TecHnicaL ReporT No. 7
AN INTERACTIVE VisuAL COMPUTER SIMULATOR

STuArT C. SHAPIRO
NovemBer 1, 1973



An Interactlive Visual Computer Simulator

Stuart C. Shapiro
Computer Sclence Department

Indiana University

It is often felt desirable to include in an introductory
computing course a small section of material on machine language,
even when the course will mostly use a language such as BASIC,
FORTRAN or ALGOL. The purpose of the section on machine language
1s to glve the students an understanding of what a programmable,
digital, sequential computer 1s, what its basic operations are,
and how a program, made up of very basic operations can effect
a fairly complicated calculation. To accomplish this purpose,
it 1s not necessary to use a real computer as an example. In-
deed, the complexities of a modern computer would obscure the
points to be made. Therefore, various "hypothetical" computers
have been invented that consist of a basic set of operations
and registers. Students generally write programs for these
hypothetical computers and find out if their programs are cor-
rect either from a human instructor or by executing them using a
simulator in a batch environment. In either case, it 1s diffi-
cult for them to understand the sequential operation of their
programs or the effect of any bugs that might have been in them.

In order to provide a better way for introductory computing

students to gain this basic understanding, we have written an

interactive simulator of one hypothetical computer. This



simulator dlsplays all the storage and active registers of the

hypothetical computer on the screen of a CRT terminal, allows

the student to load and patch programs, load data, and execute

the program. The simulator traces the program by changing the

information on the screen at a slow enough rate that the student

can watch how his program works. He can then make any modifi-

cations he feels are necessary and see the effect of those changes.
The simulator, HYCOMPl, was written in SNOBOLMl to simulate

the HYCOMP computer of Terry Walker's introductory text.2 It

runs under the KRONOS Time Sharing System on a CDC 6600, using

an Applied Digital Data Systems, Inc. ADDS Consul 880 terminal.
Walker's HYCOMP has 1000 words of memory, each holding a

sign plus five decimal digits. 1Its instruction code ignores

the sign, uses the two high order digits for an operation code

and the remaining three digits for an address. In order to dis-

play all of memory on the CRT, we implemented only 100 words

for HYCOMP1, and use the two low order digits for the address”

ignoring the mlddle digit. HYCOMP and HYCOMP1 have the following

actlve registers: a sign plus 5 digit arithmetic register (REG);

a 5 digit control unit (CU); a program instruction counter (IC)

which 1s three digits in HYCOMP and two digits on HYCOMPl. They

loriawold, R.E., Poage, J.F., Polonsky, I.P., The SNOBOLY
Programming Language, second edition, Prentice-Hall, Englewood
Cli fa, . .y 1971‘

2Walker, Terry M., Introduction to Computer Science: An Inter-

disciplinary Approach, Allyn and Bacon, Inc., Boston, 1972.




also have an overflow (OF) switch, underflow (UF) switch, and

and end-of-file switch (EOF). Floating point numbers are stored
using the two high order digits as a biased exponent. There

are forty nine alphanumeric characters coded two digits per
character and stored two characters per word in the low order
four digits. The 24 instructions include numeric and alpha-
numeric I/, integer and floating point arithmetic and test and
branch instructions. HYCOMP does not have index registers, but
in the future, they may be added to HYCOMPl using the middle
digit of instructions for the index register field.

When the student executes HYCOMP1l, the screen 1s cleared
and written on as shown in fig. 1. He may then load his program
(only machine language is accepted by HYCOMP1) and his data and
run the program. He may then patch or change his program and
.contlnue trying and changing it until he 1s satisfied or tired.
The HYCOMP1 simulator glves the student the same options he would
have if he were sittiﬁg at a HYCOMP1 console, but in addition,

he can observe the execution of his program.

There are two commands with which the student can execute
his HYCOMPl program - RUN and CYCLE. With RUN, the student speci-
fies the starting address of his program, and it is executed until
it halts or produces an execution error. If the student uses
CYCLE, one machine cycle 1s executed so that he can study the re-

sults of each instruction at his own speed.



