AN INTRODUCTION TO SNePS
Stuart C. Shapiro
Computer Science Department

Indiana University

Bloomington, Indiana 47401

TecHnicaL ReporT No. 31

AN INTRODUCTION TO SNEPS

STUART C. SHAPIRO

June, 1975

An Introduction to SNePS

Stuart C. Shapiro
Computer Science Department
Indiana University

Bloomington, Indiana 47401

Abstract

SNePS (Semantic Network Processing System) is a system for build-
ing directed graphs with labelled nodes and edges and locating nodes
in such graphs according to graph patterns. Rather then being a
general system for processing labelled digraphs, SNePS is restricted
in certain ways, appropriate for its intended use--to model "seman-
tic" or "cognitive" structures. SNePS may be used interactively
by a human to explore various approaches to semantic representation,
or it may be used as a collection of functions by a more complete
natural language understanding program. This paper glves a user-

oriented introduction to SNePS.

An Introduction to SNePS

Stuart C. Shapiro
Computer Sclience Department
Indilana University
Bloomington, Indiana 47401

March, 1975

Introduction

SNePS (Semantic Network Processing System) is a system for
building directed graphs with labelled nodes and edges and locating
nodes in such graphs according to graph patterns. Rather than
being a general system for processing labelled digraphs, SNePS
is restricted in certailn ways, appropriate for its intended use--
to model "semantic" or "cognitive" structures. SNePS, a revised
version of MENTAL [Shapiro 1971a, 1971b]l, 1s written in LISP 1.6
and runs on a DECsystem-10.

There are two basic types of nodes in the network, constant
nodes and variable nodes. Constant nodes represent semantic con-
cepts, including anything about which information may be stored
in the network. Variable nodes are used to store graph patterns
in the network. In addition, SNePS maintains some of its own infor-
mation by using auxiliary nodes which may be connected to the net-
work, but are not under the control of the user.

Edge labels represent binary semantic relations which are used
to structure the network -and about which no information can be

stored in the network. For example, the cases of Fillmore, 1968

-2-

might be such labels. The user of SNePS is free to choose his
own set of labels which are declared in pailrs, one member of each

pair being a descending relation, the other being the ascending

converse of the first. Auxiliary nodes are connected to each other
and/or to other nodes by relations controlled by SNePS which might
not have converse relations stored. A node from which relations
descend represents an assertion and may be considered an instancg

of some n-ary relation with labelled argument positions. An asser-
tion node is also a constant node. A node from which it 1is possible
to descend to one or more variable nodes (via a path‘of length 1

or more) represents a graph pattern.

A major restriction designed into SNePS is that the user cannot
add a new edge connecting two already existing nodes. This would
amount to changing an assertion or concept into a different one.

An alternative view of this restriction is that whenever a relation-
ship between two or more existing nodes 1is added, a node representing
that this relationship holds is also added.

The SNePS user language consists of a set of functions for which
the unquote convention (see Bobrow and Raphael, 1974) holds. An
atom refers to itself unless it is unquoted. A list 1s elther a
SNePS function reference or a list of elements which can be atoms,
unquoted atoms or SNePS function references. An unquoted atom
is a SNePS variable. These are to be distinguished from both LISP
variables and from variable nodes. An atom may have a LISP value
and a different SNePS value, which will be a set of one or more
nodes. A SNePS varlable is maintained as an auxiliary node with

the relation :VAL to each node in 1its value.

There are several types of unquotes:

*¥F00 The previously assigned SNePS value of
the SNePS variable, FOO.

#FOO A newly created constant node, which is
assigned as the new SNePS value of FOO.

$FO0 A newly created variable node, whilch 1s
assigned as the new SNePS value of FOO.

?2F0Q The SNePS value of FOO is determined
during search as described below.

($ <sexp>) The LISP value of <sexp>.

