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An integrated statement is made concerning the semantic status of nodes in a 
propositional semantic network, claiming that such nodes represent only in- 
tensions. Within the network, the only reference to extensionality is via a 
mechanism to assert that two intensions have the same extension in some 
world. This framework is employed in three application problems to illustrate 
the nature of its solutions. 

The formalism used here utilizes only assertional information and no struc- 
tural, or definitional, information. This restriction corresponds to many of the 
psychologically motivated network models. Some of the psychological impli- 
cations of network processes called node merging and node splitting ore 
discussed. Additionally, it is pointed out that both our networks and the 
psychologically based networks are prone to memory confusions about know- 
ing unless augmented by domain-specific inference processes, or by struc- 
tural information. 

I N T R O D U C T I O N  

In this paper,  we discuss a part icular  kind o f  semantic  network.  It is a repre- 
sentation o f  knowledge consisting o f  nodes and  labeled, directed arcs in 
which the fol lowing condit ions hold (cf. Shapiro,  1971): I) each node  repre- 
sents a unique concept ;  2) each concept  represented in the network is repre- 
sented by a node;  3) each concept  represented in the ne twork  is represented 
by a unique node (the Uniqueness Principle); 4) arcs represent non-concep-  
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tual binary relations between nodes; 5) the knowledge represented about 
each concept is represented by the structure of the entire network connected 
to the node representing the concept. The term propositional semantic net- 
work is sometimes used to distinguish those semantic networks in which 
every assertion that can be stored or accessed in the network is considered a 
concept, and therefore represented by a node, from those networks in which 
some such assertions are represented by arcs (most notably set membership 
and subset relationships, cf. Hendrix, 1979, p. 54; or statements without 
handle nodes, cf. Fahlman, 1979, p. 112). This paper is concerned with 
propositional semantic networks so understood. Conceivably, conceptual 
dependency networks (cf. Schank, 1975) could be classified as propositional 
semantic networks if their syntax were explicated. We are using the term 
proposition because propositions are the intensions of sentences. The defini- 
tion also allows for the use of nodes corresponding to functional individuals. 

We will more closely examine the Uniqueness Principle in order to help 
understand the semantics of semantic networks. In doing this, we follow the 
line of research exemplified by Woods (1975) and Brachman (1977, 1979). 
The major point will be that nodes represent only intensions and not exten- 
sions, e.g., individual concepts rather than referents, and propositions 
rather than truth values. Insisting that semantic networks be allowed to 
represent only intensions suggests promising approaches to several knowl- 
edge representation problems which often lead to confusion. One of our 
goals is to devise a representation which is rich enough to maintain the subtle 
distinctions related to referential opacity and extensional equivalence. The 
purpose of the representation is to provide a substrate by which processes 
(e.g., programs, production rules, and inference rules) can operate. 

The first problem we treat concerns indirect reference, originally 
raised by Frege (1892) and recently discussed by McCarthy (1979). McCarthy 
has put the problem into the following form: 

the meaning of the phrase "Mike's telephone number" in the sentence 
"'Pat knows Mike's telephone number" is the concept of Mike's tele- 
phone number, whereas its meaning in the sentence "'Pat dialled Mike's 
telephone number" is the number itself. Thus if we also have "Mary's 
telephone number=Mike's telephone number," then "Pat dialled 
Mary's telephone number" follows, but "'Pat knows Mary's telephone 
number" does not. (p. 129-130, italics in original) 

Knowing is said to create an opaque context in its complement position and 
dialling is said to create a transparent context. The Uniqueness Principle 
suggests a solution strategy for this problem. We treat the concept of  Mike's 
phone number and the concept of the number itself as distinct intensions, 
and thereby create a representional substrate with sufficient resolution to 
control inference processes which differentially apply in opaque and trans- 
parent contexts. 
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The second problem we treat is that of representing the concept of the 
truth value of a proposition. Since it is meaningful to talk about the truth 
value of a proposition independently of whether we know the proposition is 
true or false, we should have the ability to explicitly represent the truth 
value if we need to. For example, any semantic representation of  the sen- 
tence "John knows whether he is taller than Bill" seems to explicitly refer- 
ence the proposition underlying the sentence "John is taller than Bill." This 
seems clear after examining the paraphrase "John knows the truth value of 
the proposition John is taller than Bill." 

Finally, we show how questions may be represented in propositional 
semantic networks. By this we mean how to represent the proposition that 
someone requested certain information of someone else. Such a proposition 
is contained in the sentence "I  got mad because John asked me whether I 
was a boy or a girl." 

HISTORY OF THE PROBLEMS 

In this section, we briefly review the histories of three problems in knowl- 
edge representation for which we propose new solutions later in the paper. 
The main thrust of this paper is an investigation of the semantics of one 
kind of semantic network. That the theory leads to nice solution strategies 
for the three problems should be taken as a further explication of and sup- 
port for the theory. 

We can trace the emergence in artificial intelligence (AI) of the first 
problem to a paper by McCarthy and Hayes (1969) and it surfaced in its 
present form in later papers by McCarthy (1977, 1979). A well known philo- 
sophical solution to this problem, offered by Quine (1956) is to treat knows 
as an operator which creates an opaque context and to disallow substitution 
of equals by equals in an opaque context. Another approach has been 
adopted by Moore (1977, 1980). He encodes Hintikka's (1971) modal logic 
of knowledge within first-order logic and then builds an inference engine 
for that logic. An approach also using first-order logic is taken by McCarthy 
(1979) and Creary (1979). These researchers propose to view a concept as an 
object of discourse within the logic. They have one term which denotes 
Mike's phone number and another which denotes the concept of that phone 
number. This enables them to bypass the problem of replacement of equals 
by equals because the concept of Mike's phone number and the number 
itself are different entities. We differ from McCarthy in that we use one 
node to denote the concept of Mike's phone number and another node to 
denote the concept of the number itself. 

One attempt to represent information about knowledge and belief in a 
semantic network was offered by Cohen (1978), but it is unclear how his 
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treatment would relate to the issues raised in this paper. His primary goal 
was to show how a speaker's beliefs about a heater's beliefs influences the 
speaker's planning of speech acts. Anderson (1977, 1978) has sketched a 
semantic network based procedure for processing referring expressions. 
Anderson's approach involves creating two distinct nodes in the network 
for the two concepts (i.e., the concept of Mike's phone number and its 
referent), and perhaps was inspired by Woods' (1975) important paper. He 
does not work out the details of representing belief, as they are not his 
primary goal. He does some interesting reaction time experiments which 
partly test the psychological reality of the Anderson-Woods proposal and 
these will be discussed later in the paper. 