TO SEE A LIST OF AVAILABLE COMMANDS, TYPE HELP
TO PROCEED AFTER AN ERROR MESSAGE APPEARS, HIT NEW LINE
TO LEAVE A MODE, JUST TYPE NEW COMMAND.
INPUT APPEARS ON LINE 22, OUTPUT ON LINE 23
9

? MEANS READY

(00: 01: 02: 03: 0h: 05: 06:
07: 08: 09: 10: 11: 12: 13:
14: 15: 16: 17: 18: 19: 20:
21: 22: 23: 24 25: 26: 27:
28: 29: 30: 31: 32: 33: 34
35: 36: 37: 38: 39: bo: 4.
2. 43. by, I5. L6 k7. 48:
4g. 50: 51: 52: 53: 5l . 55
56 : 57: 58: 59: 60: 61: 62

"163: 64: 05 66 67: 68: 69:
70: T1: 72: 73: Th: 75: 76:
77: 78: 79: 80: 81: 82: 83:
84: 85: 86: 87: 88: 89: 90:
91: 92: 93: 94 95: 96: 97:
98: 99: OF= UF= CU= REG=

EOF=

A machine cycle consists of the following steps:

4

la.

Flg.

1. CRT screen after initialization

The CRT cursor underlines the contents of the word

whose address 1s in the IC.

That instruction 1s copled into the CU and displayed

there on the screen.

IC 1s incremented by 1, the new value being displayed

properly on the screen.

The instruction in the CU 1s executed.

This may cause

various things to happen on the screen, for example:




a. A test instruction causes the displayed contents of
REG to blink for a short time.

b. A branch instruction changes the IC.

C. Whenever data 1s read, either from REG, a memory
word or on the Input line, the ;ursor underlines the
data.

d. Data may be written into REG, a memory word or the
Output 1line.

e. A floating point instruction may set up UP or OF.

f. An input instruction may set EOF,

If an execution error occurs, an appropriate message is written
on the screen. When the student is ready, he can clear this
message and enter additional éommands.

The valid commands are:

tnnnnn - The signed five digit number is put into the
word whose address 1is the current value of IC and IC
is incremented by 1. If the sign is omitted, + is
assumed.

LOAD nn - IC 1s set to nn, OF, UF, and EOF are initialized
to O, andvthe input line 1is positioned at the first
"card" of data. If nn is omitted, 00 is assumed.

RUN nn - IC is set to nn and the program is run to termina-
tion or until an execution error occurs. If nn 1is
omitted, the current value of IC is retained.

CY - One machine eycle is executed.

QUIT - The HYCOMP1l simulator 1is terminated.



DATA - Allows data to be entered, one "card" at a time.
A card with # in column 1 signals the end of data
entry and serves as the EOF flag.

DATA ADD - Allows data to be added to the end of the
existing data "deck". The existing EOF card is auto-

maticaliy remcved.

HELP - A list and brief description of the commands 1is
displayed.

HYCOMP1l has not yet had extensive classroom use. We did
have several students from an introductory programming class
use 1t during the latter stages of its development. Earlier in
the semester, these students had studied HYCOMP and had written
several HYCOMP programs which were graded by a human grader.
Their reactlon to HYCOMPl was extremely favorable and they
reported that 1t would have been very helpful in their study of
machine language. One student finally understood that there 1is
no inherent difference between instructions and data. This kind
of insight, if not gained intellectually, could hardly be gained

by any means other than an interactive, visual simulation.

An interactive, visual simulator for a pedagogically

typical computer has been described. This simulator is to be

Used during a brief introduction to machine language programming
wlthin an introductory programming course to give the students

a "feel" for how the machine works at that level. It was written
in SNOBOLY4 and runs interactively using a CRT terminal.

The author thankfully acknowledges David A. Grace, who
did the programming for HYCOMP1.