Description with Examples

The following description will contain many examples of SNePS
usage. In all examples, lines beginning with *¥ are the first
lines of the user's input to SNePS. Subsequent input lines begin
with *. Lines without these prompts are SNePS output. Diagrams
of the network will be displayed in which the newly created struc-
tures will be enclosed in dotted lines. All examples are for the
purpose of describing SNePS and are not to be taken as this author's
proposal for the actual contents of a model of human semantic memory.
The user declares edge labels with the SNePS function DEFINE,
which 1is given pailrs of relations. The first of each pair 1s con-
sldered to be the descending relation. Each label 1s stored as
an auxiliary node with the relation CONV to 1ts converse label.
Each descending relation is added into the set which is the SNePS

value of the special SNePS variable RELST.

#% ((DEFINE MEMBER MEMBER¥* CLASS CLASS*))
(MEMBER MEMBER¥)

(CLASS CLASS¥*)

DEFINED

%¥*%((DEFINE A A* V V¥ O O*% I I#*%))
(A A¥)
(V V%)
(0 O%)
(I I¥*)
DEFINED
A node is created and its assoclated network built by the BUILD
function. The value of the BUILD function 1is a list of the created

node. The arguments to BUILD are, alternately, an edge label and

a node or set of nodes. The second example below demonstrates one

of the unquotes.

#% ((BUILD MEMBER SOCRATES CLASS HUMAN))
(M0001)

%% ((BUILD MEMBER #PERSON CLASS HUMAN))
(M0002)

#%((BUILD MEMBER SOCRATES CLASS GREEK))
(MOOO4)

The network built by these instructions is shown below.

4
|
|
|
|

:VAL '
—0 |

PERSON
_________________________________ A

From now on, we will not show ascending relations in diagrams of

the network, although they should be assumed to be present.

-5~

The user may have pieces of the network printed for his inspec~

tion by using the DESCRIBE function.

##% ((DESCRIBE M0001 M0002))

(MO001 (CLASS (HUMAN))(MEMBER (SOCRATES)))

(M0002 (CLASS (HUMAN))(MEMBER (M0003)))
(DUMPED)

The function FIND is used to locate nodes in the network.

#% ((FIND MEMBER SOCRATES CLASS HUMAN))
(M00O01)

The value of FIND is a 1list of the located nodes, so calls to
FIND may be embedded in other functions.

%% ((FIND MEMBER* (FIND CLASS HUMAN)))
(M0003 SOCRATES)

##((FIND MEMBER*(FIND CLASS HUMAN)

* MEMBER* (FIND CLASS GREEK)))
(SOCRATES)

%% ((FIND MEMBER ?PEOPLE CLASS HUMAN))
(M0002 MOO0O01)

This last is a simple use of the ? unquote. It requires that

each located node have a MEMBER relation to some node and places
all these nodes in the SNePS value of PEOPLE. This results in the
following addition to the network.

MOOO1 M00O02

O.
C)
MEMBER Z4gs e
SOCRATES ,/_'\\\ s, :VAL ___ PERSON
/
7V, N HUMAN .~ qpb MO003
{ - 7 \
0]

\
\ PEOPLE /

MEMBER

To simply print the value of a SNePS variable, the following

use of the * unquote suffices.
*# (¥PERSON)
(M0003)

%% (#PEOPLE)
(SOCRATES M0003)

Assigned variables may also be used within functions.

%% ((BUILD A *PERSON V KISS O MARY))

(M0005)
SOCRATES
0
PERSON
. kqi
o
PEOPLE

#% ((FIND O* (FIND A *PEOPLE V KISS)))
(MARY)

BUILDs may be embedded within BUILDs to simulate the several

sentences that underlie a single surface sentence. For example,

a simplified representation of "John opens a door with a key" might
be:

%% ((BUILD A JOHN V OPEN
*

0 (BUILD MEMBER* (BUILD CLASS DOOR)

)
¥ I (BUILD MEMBER* (BUILD CLASS KEY))))

(M0006)

FINDs may be embedded within BUILDs to simulate descriptive
phrases that refer to previously stored concepts. For example,
a representation of "The person who kissed Mary sees John" might
be:

¥%((BUILD A (FIND A (FIND V KISS O MARY))

* V SEE O JOHN))
(M0011)

MOO0O5

MARY KISS MO0O03 : SEE | JOHN

L — —

Variables may be assigned a value by use of an infix assign-

ment operator. This simulates the use of a pronoun to refer to a

previously described concept.