The solution we propose is in the spirit of Anderson but is more thor- 
oughly articulated in the following ways: 1) we specify exactly how the 
nodes are related and which features of the representation trigger which 
kinds of inference processes; 2) we provide the solution with well articulated 
philosophical underpinnings; 3) we point out that these same philosophical 
assumptions provide an identical solution to some, at first glance, unrelated 
problems; 4) Anderson's experiments used stimulus materials which involved 
only transparent contexts. We suggest that the experimental results will not 
generalize to opaque contexts; and, 5) We point out that Anderson's model, 
if it is straight-forwardly extended, predicts some counter intuitive memory 
confusions. 

The second problem, of representing the notion of truth value, has 
not received much attention in the AI literature, probably because the prob- 
lem domains which have been attacked by AI researchers have allowed 
domain specific solutions. We feel the problem deserves more attention for 
two reasons. First, the notion of truth value in general and the notion of the 
truth value of a specific proposition in particular can be objects of thought 
themselves. Since propositional semantic networks are supposed to be knowl- 
edge representations in which every concept (object of thought) is repre- 
sented by a node, the notion of truth value should also be so represented. 
Second, having decided that truth values of propositions might be repre- 
sented by nodes in a semantic network, we quickly find where such nodes 
can be useful. For example, utterance (1) 

(1) John knows whether he is taller than Bill. 

can be taken as an assertion that mentions the truth value of the proposition 
that John is taller than Bill without taking a position on whether it is true or 
false. Thus, in order to represent (1) as a proposition about a truth value, 
we need to be able to represent a truth value independently of the specific 
value (true or false) it happens to be. An alternative solution used by Allen 
(1979) and Cohen and Perrault (1979) involves specifying the meaning of 
"knowing whether" as a disjunction of correct beliefs. For instance, the dis- 
junction (2) could serve as the representation for "John knows whether P . "  
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(2) (P & John believes P) or 
(not P & John believes not P) 

We claim that this representation uses the intensions P, John believes P, not 
P, and John believes not P, but it does not use the intension of  the truth 
value of  P, which is, we believe, the intension of  "whether  P . "  

A simpler example which we shall use throughout  this paper is shown 
in (3) with its disjunctive reading in (4). 

(3) John holds an opinion about whether he is taller than Bill. 
(4) John believes he is taller than Bill or John believes he is not taller 

than Bill. 

This disjunctive solution does not generalize to some embedding verbs such 
as " w o n d e r , "  which is shown as sentence (5). 

(5) John wondered whether P. 

Perhaps (5) could be paraphrased as (6a) and thence, via the disjunctive 
reading of  "knows whether"  as (6b). We feel, however, that a better para- 
phrase is (6c), which mentions the concept of  a truth value explicitly. 

(6a) John wanted to know whether P. 
(6b) John wanted to know P or to know not P. 
(6c) John was curious about the truth value of P. 

Our only claims are that a node for the concept o f  a truth value should 
explicitly exist in the network and is useful for certain representation tasks. 
We agree that (3) and (4) are logically equivalent and this can be captured by 
inference rules of  some kind. However, logical equivalence is not the same 
as intensional identity. 

The last of  the three problems we discuss, that of  representing ques- 
tions, acquires salience because of  our position that propositional semantic 
networks represent only intensions and the combined facts that: 1) inten- 
sions are meant to correspond to individual concepts or propositions, and 2) 
questions are neither individual concepts nor propositions. Other represen- 
tational schemes can trivially represent questions by tagging the symbol 
structure which describes the content of  the question as being a question 
and not an assertion. For instance, Schank (1975) represents yes-no ques- 
tions in conceptual dependency diagrams by indicating that the mode of  the 
diagram is a question, rather than an assertion. Wh-questions are indicated 
by placing the symbol " * ? * "  in the question slot. That  is, the question 
"Where  is the sal t?"  would be represented as something like (LOC SALT 
*?*). A propositional network would interpret the notation (LOC SALT *?*) 
as a proposition stating that the salt is at the question mark, or a proposi- 
tion involving a free variable. 

It happily turns out that by viewing yes-no questions as enquiries 
about truth values we can immediately represent them. Later in the paper, 
we attempt to generalize this solution to wh-questions as well. 
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T H E  T H E O R E T I C A L  F R A M E W O R K  

What Does  a Semantic Network Model? 

The first issue we must be clear about is what we intend a semantic network 
to model. We first exclude two possibilities. 

One possibility is the real world. This would require nodes to repre- 
sent objects in the world (as opposed to individual concepts) and facts about 
such objects (as opposed to propositions). Although some people might be 
interested in semantic networks as models of the world, we are not. 

A second possibility is that a semantic network models a corpus of 
natural language text, or perhaps that a semantic network is a data structure 
in which a text is stored and from which pieces of the text can be retrieved 
easily. In this case, nodes of the network would represent words, lexemes, 
morphemes, strings, phrases, clauses, sentences, and so forth. In Woods 
(1975), for example, it is argued that the semantic network representation of 
"The dog that had rabies bit the man" must distinguish between the propo- 
sition of the main clause, "The dog bit the man" and the proposition of the 
subordinate clause, "The dog had rabies." Woods proposed this for seman- 
tic reasons (p. 62). Had he made the proposal for purely syntactic reasons, 
then he would have been representing sentences as opposed to meanings. 
Although we feel that semantic networks can be used to model natural lan- 
guage text (cf. Shapiro & Neal, 1982), this is not the use with which we are 
concerned in this paper. 

A third possibility, and the one that we are concerned with, is that a 
semantic network models the belief structure of a thinking, reasoning, lan- 
guage using being (e.g., a human). In this case, nodes represent the concepts 
and beliefs such a being would have. The point is that these concepts are in- 
tensions rather than extensions. 

This is not, perhaps, the majority view of researchers in "knowledge 
representation." In their survey of knowledge representation research, 
Brachman and Smith (1980) asked researchers, "between what two things 
do you envisage the 'representation' relationship?" (p. 68). They report, 
"The one interesting thing to be said in summary, it seems, is that the 
phrase which we use as a commonplace label of our endeavor--'the repre- 
sentation of knowledge'--is perhaps surprisingly not taken in a particularly 
literal sense.. .what was considered to be 'represented', typically, were 
various kind of object [sic] in the world" (p. 71). Nevertheless, in answer to 
the question, "Would you characterize your inquiry as primarily an investi- 
gation into the structure of language, or more as an investigation into the 
structure of thought? . . . .  The great majority gave their prime allegiance to 
the study of thought" (p. 71). 
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lntensions 

The term "intension" derives from Frege's (1892) term "sense". He was 
concerned with the relationship between equality and the meanings of desig- 
nating expressions in a language. The fact that (7a) is true and (7b) is false 
illustrates the problem which concerned Frege. 

(7a) Necessarily, the Morning Star is the Morning Star. 
(7b) Necessarily, the Morning Star is the Evening Star. 

