is made one B 15 the
101 1 effect and unless a new goal is selected at the consaious level, i
15 1o be the hehavior i effect [f a new G {corresponding 1o new be-
“ B 1n the PM level) 15 transmtted 1o the PM-level, the behavior in

1s updated to be B- U5 X B B’ is not a BT, it 1s made one
iemive 7 af the hehawar e tnmoaway and the sitmanon of the onponent
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execute. ct3 and ct4 are two other cormnmand transtuons that are learned and
the transitions are self-evident from the hgure.

inctead of learnmg through repennon as 11 pccurs with automaucity, map-
pings for every novel swuanon in PMA were stored in the PML (L | one tnal
learning). Alier the first game ended, Gabby begar succeeding games with
parnally learmed FMAs and continued learming The game mvolved tughly re-
curnng patterns of mieraclion. intetactions 10 suualions percerved as near
vange and 1n pursint were {ar more common than other panerns of imerac-
tton Because patterns of mteraciion were repeated, novel sitgations became
rare, and the tate of learming was mversely proporuional w nme.

We now am wa Gerry. n thus agent, when the KL delernunes an action, ut
submits that achon to the PML, where acuons have a one 1o one correspon-
dence with behaviors The PML commands have no direct counterparts in the
KL. i Gerry, we assume that at the PML there are a ime number of actuators
and corresponding commande When the KL decides on acnon A, sav ap-
mraach an object, a1 the PML. & number of command transitions are construci-
ed . one lor each actuator command. Unhke Gabby, in which a command tran-
siion 1w buth for each stumuius/response par w1 the KL, i Gerry {or each KL
SleUluS/TESPDﬂSE ]Jal[' A SEel Of command transinons 15 consiructed

n the {ollowing subsection, we discuss learning al the KL as g result of
mngration from the PML

“Unconscious” (o “Conscious™ Migration

When a recurring pattern ol nieracuon between an agent and 115 environ-
nient is detected at the “unconscinuz’ level and this interaction is conststent-
Iy benefaial {or the agent in the sense that it always puts the agent in 2 more
“desirable” stale. @ concept can be constructed a1 the "conscious” level to rep-
resent this pattern We consider this type of migranon from the PM-level 10
the K a form of shill acquisuion or habit formarion

To lusirate. a pattern of meracoon at the PML consists of a sequence al
cammands. C (e.g. ¢y) ts, ..., C,) and the situanons, S{e g, s;; 550 5,0 for
which these commands were generaled All commands in the sequence werc
generated while behavior B was i eflect. E may o1 may not have a goal coun-
terpart, <, av the KL If u has a new act. A 15 ereated 1o siand [or C, and the
tnple <s,, G. Ax s migrated o the KL. At the KL, the knowledge tiar s, 15 the
precondinon of € is constructed In case there is no corresponding goal 1n
the KL, a prirunve act and the situaton s, that tmggered the sequence of
commands. C (t.e_, the precondition for ¢:) 18 migrated The siwanon, s,
will play the role of a precondinon lor the act  From thts miple, knowledge
constructs are created to reflect the lact that s, s the precondition of C. Also
learned 15 the planing knowledge that every ume G needs o be achieved. A
should he performed
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Skill Refinement

Our premise {or skill refinement is that we have an agent who has some basic
skills bur {or certain suuations cant choose the best alternative because the
consequences of the actions are unknown and there are inadequale biases
from experience. In skill refinement, we are concerned with “unconscious”
chowces of action, Olten whai is migrated [rom the KL 1o the PML introduces
nondetermmacy {i.e., {or certamn situanions, more than one aclion s applica-
ble) In tns subsection, we will look at how an agent can mprove us skills
by improving its choice of action

The rules of Gabbys PMA are suuation/command pairs where a siuation 1s
parred with multiple commands. The ohject of learning 1s to learn which
command, when perlormed in a given situation yields, the better result {Le.,
resulls 1n a situation that is more “desirable™).

Some situations in ABS are more desirable for Gabby than others (e g,
bemng right behund the enemy and in shooting range) To each situation, S,
we assign a reward value, R(S}, between -] and 1 As Gabby makes a move, it
finds wsell in a new sitvation This new siluation 1s not known 0 Gabby be-
forehand since the situation also depends on the other pilots move. Since the
new situation is not uniguely determined by Gabbys move, the game 15 not
Markovian. The reinforcement-based learning we describe 1 this section has
been proven to be eflectve only in Markovian environments 4 Aithough we
have successfully applied reinforcement learmmg in the non-Markovian do-
mamn of ABS, we cannot prove convergence of reinforcement learning in ABS.

