Reconsideration on Non-Linear Base Orderings

Frances Johnson^{a,1} and Stuart C. Shapiro^a ^a SUNY at Buffalo, CSE Dept., Buffalo, NY, USA flj|shapiro@cse.buffalo.edu

Abstract. Reconsideration is a belief change operation that re-optimizes a finite belief base following a series of belief change operations—provided all base beliefs have a linear credibility ordering. This paper shows that linearity is not *required* for reconsideration to improve and possibly optimize a belief base.

Keywords. Base belief change, knowledge base optimization, reconsideration

Reconsideration, as defined in [2] (and discussed in [3] in these proceedings), reoptimizes a finite belief base in an implemented system following a series of belief change operations, provided the base beliefs have a linear credibility ordering; but ordering *all* the base beliefs in a knowledge system is impractical. This paper shows that linearity is not *required* for reconsideration to improve and possibly optimize a belief base.¹

A belief *base*, for implementation purposes, is a finite set of core (or base) beliefs that are input to the system. Any implemented system that can perform expansion (adding a new belief to the base) and consolidation (removing beliefs from the base to restore consistency [1]) can perform reconsideration.

We define the minimally inconsistent subsets of a base *B* as *NAND-sets*; a NANDset that is a subset of the current base is called *active* and makes that base inconsistent. Consolidation of *B* (written *B*!) uses a decision function to select the base beliefs (called culprits) to be removed (unasserted). In addition to (and assumed to be consistent with) any pre-existing credibility ordering, the selected culprits are considered strictly weaker than other members of their NAND-sets that were *not* removed. The system must store all base beliefs (asserted and unasserted) in a set called B^{\cup} in order to perform reconsideration, which is the consolidation of all base beliefs (B^{\cup} !) and is independent of the current *B*. An unasserted culprit is *JustifiedOut* if its return raises an inconsistency that can be resolved only by removing either that culprit or some *stronger* belief.

We define an optimal base by assuming a consistent base is preferred over any of its proper subsets and a belief p is preferred over multiple beliefs (e.g., q, v) that are strictly weaker than $p: p \succ q; p \succ v; \therefore \{p\} \succ \{q, v\}$. If the pre-order defines a *least element* for all NAND-sets, the following algorithm yields an optimal base. Let B be the set of all non-culprit base beliefs in B^{\cup} . For each culprit p (in non-increasing order of credibility): if p is *not* JustifiedOut, reset $B \leftarrow B \cup p$. After each pass through the for-loop:

¹Correspondence to: Frances Johnson, SUNY at Buffalo, CSE Department, 201 Bell Hall, Buffalo, NY 14260-2000, USA. Tel.: +1 716-998-8394; E-mail: flj@cse.buffalo.edu; Relocating to Cycorp, June 2006.

¹See [2] (or [3]) for a detailed (or brief) discussion of the benefits of reconsideration.