Frege took this as evidence that the designating phrases "the Morning Star" 
and "the Evening Star" do not have the same meaning, even though they 
denote the same object. If the expressions were equal then (7a) and (7b) 
should have identical meaning. Frege used the term "sense" of an expres- 
sion to intuitively correspond to the meaning of that expression, and he used 
the term "reference" to correspond to the denotation of the expression. 

Carnap (1947) attempted to formalize Frege's notion of the sense of 
an expression as a function from possible states of affairs to denotations. 
The function was called an "intension" and the denotation was called an 
"extension" (cf. Dowty, Wall, & Peters, 1981, p. 145). The approach was 
refined through Kripke's (1963) semantics of necessity and Montague's in- 
tensional logic (p. 145). 

When we say that nodes of a semantic network represent intensions as 
opposed to extensions, we mean sense as opposed to reference. Additionally 
for the purposes of this paper, we will not view intensions as functions, 
although it might be helpful to do so in the future. When we say that nodes 
of a semantic network represent intensions we mean intension as Frege 
(1892), McCarthy (1979), and Creary (1979) view intension, as opposed to 
Carnap (1947), Kripke (1963), Montague (cf. Dowry, et al.), or Moore 
(1980). We take intensions to correspond to concepts, ideas, objects of 
thought, or things which can be conceived of. 

The Need for lntensional Representations 

Woods (1975) appears to have been the first to emphasize that some nodes 
of a semantic network should represent intensions. One reason for this is to 
enable the cognitive agent being modeled to conceive of things which do not 
exist in the actual world such as unicorns and Santa Claus. Although uni- 
corns do not exist, they can be reasoned about. Indeed, the reader can say, 
as McCawley (1980) points out, how many horns a two-headed unicorn 
would have. Thus, we should be able to describe within a semantic network 
any conceivable concept, independently of whether it is realized in the actual 
world, and we should also be able to describe whether in fact it is realized. 
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Returning to the Morning Star - -Evening Star example, Woods (1975) 
concluded that, " there  must be two mental entities (concepts, nodes, or 
whatever) corresponding to the two different intensions, morning star and 
evening star. There is then an assertion about  these two intensional entities 
that they denote one and the same external object (extension)" (p. 50). 
Woods continues with the observation that " there  must be some nodes in 
the network which correspond to descriptions of  entities rather than entities 
themselves . . . .  We have to decide how to tell the two kinds of  nodes a p a r t "  
(p. 68). Semantic network theorists have not universally agreed with this 
position. Schubert, Goebel, and Cercone (1979), for instance say, "We take 
the position that terms (nodes, subnets) already have both extensions and 
intensions'" (p. 128, italics in original). Brachman (1977) takes a position on 
the other side of  Woods, stating, "Semantic networks are representations of  
the intensions of natural language designators'" (p. 139, italics in original). 
Yet Brachman still allows some extensional information in his networks: 
" some  of  the operations in the network scheme are purely intensional, while 
others are no t "  (p. 150). 

We want to go even further than Brachman and say that all informa- 
tion in the network is intensional. The only reference to extensions will be 
propositions stating that two intensions pick out the same extension in some 
world, such as the proposit ion that the Morning Star is the Evening Star in 
the actual world. 

The Absence of a Need for Extensional Representation 

If, as Woods pointed out, at least some nodes represent intensions, do any 
represent extensions? Indeed, should every node be seen as having both an 
intension and an extension as Schubert et al. claim and as most philosophers 
usually treat designating expressions? Our answer derives from what we 
take our networks to model (see above). If  a network modeled the real 
world, then a node would represent (or denote) an extension, but we take 
our networks to model conceptual belief structures. 

A node that represents only an intension carries no commitment  that 
an object realizing the intension exists in the real world. The standard trans- 
lation of  "The  present king of France is ba ld"  into a logical notation seems 
to require asserting the existence of the present king of France. 

(EXISTS x) (x is the-present-king-of-France & x is bald). 

However,  this is because of  the normal  extensional interpretation of 
statements in standard logic. A constant node in a semantic network is like a 
Skolem constant derived from a extensionally quantified variable that 
asserts only the existence of  the intension. 
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STRUCTURAL IMPLICATIONS OF 
INTENSIONAL REPRESENTATION 

The Need for Co-referential Propositions 

If a semantic network has a node for the intension of  the Morning Star and 
a different node for the intension of  the Evening Star, what should be done 
when the assertion is made that the Morning Star is the Evening Star? If the 
nodes were merged by transferring all of  the arcs from one node to the other 
and eliminating the first, then this would eliminate the distinction between 
the two concepts and make it impossible to represent the sentence " Jo h n  
did not know that the Morning Star is the Evening Star"  differently from 
the sentence " J o h n  did not know that the Morning Star is the Morning 
Star ."  The solutiori Woods (1975) proposed is to add a node to the network 
representing the proposition underlying the sentence "Th e  Morning Star is 
co-referential with the Evening Star in the actual wor ld . "  The co-referential 
proposition can be used by the system's reasoning processes to infer that 
certain beliefs about the intension of  the Morning Star can be transferred to 
(and from) the intension of  the Evening Star. This will be discussed further 
below. 

Order Dependency 

The set of  nodes existing in a network will depend not only on what infor- 
mation is presented to the network but also on the order of  presentation. We 
shall call this property order dependency. Consider Russell's (1906) exam- 
ple, "George  IV wished to know whether Scott was the author of  Waverly" 
(p. 108). This apparently came about because, even though Scott was well 
known at the time, Waverly was published anonymously.  George the IV had 
an intension for Scott and an intension for the author of  Waverly but did 
not know whether they were extensionally equivalent. A semantic network 
simulating George IV, or just recording this fact, would need a different 
node for each of  these intensions. But what does this imply for how we 
should represent the information that Scott wrote Ivanhoe (assuming that 
the sentence "Scot t  wrote lvanhoe" is our first introduction to the novel)? 
Must we represent this as two propositions, one for asserting the co-refer- 
entiality of  the intension for Scott and the intension for the author of  
lvanhoe, and another for asserting that the author of  lvanhoe wrote Ivan- 
hoe. Our answer is that the cognitive system creates intensions only as 
needed for storing information about them. A separate concept was needed 
for the intension of  the author of  Waverly only because there was thought 
of  that author before an identification was made with any previous inten- 
sion. Psychological evidence for this analysis has been provided by the work 
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of  Anderson and Hastie (1974), Anderson (1977, 1978), and McNabb 
(1977). This will be discussed in a later section. 

This theory would predict that a sentence such as "George  IV thought 
that the author of  Waverly was older than Scot t , "  which requires two inten- 
sions having the same extension, would be harder to understand by someone 
whose first introduction to the intension of  the author of  Waverly was via 
the statement, "Scot t  wrote Waverly" than by someone who had already 
thought about Scott and the author of  Waverly independently. The second 
person would already have two intensions to use. The first person would at 
first access the same intension for both Scott and the author of  Waverly, but 
would then create at least one new concept for the intension of  the author of  
Waverly. We call this process splitting and will return to a more detailed 
description of  it later. This phenomenon would explain part of  the cuteness 
of  the example "Shakespeare 's  plays weren't  written by him, but by some- 
one else of  the same name"  (Hofstadter,  Clossman, & Meredith, 1980). 