In ali of our modeling, we used Q-learming (Watkins 1989), which is a
pariicular variety of reinforcement-based learmung In Q-learmmg, Utiliry(S(t},
(1)) is the evaluation of the approprateness of command C in situaiion S
when C 15 executed at time t 10 1esponse o 5 at L R(5{1+1}} is the “reward”
received by bemg m state 5(i+1) For the agent, rewards are determined as
the game 15 played and can not be determined beforehand. This is called the
immediate reward. The following equality is maintained and propagated as
cach command is executed: Al the start of the game, all Utility(S, C) in PMA
are sel to 1.

Uubey(5(6), Ct} = RISG+11

+ ¥ [A UtiheptS(+ 1), Sl ))
+ (1= maxcg,,yy Unhoy(Si+11, Cl 10

The parameter ¥ determines how impottant 1015 1o be in the state that Gabby
ends up in after his move, In remlorcement based leaming, this is known as
the discount [actor Parameter A& 15 known as the vecency/learning lactor.
Example of Skill Refinetnent in the Agents  To test our implementation of
reinforcement-based learnmg we tested Gabby 1n some playing situations
We developed a programmed oppenent (a pseudo-human player) for Gabby
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thal plays according 10 a fixed stralegy wntien to simulale a strategy thal a
human player might use We had the two programs play 25 games without
icarning. Gabby won aboul 30% of these games. We then turned on Gabbys
reinforcement based learming. had the programs play an addiuonal 175
pames, and recorded the number of winming games (o1 each se1 0 25 Gabby
wor 32% of the first learmung set, 40% of the second set, 50% of the third
sel, and remained at that level therealier. Gabby learned 1o be yust as good as
s opponent 11 winmng the game. Once one of the planes gets behind the
other, 1t ts very hard to shake ofl the enemy Gabby leamed 1o be yust as good
as s enemy in fimshing the enemy once in pursuit and artack. From our
analysis of starting the game positons. u was equally probable for either
plane o be 1 a posinon of pursur and attack When one plane had the op-
portunity e be in pursuit, losing by the pursuant became highly likely since
both pilots are equally competent. Given Its opponerits strategies. we conjec-
ture that Gabby learned as much as possible. If we now were 10 1improve the
strategies of the pseudo-human player. we belheve Gabby would 1mprove
agan 1o match the level of competence of s opponent

We assume that Gabby does not “know” about the long-term conse-
quences of its actions Al the PML, we want o preserve reacuvity and there-
fore, don't want the agent to learn long-lerm consequences of its actions We
also do not want 1o rely completely on learming “unconsciously’ through re-
mforcement. The agent must, therefore, observe mieractions wath the world
in order (o learn sequences of actions that are 1 no way guaranteed o be
successful bt that are commonplace lor the agent and have heen used fre-
quently with a high degree of success. In the followang subsection. we briefly
discuss learming from routine activities 10 the world

“Routines” as Emergent Skills or Habits

“Routines are patterns of mieracuon between an agent and 1= world” (Agre
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269). Al umes, these routines coincide with a skill or a habit. Qur
n of a rouune 1s “a course of action thal is habitually (or by choice)
to.” For simplicity, we can consider a routine as any frequently re-
equence ol actions The adherence to a sequence of actions is a “de-
ollow one action after another without regard 1o applicability of ac-
ace by rouune we tmply a tendency 10 lollow a sequence of actions
"at first glance this definition might seem (o run counter (o the situ-
view ol activity (e.g., Clancey 1996} we have opted for in the PML
st 1o traditional views, situated activity and situated cogmtion pro-
dlow miernal models of the world
xd activity replaces “thinking ahead” wuh experiences of inleractions
world usimg the world as its own best model In our situated ap-
we wanl actions based on current situations, not based on reasorung
nsequences of achions. With a youtine, we want actions performed in
* based merely on succession {rom previous actions, Such a course ol
squarely 1 the spirit of situated theory,
| routtnes are noticed by the agent. An agent may engage m a rowine
be "aware” of . We call routines that the agent becomes “aware” of
routines We use the lerm emergent to mean unprecdhctable and nec-
arising [rom 1nteraction between the agenl and its world. For in-
vhen an agent cbserves a substlantially unproved situauon over a
mber of actions, the agent may recognize a successlul routine. We
all conscious routines with concepts available for the agents reason-
e routines that reach the KL may be treated as a single action
> w0 ways emergent routmes meght be leamed. We discussed one
arning emergeinl routines in the section on migration of knowledge