Table showing a base, B, revised by $\neg a$ (.95), then revised by a (.98), and then after Reconsideration is performed.							
Columns show different adjustment strategies producing varied results for revision and reconsideration.							
Belief Base	Degree	Standard	Maxi-adjustment	Hybrid	Global	Linear	Quick
В	.95	$a \lor b$					
	.90	$a \lor f$					
	.40	$a \lor d$, $\neg b \lor \neg d$,	$a \lor d, \neg b \lor \neg d,$	$a \lor d, \neg b \lor \neg d,$	$a \lor d$, $\neg b \lor \neg d$,	$a \lor d, \neg b \lor \neg d,$	$a \lor d, \neg b \lor \neg d,$
		d, e, f					
	.20	$\neg g \vee \neg b, \neg d \vee g$	$\neg g \vee \neg b, \neg d \vee g$	$\neg g \vee \neg b, \neg d \vee g$	$\neg g \vee \neg b, \neg d \vee g$	$\neg g \vee \neg b, \neg d \vee g$	$\neg g \vee \neg b, \neg d \vee g$
$(B + \neg a)!$.95	$\neg a, a \lor b$					
	.90	$a \lor f$					
	.40	f	e, f	$\neg b \lor \neg d, e, f$	e, f		d, e, f
	.20		$\neg g \vee \neg b, \neg d \vee g$	$\neg g \vee \neg b, \neg d \vee g$		$\neg g \vee \neg b, \neg d \vee g$	
$((B + \neg a)! + a)!$.98	a	a	a	a	a	a
	.95	$a \lor b$	$a \lor b$	$a \lor b$	$a \lor b$		$a \lor b$
	.90	$a \lor f$					
	.40		e, f	$\neg b \lor \neg d, e, f$	e, f		d, e, f
	.20		$\neg g \vee \neg b, \neg d \vee g$	$\neg g \vee \neg b, \neg d \vee g$		$\neg g \vee \neg b, \neg d \vee g$	
$((B + \neg a) + a)!$.98	a (improved)	a (optimal)	a (optimal)	a (unchanged)	a (improved)	a (optimal)
	.95	$a \lor b$	$a \lor b$	$a \lor b$	$a \lor b$		$a \lor b$
	.90	$a \lor f$					
Reconsideration	.40	$a \lor d$	$a \lor d, \neg b \lor \neg d,$	$a \lor d, \neg b \lor \neg d,$	e, f	$a \lor d, \neg b \lor \neg d,$	$a \lor d, \neg b \lor \neg d,$
			d, e, f	d, e, f		d, e, f	d, e, f
	.20		$\neg g \lor \neg b, \neg d \lor g$	$\neg g \lor \neg b, \neg d \lor g$		$\neg g \lor \neg b, \neg d \lor g$	$\neg g \lor \neg b, \neg d \lor g$

 Table 1. This table shows revision and reconsideration on a total pre-order of beliefs using six different adjustment strategies (as implemented in SATEN[4]). For a full discussion, cf. [2].

- 1. if q is a culprit and $q \succ p$, q was processed during an earlier pass;
- 2. all NAND-sets with *p* as a least element are *not* active and will remain so through the end of the algorithm;
- 3. if p is JustifiedOut, it will remain so through the end of the algorithm.

When the loop exits, we know that:

- all unasserted culprits are JustifiedOut;
- the resultant base, *B*, is consistent (no NAND-set is active);
- the resultant base, B, is optimal $(\forall B' \subseteq B^{\cup} : B' \neq B \Rightarrow B \succ B')$.

When the minimal beliefs of a NAND-set number more than one, base optimality is harder to define, but reconsideration can still help improve a base (possibly to a clearly optimal state). Table 1 shows reconsideration on a total pre-order for six different decision functions implemented in SATEN [4]. Five bases improved—three to optimal.

Systems with non-linear credibility orderings can benefit from implementing reconsideration. We have implemented an anytime, interleavable algorithm for reconsideration in an existing reasoning system (cf. [2]).

References

- S. O. Hansson. A Textbook of Belief Dynamics, volume 11 of Applied Logic. Kluwer, Dordrecht, The Netherlands, 1999.
- [2] F. L. Johnson. Dependency-Directed Reconsideration: An Anytime Algorithm for Hindsight Knowledge-Base Optimization. PhD thesis, Department of Computer Science and Engineering, University at Buffalo, The State University of New York, Buffalo, NY, January 2006.
- [3] F. L. Johnson and S. C. Shapiro. Base belief change and optimized recovery. In *Proceedings* of STAIRS'06 at ECAI'06, Amsterdam, 2006. IOS Press.
- [4] M.-A. Williams and A. Sims. SATEN: An object-oriented web-based revision and extraction engine. In C. Baral and M. Truszyński, editors, *Proceedings of the 8th International Workshop* on Non-Monotonic Reasoning NMR'2000, 2000. CoRR article: cs.AI/0003059.