Opacity as the Norm 

A system that conforms to the Uniqueness Principle does not need the sub- 
stitutivity of  equals for equals as a basic reasoning rule, because no two 
distinct nodes are equal. Co-referentiality between two nodes must be 
asserted by a proposition. It requires inference rules to propogate assertions 
from one node to another node which is co-referential with it. Thus, inten- 
sional representation implies that referential opacity is the norm and trans- 
parency must be explicity sanctioned by an inference process, unless nodes 
are "me rge d . "  Merging will be discussed in a later section. 

Connections with Reality 

The main objection to exclusive intensional representation seems to be that 
if nodes represent only intensions, how could any alleged understanding 
system so based have any connections with the outside world? To consider 
this question, we must endow our modeled cognitive agent with sense and 
effector organs. We will look at a robot system with sight and manipulators. 

The robot needs a perceptual system in which some node, set of  fea- 
tures, and so forth is triggered consistently when a given object is seen. If it 
is to communicate reasonably with people about perceptual topics, it must 
be able to make approximately the same perceptual distinctions that we 
make. These perceptual nodes need not extensionally represent the objects 
that trigger them. The perceptual nodes can be connected to the semantic- 
conceptual nodes. This allows the robot  to " recognize"  objects, although it 
could be fooled. 
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The robot also needs effector organs that operate the manipulators 
consistently, and connections between some semantic-conceptual nodes and 
the effector organs so that it can operate its manipulators in a manner dic- 
tated by its reasoning (decide what to do). 

Sensors and effectors, by supplying a connection between some node 
in the semantic network and some object(s) in the actual world, finally pro- 
vide referents for the node in one particular world. However, these referents 
are only exemplars of the concept represented by the node. The significance 
of the node remains its intension. 

The Meaning of the Nodes 

There are a number of formalisms compatible with the definition of propo- 
sitional semantic network presented at the beginning of this paper. The for- 
malism used here contains only propositions and individual concepts. We 
will not specify a formal semantics for the network structures because the 
meaning units of the network, the nodes, violate Frege's Principle of Com- 
positionality (cf. Dowty, Wall, & Peters, 1981; p. 42). If a formal language 
obeys the principle of compositionality, then for any non-atomic expression 
in the language, there is a set of rules which enable one to determine the ex- 
pression's meaning from the meaning of the expression's subexpressions. In 
turn, the meaning of the subexpressions can be determined on the basis of 
the meaning of the sub-subexpressions, and so on, recursively. 

There are two properties of a formal semantic system that must hold 
before one can even think of writing the above mentioned rules. The net- 
works which appear in this paper have neither of those properties. First, in 
order for the above mentioned recursion to terminate, the language must 
have atomic expressions, or semantic primitives. However, the only primi- 
tives used in the networks are arc labels, which are non-conceputal, serve a 
syntactic function, and have no meaning. Second, in order for the principle 
of compositionality to apply at all, the meaning of an expression must not 
change when it is embedded in another expression. The meaningful expres- 
sions in our network, the nodes, get their meaning from the expressions they 
are embedded in (in addition to getting meaning from their subexpressions) 
and thereby change their meaning whenever they are embedded in a new 
expression. 

Although our formalism does not obey Frege's principle, its charac- 
teristics which violate the principle can be found in Quillian's (1968) 
writings. Quillian, as Brachman (1979) has pointed out, is most known for 
suggesting that semantic information be stored in a subclass-superclass 
hierarchy so that properties could be inherited from superclass to subclass. 
There is, however, a less well known aspect of his writing that is relevant to 
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our discussion. The next two quotations, taken from Quillian (1968), seem 
to argue for a data structure that violates the principle of  composit ionali ty 
for the two reasons stated above. In the quotations,  we will interpret the 
term "word  concept"  to mean node. First, Quillian argued that there are no 
primitives: 

there are no word concepts as such that are "primitive." Everything is 
simply defined in terms of some ordered configuration of other things in 
memory. (p. 239) 

Second, Quillian argues that the meaning of a node is determined by a 
search process which begins with that node: 

a word's full  concept is defined in the memory model to be all the nodes 
that can be reached by an exhaustive tracing process, originating at its 
initial, patriarchal type node. . .  (p. 238, italics in original) 

This implies that, as additional structure is added to the network, it 
changes the modeled cognitive agent 's  understanding of the concepts repre- 
sented by every node connected to the added structure. Martin (1981) has 
applied the term decomposi t ional  to nodes whose meaning is dependent 
upon what they are constituents of. Because of  this extreme form of  decom- 
positionality, the network described here will be inclined to memory  confu- 
sions precisely because of these decomposit ional  meanings. The mechanics 
of  these confusions will be described in a later section. Anderson (1978, p. 
51, Figure 1) appears to use decomposit ional meanings. It is an empirical 
question as to whether humans are inclined to make the above mentioned 
confusions. It may be the case that we will have to augment the network 
notation so that the meanings are more stable and conform to the second 
prerequisite for compositionality.  Woods '  (1975) arguments for the need to 
distinguish between the definitional information associated with a node and 
the assertional information associated with a node are relevant here. 

T H E  REPRESENTATION C O N S T R U C T S  

Here we introduce the network notation used in this paper.  It is not the only 
network notation compatible with semantic networks but uses perhaps the 
fewest constructs. The network will have two kinds of  nodes which we will 
call base nodes and proposit ion nodes. The proposit ion nodes represerit 
propositions and the base nodes represent individual concepts. All arcs are 
directional and are either ascending or descending, and come in pairs such 
that one arc of  a pair is descending and the other is ascending. In the 
diagrams of this paper, only the descending arc of  a pair is shown but there 
is always an ascending arc (corresponding to the inverse of  the descending 
arc) which is not shown. A node is a base node if it has no descending arcs 
emanating from it other than a LEX arc. Otherwise, a node is a proposit ion 
node. 



INTENSIONAL CONCEPTS IN SEMANTIC NETWORKS 303 

The LEX Arc 

The purpose of  the LEX arc is to form an access route f rom an individual 
concept to a word in a lexical memory.  The LEX arc is a device used in this 
paper  only to simplify the presentation. One drawback of  the LEX arc is 
that its function is different than the function of  the other arc.s. This is 
because the object which it points to is not an intension, but rather an entity 
in lexical memory .  Using the LEX arc to associate a name, say " J o h n " ,  
with a concept, say the intension of  John,  does not give the network knowl- 
edge (in a conceptual sense) that John ' s  name is " J o h n , "  and we cannot  tell 
the network that it has the wrong name for the person it thinks is named 
" J o h n . "  A more consistent way to do this would be to have an intension for 
the word " J o h n "  as well as for the person John,  and then use a proposit ion 
to assert that the intension for " J o h n "  is the word for the intension John.  
Any links to lexical memory  would then emanate  from the intension for 
" J o h n "  and not the intension for John.  For the purposes of  exposition we 
are representing an approximate  distinction between a concept and a word 
denoting the concept but we would not be able to describe the process of  ac- 
quiring word meanings with this scheme. So the current scheme is being 
used only to make the diagrams and presentation simplier. 