#%((BUILD A BRUTUS V KILL O CAESAR) = KILLACT)
(M0Q12)

#%((BUILD A JOHN V KNOWS O *KILLACT))

(M0013)
______________________ -
| 10013 |
|
|
: VAL OKILLACT |
JouN | knows '
| I
| |
| BRTUS KILL CAESAR :
L o o o e o o e e - - J

Another infix operator is relative complement, for which the

symbol "-" is used.

%% ((BRUTUS CAESAR MARY) - (JOHN MARY))
(BRUTUS CAESAR)

We will further demonstrate the used of relative complement

and the ? unquote after building some more structure.

%% ((BUILD A BILL V LOVES O BETTY))
(MOO14)

##%((BUILD A BETTY V LOVES O BILL))
(M0O015)

¥% ((BUILD A JOHN V LOVES O JOHN))
(M0016)

#% ((BUILD A SAM V LOVES O MARY))
(M0017)

#%((BUILD A MARY V LOVES O HENRY))
(M0018)

The resultant structure is:

O O
JOHN MARY

To find lovers who are loved, we can do:

%% ((FIND A* (FIND V LOVES) = L O% ¥L))
(BETTY JOHN MARY BILL)

To find lovers who are not loved, we use relative complement.

%¥%((FIND A* *L) - (FIND O% *L))
(SAM)

To find those who love themselves, we use the ? unquote. Notice
that if we consider the FIND instruction to be a pattern, the located
nodes represent instantiations of that pattern such that the ? vari-
able has a valid substitution in that instantiation. The nodes that

can substitute for the variable go into the set that becomes the

variable's value.
%% ((FIND A ?NARCISSIST V LOVES O ?NARCISSIST))
(M0016)

*% (*NARCISSIST)
(JOHN)

-10-

The ? variable operates properly across embedded FINDS such as
we could use to find lovers whose love is returned by the beloved.
%% ((FIND A* (FIND V LOVES O ?BELOVED)
0¥ (FIND V LOVES A ?BELOVED)))
(JOHN BETTY BILL) B

¥#% (*BELOVED)
(BETTY BILL JOHN)

Using the variables assigned above, we can find unrequited

lovers.

#% ((FIND A* ¥L) - ¥BELOVED)
(SAM MARY)

Storing and Using Patterns

When a $ unquoted variable 1s encountered, a variable node is
created and made the value of the variable. Thils is the only way
a variable node can be created. A variable node has the special

indicator :VAR, which we willl diagram as

0 :VAR "

A node from which it is possible to follow a path of descending
relations to a variable node is called a pattern node and has the
special relation :SVAR to each variable node reachable from it.

The instructions
*¥ ((BUILD MEMBER $PERSON CLASS HUMAN))
(M0019)

¥#((BUILD A $N V LOVES O *N))
(M0021)

bulld the structuge:

-~11-~-

Notice that the variable PERSON has been éssigned a new value.

The pattern M0019 is a stored version of the function

(FIND MEMBER ?M0020 CLASS HUMAN) and the pattern M0021 is a stored
version of (FIND A ?M0022 V LOVES O ?M0022). These pattern nodes
may be used by use of the function NFIND.

% ((NFIND M0019))

(M0019 M0O00O2 MOO0O1)

¥*((FIND A* (NFIND M0021)))

(JOHN M0022)

As indicated above, variable nodes are to pattern nodes what ?

variables are to the FIND function. They are assigned values

in the same way.

*#%(%¥M0020)
(SOCRATES M0003 M0020)
%% (¥M0022)
(M0022 JOHN)
To eliminate variable and pattern nodes from the value of NFIND,

the "\" infix operator is useful. The left-hand operand of this

operator 1s a set of nodes and the right-hand operand is a set of

-12-

edge labels. The result is that subset of the glven set of nodes

containing nodes that do not have any of the glven edges emanating

from them. For example:

#% ((FIND A¥ *L) \ (0O%))
(SAM)

For use with NFIND, we would do the following:

¥#%((:VAR :SVAR) = VARIABLES)

(:VAR :SVAR)

#% ((NFIND M0O0O19) \ (¥*VARIABLES))

(M0002 MOOO1)

*% (#M0020)

(SOCRATES M0003)

##%((FIND A* (NFIND M0021) \ (¥*VARIABLES)))
(JOHN)

(#M0022)

(JOHN)

If NFIND is given a set of pattern nodes, it finds all nodes
that match any pattern of the set.