“Unconscious” to the “conscious.” A second technique is for the
‘unconsciously” monitor the primitive actions at the KL that start off
'hen Lhere 15 sufficient repetition in the sequence ol KL actions, the
of actions 1s learned as a new complex action made up of the prim-
s,

PML, routines are like programs Lhat compele to gain control. Like
habit, once a routine gains control, it will usually run to completion
nterruption. However, if a routine is mterrupted by a process m an-
t of the agents architecture, sometiung out ol the ordinary (unex-
nust have happened m the world. Tius 1s reminiscent ol classical
problemns and recovery [om failures (Georgefl 1987). However, we
1t with the emergence of situated cognitton and the fact that reac-
ms make no prechciions about the resuits of actions, the concept of
ilure will be avoided
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Related Work

chuecture and approach has been an attempt al bndging the gap be-
maodeling deliberation (i.e., knowledge driven activity} and reacuviy
dll driven activaty). Qur three layered architecture {aciliates mediauon
n deliberation and reacovity. There are surular layered archuectures
secific mediaung layers (e.g., Bonasso et al 1992 Gal 1992) A system
rele of medauon is the Reactive Action Packages (RAPS) of im Firby
RAPS takes a set ol ligh-level wasks generated by a planner and re-
sy decomposes them into a sel of reactive shalls that can be run on the
RAPS Lhen activates and deactivates these sets of skills in order 10 ac-
ish tasks RAPS is also responsible for monitoring the execution of the
o see il they are moving the robol 1owards the goal 1f the task 15 not
achieved, RAPS can choose another method for achieving the same
-take other corrective action
agents learn withip a layer and migrale expertise 1 between layers A
r learrung scheme 15 described in Bonasse and Korlenkamp (1994
ng in the ughest level improves cogmtive skills Learning 1 the mid-
ser mmproves the coherence between the other levels Learning in the
level improves the agents reflexive acnons In our architeciure, and
503, knowledge that 15 mugrated trom the highest level 1o lower levels
. a lask that 15 hughly cognitive in the beginning (t.e | cogniuve exper-
reacuve and skilled 1 the futwre. In our archuecture we go one step
v and allow for repeated patterns of mteractions (i.c., motor skills) at
w level 1o be redefined using cogrnve concepts at a later nme.

Summary and Conclusion

pproach to the study of expertise is 1o build agents that use and acguire
ledge and skill. Our architecture for intelligent agency distinguishes be-
« “consacus” and "uncotiscious” processes Our approach nvolves the
diment of acuons m that it addresses mugranen of knowledge and the
siion of new skills that emerge from repetnon

used our architecture in modelmg agents i several domams, Cne of
domains is a video-game 1 which a computer agent flies a WwWi-style
ne As the game progresses, this agent learns 1o maneuver the arplane
“uncensciously” and improves 1ts decision making abtliey This un-
ment shows a style of building skills from the agents ewn knowledge
ts mteractions 1n the world Our capruring skills arc rather novel, espe-
among advocates of symbohe Al
: have developed some prelinunary techmgues {or learnmg routines

Foz
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an agents interactions with the world. By learning routines, an agent
yecame more autermatic in ils interaction n the world, and wilth certain
nes, it can ennch ils “conscious” knowledge about actions
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Notes

15 15 a highly simplistic model of perception and action. For a more detailed the-
| percepuon and action, see Kelso (19851

ir chstinction hetween acts and behawors and the Jevels we choose (0 place themn
AR are consistent with “Acts, as [ use the teym, are what humans do when they
¢l o do something, whereas behavioi is unintended” (Colhns 1990, p 30). As
Collins, we see intennonality to be the distingmshing charactenstic of acts and
71os

> will enther have all the commands as acts at the KL or yust invent a new act [or
:quence of commands, but the cammands themselves will not exast at the XL

w2 Markovian assumpuon lor ar agent 15 that the effect of an agent’s acuons oniy
ads on 1ts current state
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