The important  things to know about  the LEX arc are that: 1) it points 
f rom a concept to a word, and 2) the node it emanates from is an individual 
concept and not a proposition. 

Other Descending Arcs 

Other than the LEX arc, descending arcs always point to arguments of  
propositions and the nodes f rom which they descend represent propositions. 
A proposit ion node which has no descending arcs coming into it is said to be 
a non-dominated node and represents a proposit ion that is believed by the 
system. It is also necessary to be able to attach erasable, nonconceptual,  
assertion tags to proposit ion nodes which are dominated.  The purpose of  
these tags is to indicate that the system believes those propositions. I f  a 
dominated proposit ion does not have a belief tag then the system has no 
opinion about  its truth. The belief set of  the semantic network consists ex- 
actly of  the nodes which are non-dominated or which are tagged as true by 
an assertion tag. 

Extensional Equivalence 

There is a case f lame,  called the equivalence case frame, which is used to 
represent extensional equivalence. This case frame is used to assert that two 
distinct intensions have the same extension in the real world. It does not say 
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what the extension is but rather only that they have the same extension. 
Thus "The  Morning Star is the Evening Star"  is represented in the simpli- 
fied network structure of  Figure 1 and can be paraphrased as "Th e  concep- 
tual object denoted by 'Morning Star'  is extensionally equivalent to the 
conceptual object denoted by 'Evening S ta r ' . "  The reason the case frame 
has a special status is that it will interact with propositions involving know- 
ing and believing in ways that other propositions will not interact. 

Figure 1. A representation (node M3) for the propositional information in the sentence "The 
Morning Star is the Evening Star." 

Knowing and Believing 

We will also use two different know relations. One will be used for knowing 
a fact as in the sentence " J o h n  knows that he is taller than Bill ." The other 
will indicate familiarity with a concrete or abstract object as in knowing a 
person or game, or as in the sentence "Pa t  knows Mike's phone number . "  
We will call the sense of knowing a fact "know 1" and the sense of  being ac- 
quainted with a thing "know 2" .  We justify these relations on the basis of 
the introspection that knowing an object is different than knowing a fact. 
Similarly, we will use two different believe relations, called "believe 1" and 
"believe 2 ,"  to correspond to the two different know relations. 

As stated earlier a propositional semantic network models the belief 
system of  a cognitive agent, which we will call " the  system." Whenever any 
of the relations involving knowing or believing appear in the network, they 
will represent beliefs about beliefs. 

We shall treat knowl only as correct belief rather than justified, cor- 
rect belief for the following reason. If a cognitive agent believes that some- 
one knows a facts, then the agent believes: 1) that the someone believes the 
fact; 2) the fact is true; and 3) that the someone believes the fact for the 
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right reasons (as far as the cognitive agent can tell). The third stipulation 
about "r ight  reasons"  is necessary to rule out belief for the wrong reasons 
such as superstition or guessing. For example, there is at least one person 
who believes that white can force a win in chess, and there is at least one 
person who believes that white cannot.  Therefore  we know there is a person 
who has a correct opinion about  whether white can force a win. Nonetheless, 
no one currently knows whether white can force a win. Since we are not able 
to specify what "believing for the right reasons"  means, we will discuss 
knowing only in the sense of  correct belief. 

McCARTHY'S TELEPHONE NUMBER PROBLEM 

The Main Example 

We now address ourselves to McCar thy ' s  telephone number  problem. What  
follows is our representation, and its rationale, for sentence sequence (8). 

(8) Pat knows Mike's phone number; Ed dials Mike's phone number; 
and, Tony correctly believes that Mike's phone number is the same 
as Mary's phone number. 

This sentence sequence illustrates the distinctions upon which McCarthy 's  
example focuses. On the basis of  (8) the system should conclude that Ed dials 
Mary 's  phone number,  yet it should not conclude that Pat knows Mary ' s  
phone number.  Furthermore,  it should not conclude that Tony knows either 
Mike's  or Mary ' s  phone number;  however, if  the system is subsequently 
told that Tony knows one of  the numbers in particular, it should conclude 
that Tony also knows the other number.  Figure 2 shows the network repre- 
sentation of  the information contained in (8). (Note: Although it does not 
appear  in the figure, assume M5 has been tagged as true by an assertion tag.) 

Critical to our discussion is an explication of  the system's  understand- 
ing the concept of  node M7 of  that figure. Node M7 is: 

Something which Pat knows, and 
something which Ed dials, and 
something which is Mike's phone number, and 
something that is co-referential with Mary's phone number, and 
something that Tony knows is co-referential with Mary's phone number. 

In order to explicate the node 's  full concept,  it was necessary to traverse the 
entire network, and the network is the sum total of  the system's  beliefs. 

The assertion that node M7 is co-referent with Mary ' s  phone number  
is just as much a part  its meaning as the assertion that it is Mike 's  phone 
number.  However,  we do not want the system to decide that Pat  knows 
Mary ' s  phone number,  so how do we avoid this? This is where extensional 
equivalence links acquire their special status. I f  the system believes that 
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Figure 2. A representation for the information in the sentence sequence: "Pat knows Mike's 
phone number; Ed dials Mike's phone number; and, Tony correctly believes that Mike's 
phone number is the some as Mary's phone number." 
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some agent knows some intensional concept, then it will assume that the 
agent knows all of  the propositions asserted about the intensional concept 
except those propositions which consist of  the extensional equivalence case 
frame (e.g., M5) or which contain the extensional equivalence case frame 
(e.g,, M14). So the system will assume that Pat  knows M4, M l l ,  and MI5. 
Now the system could be mistaken; Pat  need not necessarily know M15. 
This performance characteristic would predict corresponding kinds of  
memory confusions in humans. Further discussion of  this appears later in 
the paper in the section titled "Merging and Splitting Nodes . "  

Further Examples 

To further illustrate how we would use the representation, we will look at 
two more sentences, and then return to the question of  transparency verses 
opacity. Consider (9) below. 

(9) Mike has two phones. One is 831-1234. The other is 831-4321. 

Figure 3 shows how we represent it. The next example illustrates how we 
handle designators which fail to refer, as seen in (10) below. 

(10) Mike doesn't have a phone. 