%% ((BUILD A $LOVER V LOVES O $LOVEE))
(M0023)

#%((BUILD A ¥LOVEE V LOVES O ¥LOVER))
(M0026)

~13-

#% ((NFIND (M0023 M0026)) \ (*VARIABLES))
(MO018 M0O0O17 MOO1l6 MOO1l5 MOO1l4)
% (¥MOO2Y)

(HENRY BILL BETTY JOHN SAM MARY)
¥%(*M0025)

(SAM BETTY BILL JOHN MARY HENRY)

The reason for the above result is that both M0023 and M0026
taken separately match any node with V to LOVES. NFIND returns
the union of the two sets and the vériable nodes, M0024 and M0025,
are assigned the union of what they are assigned under each pattern.

The function CNFIND is similar to NFIND except that when it is.
given a set of patterns, i1t considers them conjunctively. Common
variable nodes serve the same restrictive function as common ? var-

iables serve across embedded FINDs. Compare the above example with

the following one:

%% ((CNFIND (M0023 M0026)) \ (¥*VARIABLES))
(MO016 MOOl4 MOO15)

% (#MO02U4)

(BILL BETTY JOHN)

%% (¥M0025)

(BETTY BILL JOHN)

There are three functions for removing information from the

data base:

(ERASE nodel .o nodek)

removes each node from the graph along with any other nodes that

thereby become isolated.

(REMVAR variablel .o variablek)

unassigns each of the listed SNePS variables.

-1b-

(DELREL 1label

EEE labelk)

undefines each of the labels and their converses as valid edge

labels. If any edges with these labels are in the graph, they

are not removed.
There are three

system:

(1) The value

(ii) The value

the graph.

(1i1) The value

relations.

Acknowledgements

SNePS Variables

of NODES is the

of VARBL is the

of RELST 1is the

that are maintained by the

set of all nodes in the graph.

set of all variable nodes in

set of all defined descending

I am extremely grateful to Nicholas Vitulli who programmed this

implementation of SNePS. I am also

grateful to Christopher Charles

for his excellent typing and graphics.

-15-

References

Bobrow, D.G., and Raphael, B. 1974. "New Programming Languages
for Artificial Intelligence Research." Computing Surveys 6,
3: 153-1T74.

Fillmore, C.J. 1968. "The Case for Case." In Bach and Harms,
Eds. Universals in Linguistic Theory. Chicago: Holt, Rinehart,
and Winston, Inc.

Shapiro, S.C. 197la. The MIND System: A Data Structure for Seman-
tic Information Processing, The Rand Corp., Santa Monica, Cali-
fornia. R-837-PR.

——————————— . 1971b. "A Net Structure for Semantic Information
Storage, Deduction and Retrieval." 2nd International Joint Con-

) ference on Artificial Intelligence: Advance Papers of the Con-
- ference, British Computer Society, London, 512-523.

.

Typing & Graphics by Christopher Charles

~16-

Appendix: Summary of SNePS Constructs

Unquote Macro Symbels

* Previously assigned SNePS value

Creates a new constant node

$ Creates a new variable node

? Assigns a variable according to a search
Function

$ LISP value of argument

DEFINE Defines edge labels

BUILD Builds a node

FIND Locates a node(s)

NFIND Locates nodes according to a pattern node

CNFIND Conjunctive version of NFIND

DESCRIBE Prints a dump-type description of nodes

ERASE Removes nodes
REMVAR Unassigns SNePS variables
DELREL Undefines edge labels

Infix Operators

= Variable assignment
- Relative complement

\ Edge label domain restriction

Reserved SNePS Variables

NODES The set of nodes in the graph
VARBL The set of variable nodes

RELST The set of defined descending relations

Edge Labels

Used by SNePS (do not have converses)

CONV
: VAL
: VAR

:SVAR

The converse of an edge label
The value of a SNePS variable
Indicator of variable nodes

Points from a pattern node to its variable nodes

-17-