There are two ways to represent this utterance. The first involves the inten- 
sion of  nothing (for a discussion of  this intensional object see, Heath,  1967). 
It is the notion of  non-existence. The representation is depicted in Figure 4, 
and if one of  the non-dominated nodes were submitted to a language gener- 
ator (node M4 or M5), it might produce the sentence "Mike 's  phone num- 
ber is non-existent ."  The other way employs universal quantification and, 
as shown in Figure 5, asserts that for all x, x is not Mike's phone number. 
The quantification arc is taken from the SNePS semantic network formal- 
ism (Shapiro, 1979a). 

Transparent Relations Propogate by Inference 

We now return to describing how the representation for McCarthy's  tele- 
phone number problem can support processes which simulate referential 
transpareocy and opacity. Opacity is the norm because for instance, in the 
situation of  sentence sequence (8), Mike's phone number and Mary's  phone 
number are distinct intensions which are extensionally equivalent; but ex- 
tensional equivalence is not equality, so we do not encounter the problem of  
substitution of  equals for equals. Transparency, however, requires some 
sort of  inference process. What is needed is an inference or production rule 
which propogates assertions across equivalence arcs, but which has an ante- 
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Figure 4. The representation for Mike not having a phone. 
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Figure 5. Another representation for Mike not having a phone. 
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cedent trigger pattern that matches only assertions involving transparent 
operators. This entails that the system have the conceptual knowledge that 
the relation dial is transparent but know is not. Such an inference rule 
would then enable the system to add to its data base that Ed dials Mary's 
phone number from the information given in (8); yet the system would not 
add that Pat knows Mary's phone number, because know is not transparent 
and would not satisfy the trigger pattern of the inference rule. 

There are situations in which assertions involving opaque operators 
can also propogate across equivalence paths. Tony in (8) knows that Mike's 
phone number and Mary's phone number are extensionally equivalent, so 
any assertion with Tony as the agent and Mike's phone number (node M7) 
as the object, regardless of whether it involves an opaque operator, should 
be able to propogate across that equivalence path. In short then, if a cogni- 
tive agent knows that two concepts are extensionally equivalent, then for 
that agent all operators are transparent with respect to that path. The ap- 
pendix contains examples of inference rules which propogate assertions 
across an equivalence path. No claim is made that they are complete. 

REPRESENTING TRUTH VALUE 

This section makes several points. First, the concept of the truth value of 
some proposition is intensionally distinct from its particular truth value 
(true or false) and at times it is necessary to make this distinction explicit in 
the representation. Second, the same information can be represented by two 
different configurations of concepts. This illustrates what we mean by order 
dependency. And third, we contrast the behavior of the system's beliefs 
about believing with its beliefs about knowing (correct belief). 

Figure 6 shows the representation for sentence (1 l), with the proviso 
that the system has already wondered about the truth value of the proposi- 
tion underlying the sentence "John is taller than Bill." An implication of 
our discussion of order dependency is that a distinct intension for the truth 
value of a proposition will be created only if the system wonders about the 
truth value of that proposition before actually learning its truth value. 

(ll) It is true that John is taller than Bill. 

This treatment embodies the claim that the extension of a proposition is its 
truth value. Node M8 is the intension for the truth value of the proposition 
underlying the sentence "John is taller than Bill." Node M6 represents the 
individual concept of truth. When John wonders whether he is taller than 
Bill as in sentence (5), he is trying to determine the co-reference of node M8. 
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Figure 6. The representa t ion  fo r  the propos i t iona l  in fo rmat ion  conta ined in the sentence "It  
is t rue that  John is ta l le r  than Bil l ." 

If Tony believes, as in sentence (1), John knows whether John is taller than 
Bill, then Tony believes John's description of node M8 is complete even 
though Tony's is not necessarily complete. 

We emphasize that the configuration of nodes used to represent (11) 
depends on the order in which the system thinks of them. If someone is 
directly told that John is taller than Bill and does not have to wonder about 
it, then the representation would be much simpler, as shown in Figure 7, in 
which node M4 represents the proposition underlying the sentence "John is 
taller than Bill." 

Since (11) is an extraposed version of the sentence "That John is taller 
than Bill is true," we suspect it carries the presupposition that the listener 
has in fact wondered about the truth value of the embedded proposition, 
and so the representation depicted in Figure 6 is the correct one for this sen- 
tence. The EQUIV-EQUIV case frame indicates that two intensions already 
represented in the network are extensionally equivalent in the actual world. 
Node M6 of Figure 6 would presumably already exist in anyone's memory 
who has some notion of truth. Mode M8 would exist in people's memory 
who have wondered about the truth value of "John is taller than Bill" 
before learning its actual truth value. 
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Figure 7. The representation (node M4) for the propositional information contained in the 
sentence "John is taller than Bill." 

The reader might entertain the possibility of  using the above technique 
as a general method of  asserting propositions in the network. This is not 
possible because it would lead to an infinite regress of  assertion embeddings. 
If the EQUIV-EQUIV case frame were necessary to assert a proposition 
then Figure 6 would not assert utterance (11) because node M7 has not been 
asserted by the EQUIV-EQUIV case frame. The convention of  taking top- 
level nodes as being asserted alleviates this problem. 

In order to represent sentence (3), duplicated below, we use "believe 
2 . "  As already mentioned, it means to be familiar 

(3) John holds an opinion about whether he is taller than Bill. 
(4) John believes he is taller than Bill or John believes he is not taller 

than Bill. 

with, or apprehend, some intension. Figures 8 and 9 contrast our represen- 
tations of  sentences (3) and (4). In Figure 9, sentence (4) is represented by 
node M8 which is a proposition involving exclusive-or. A feature inherent in 
the use of  "know 2"  is that the task of  appraising in exactly what manner 
the agent of  the "know 2"  relation is familiar with, or apprehends, an indi- 
vidual concept requires the use of  inference rules. "Know 2 "  says nothing 
in itself except that the agent is familiar in some domain specific way with 
the individual concept that is the object of  the relation. There must also be a 
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Figure 8. The representat ion (node M8) for  the proposit ional information contained in the 
sentence "John holds an opinion about whether he is tal ler than Bill." 

way for the specific facts that an agent knows about the concept to be inde- 
pendently asserted. An illustration of this point is depicted in Figures 10 and 
11. Node M8 in Figure 10 does not directly represent 

(12) John knows that he is taller than Bill. 

sentence (12), but rather entails sentence (12). Node M5 in Figure 11 does 
directly represent (12). Believing that P and having a correct opinion about 
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Figure 9. The representation (node M8) for the proposit ional information contained in the 
sentence "John believes he is tal ler than Bill or John believes he is not tal ler than Bill." 

whether P are two different intensions and therefore should be represented 
by two distinct nodes. The network structure of Figure 10 does not explicitly 
assert what John's opinion actually is. Using the inference rule (13) below, 
the information in Figure 11 could be deduced from the information in 
Figure 10. 
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(13) If the system believesl that some cognitive agent knows2 whether 
some proposition P and the system believesl that P, then the sys- 
tem can conclude that the agent believesl that P. 

The following example illustrates the behavior of  this kind of  system. 
Suppose you were a college freshman majoring in computer science, and sup- 
pose you believed (incorrectly) that pi was a rational number. Naturally, you 
would also believe that your computer science professor also knew whether pi 
was rational. By applying the above inference rule, you would erroneously, 
but properly,  conclude that your professor believed that pi was rational.  

,.I 
144 
l¢ 

kn 

Jl  

Figure 10. The representation for  the s e n t e n c e  sequence:  "John holds a correct opinion 
about whether he is tal ler than Bill; it is true that John is tal ler than Bill." 
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know1 
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Figure 11. The representation (node M5) for the propositional information contained in the 
sentence "John holds a correct opinion that he is taller than Bill." 

REPRESENTING YES-NO QUESTIONS 

In order to support the entire range of  discourse processing it is necessary 
for a knowledge representation in general, and a semantic network in par- 
ticular, to have the ability to represent questions. Although it is possible for 
a network which does not represent questions to interface with a processor 
that enables it to answer questions (e.g., an ATN parser-generator; Shapiro, 
1979b), the network itself would intrinsically not have the ability to remem- 
ber which question were asked. The need to represent questions is illustrated 
by sentences of  the sort "Since John asked me whether he was taller than 
Bill, I assumed he had never met Bill ." In order to represent this sentence, it 
is first necessary to represent the question embedded within the subordinate 
clause. 

We now turn to the problem of  representing a yes-no question in a 
propositional semantic network. A question is not an individual concept, 
nor is it a proposition, but it must be represented in a propositional network 
by some configuration of  individual concepts and propositions. It is not the 
case that a question can be paraphrased into a propositional form. Consider 
the line of  dialog below (14) and the attempt to propositionalize it (15). 
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(14) Mary said, "John are you taller than Bill?" 
(15) Mary asked John whether he was taller than Bill. 

The paraphrased form superficially resembles a proposition except for a 
constituent centered around "whe the r , "  which cannot be propositionalized. 
There is a way to circumvent the obstacle by noticing that the sentence 
resembles sentence (5). We can generate (16) from (15) by replacing " a s k "  
with " w o n d e r "  as shown below. 

(16) Mary wondered whether John was taller than Bill. 

Our treatment of  " w o n d e r "  described earlier applies here and can be ex- 
tended to " a s k . "  Sentence (15) is an enquiry about the truth value of  the 
proposition underlying the sentence " J o h n  is taller than Bill." The literal 
interpretation of  all yes-no questions can be handled in this manner. Our 
representation of  (15) is shown in Figure 12. The important  thing to note is 
that the representation captures the fact that the question is an enquiry about 
the reference of  the truth value of  a proposition. The ability to represent 
this concept supplies the groundwork to build processes (e.g., programs, 
production rules, inference rules) in the system which uses this concept. The 
representation can trigger inference rules which will ensure that the system 
appropriately understands word senses like " a s k . "  " A s k "  means some- 
thing like "enquire into the identity o f . "  

The indirect speech act literature contains many examples of  questions 
such as, "Can  you pass the sal t?"  which are not interpreted in natural dis- 
course as questions. Rather they effect the listener as if he had heard some 
other illocutionary act; in this case it is a request. However,  humans are able 
to understand that, literally, this sentence is a yes-no question and it follows 
that they must be able to represent this literal interpretation. Furthermore,  
most accounts of  indirect speech acts build on the assumption that the prop- 
ositional content of  the speech act has been extracted. Hence, we would like 
to represent this literalness in our network. 

We will discuss wh-questions in the section after next section, after we 
discuss the process of  node splitting. 

MERGING AND SPLITTING NODES 

Merging Nodes 

Many writers point out the need for merging nodes which refer to the same 
physical object (e.g., Anderson, 1977, 1978; Hofstadter,  Clossman, & 
Meredith, 1980). This kind of  process seems attractive because it would 
serve to reduce "c lu t te r"  and simplify the crossreferencing problems be- 
tween information in memory.  Common sense seems to dictate that a system 
which maintains multiple nodes that are known to be co-referential is ineffi- 
cieht. This view is expressed by Hofstadter et al.: 
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Figure 12. The representation (node M9) for the propositional information contained in the 
sentence "Mary asks John whether he is taller than Bill." 

It is inevitable in any representational formalism that distinct nodes will 
sometimes be manufactured that, it turns out later, stand for the same 
thing . . . .  What happens when one finally finds out that the two nodes 
represent the same thing? Clearly, they have to be fused somehow into 
one new node. (p. 4) 

It is true that this kind of  heuristic leads to increased ability to perform in- 
ferences in transparent contexts, however it has the disadvantage of  not 
being able to inhibit spurious inference processes in domains involving 
opaque contexts. For instance, as already pointed out, if a system has two 
separate nodes for Mary's  phone number and Mike's phone number, along 
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with an assertion that they are extensionally equivalent, then it is not dif- 
ficult to inhibit the system from concluding that John knows Mike's phone 
number if it is told that John knows Mary's phone number. But if a merge 
or copy process were to operate on the two nodes known to be extensionally 
equivalent, as Hofstadter  et al., and Anderson propose, so that all o f  the in- 
formation separately associated with each of  the nodes is merged onto one 
node, then the spurious inference in the above example would be difficult to 
inhibit if the system were still going to make transparent inferences. Thus 
the process of  merging nodes must not always take place. 

Constraints on Merging Nodes 

One possibility for policing this process is to set the constraint that a max- 
imum of  one predicate (assertions about co-reference are exempt) can be 
asserted per node. This amounts to a total suppression of  any process which 
merges nodes; and, although it guarantees a representation with sufficient 
resolution to appropriately trigger both opaque and transparent inference 
processes, it creates a maximally inefficient system for cross referencing 
properties among extensionally equivalent concepts in transparent contexts. 
This option seems drastic and cumbersome, and we concur with Anderson 
and Hofstadter  et al., in that it does not agree with our intuition either. 
Furthermore,  there is experimental evidence that some merging of  nodes 
does take place in humans. Anderson (1977), in addition to demonstrating 
that a subject can have two distinct nodes which are extensionally equiva- 
lent, has obtained evidence that subjects are strongly biased against main- 
taining two such distinct nodes if they know that the nodes are extensionally 
equivalent. Usually in such situations one of  the two nodes is less strongly 
memorized than the other node. What  subjects are inclined to do during the 
course of  use is to place duplicate copies of  the information which reside at 
the less established node to the more established node and then gradually 
abandon use of  the less established node. 

However, back in McCarthy's  telephone number problem, the nodes 
for Mary's  phone number and Mike's phone number cannot be merged. The 
nodes exist in an opaque context. In all o f  Anderson's  experiments, his stim- 
ulus materials were instances of  transparent reference. As we said earlier, in 
transparent contexts, merging of  nodes leads to optimal performance. 

Let us look at Anderson's  (1978) stimulus materials. Subjects were 
asked to memorize the following kinds of  sentences: 

(17) The smart Russian is the tall lawyer. 
(18) The smart Russian cursed the salesgirl. 
(19) The smart Russian rescued the kitten. 
(20) The tall lawyer adopted the child. 
(21) The tall lawyer caused the accident. 
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These materials contain no opaque operators.  However, we can prefix 
each of  these study sentences with the phrase " J o h n  believes tha t" ;  then if a 
subject memorizes these modified study sentences, he or she will generate 
the same subconfiguration of  nodes in memory as before but this time 
within an opaque context. If a subject fully processes the semantics of  the 
word "bel ieve" (unfortunately, tuning the task demands to force the sub- 
ject to fully process "bel ieve" might not be so easy) then during the experi- 
ment, he or she must process the nodes in a way that maintains the separate 
intensions. Specifically, the trend in the reaction time data which was 
observed that indicated subjects were copying information from one co- 
referent node to another should be absent. 

We suggest that the process of  merging nodes is inhibited when an 
opaque context is created but not otherwise. This creates a compromise 
system which will process instances of  transparent reference efficiently yet 
process instances of  opaque reference accurately. 

Confusions 

We as yet have not succeeded in devising a representation which does not 
make any semantic confusions. The problem can be seen by examining 
Figure 2. After the system is told the information in sentence sequence (8), it 
will answer "ye s "  to the question "Does Pat  know Ed dials Mike's phone 
number?"  The reason is that any straight-forward algorithm that adds the 
assertion to the data base that Pat knows M4 will also cause it to add to the 
data base that Pat  knows M15 because both nodes have the same status in 
the network. Humans are certainly able to avoid making this mistake, but 
the representation can be patched up, either by augmenting the processes 
which use the representation or by augmenting the representation itself. 

Without changing the representation, the only way to inhibit adding 
the fact that Pat knows node M15 while still allowing the inference that Pat  
knows node M4 is by using highly domain specific inference rules. Perhaps 
humans can generate these hypothesized rules quite quickly. It seems that 
this approach however would lead to a system whose performance was likely 
to degrade very time it learned something new because there would be the 
possibility of  a new confusion. With each new confusion, a new domain 
specific inference rule would have to be created to inhibit the confusion. 
This is reminiscent of  an EPAM-like theory of  forgetting. 

The networks used in this paper use only assertional information. In- 
stead of  adding domain specific inference rules, we could augment the 
representation to include structural, or definitional, information, and then 
change the semantics of  the network so that the meaning of  a node was only 
what the structural information said what it was. NotationaUy this could be 
done by adding functional individuals to the present representation con- 
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structs (cf. Maida, 1982). The purpose of  definitional information would be 
to define intensions. Although Woods (1975, p. 58) argued for the need to 
distinguish between structural and assertional information, psychologists 
have not as yet been inclined to make such a distinction and tend to accept 
Quillian's formulation (cf. Collins & Loftus,  1975) of  a node's full concept 
as adequate. Anderson (1976, p. 243) does use structural information to 
represent transparent versus opaque reference but he does not refer to the 
distinction in his experimental work (e.g., Anderson, 1978). 

SpliCing 

Consider the following situation. What if a memory node created in a trans- 
parent context and with several descriptions fused or merged onto it, gets 
puts into an opaque context? Returning to the phone number problem, 
what if a cognitive agent learns that Mike and Mary have the same phone 
number as a consequence of  learning that they live together? Then the two 
descriptions would be attached to the same node as shown in Figure 13. 
Now suppose this cognitive agent hears sentence (22). 

(22) Pete doesn't know that Mike's phone number is the same as Mary's 
phone number. 

The network structure depicted in Figure 13 could not become part of  the 
representation structure for sentence (22) because that structure treats the 
concepts of  Mike's and Mary's  phone numbers as being the same, rather 
than being extensionaUy equivalent. Our cognitive agent must make a new 

) 

) 
Figure 13. The representation for Mike's and Mary's phone number being the same if there 
is no immediate need to treat them as separate intensions. 
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distinction before he can comprehend (22). It seems necessary that two 
nodes be constructed to separately represent Mike's phone number and 
Mary's phone number, and they must be made extensionally equivalent to 
the original node. We call this process splitting and it was mentioned earlier 
in our discussion of  Scott writing Waverly. The final representaiton is 
shown in Figure 14 in which node M16 represents the proposition of  (22). 
This analysis predicts that a person who learns about Mike's and Mary's 
phone number in a transparent context will have more difficulty subse- 
quently comprehending (22) than a person who learns this same informa- 
tion in an opaque context because a split must take place. 

Because of  the probable computational overhead involved in splitting 
nodes, perhaps this kind of strategy might only be utilized when the system 
is operating in "careful  node , "  as in social situations where misunderstand- 
ings could be embarrassing or costly. Also from a cognitive developmental 
perspective, this operation should occur late in the developmental sequence. 
And perhaps the usual mode of  human functioning leads to treating opaque 
operators as transparent. Witness the difficulty a teacher has in trying to 
understand why a student does not understand. If the teacher was facile at 
processing opaque contexts, he or she would be able to accurately assess the 
student's knowledge state. 

In light of  the optional nature of  processing associated with opacity, 
some unanswered experimental questions are raised? What are the factors 
which trigger opaque processing in humans? Developmentally, when does 
the ability for opaque processing appear in children? For instance, suppose 
that a person knows that Jim's wife is Sally's mother and is then told that 
Mike wants to meet Jim's wife (adapted from Creary, 1979). Under what 
circumstances might the person assume that Mike realizes he would like to 
meet Sally's mother and under what circumstances might that person feel 
the need to determine whether Mike knows Jim's wife is Sally's mother.  

Consider the following two sentences taken from Anderson (1978). 
Anderson points out that the former sentence is an instance of  

(23) I am looking for the best lawyer in town. 
(24) I am looking for my little old mother. 

opaque reference and the latter is an instance of transparent reference. 
Given that the difference in interpretation is probably not attributable to 
their very slight differing syntactic structure, what is determining whether 
the interpretation is transparent or opaque? The type of  interpretation 
seems to depend on inference processes taking place in the listener which ac- 
tively assess the knowledge state of  the speaker. To illustrate, consider the 
interpretation of  sentence (25) below, depending on whether a foster child, 
or an earthquake survivor is speaking. 

(25) I am looking for my lost mother. 
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In the case of the foster child, the listener realizes that the child has probably 
never known its mother. Whereas in the case of the earthquake survivor, the 
listener knows that the survivor has someone specific in mind. 

REPRESENTING WH-QUESTIONS 

The treatment of wh-questions becomes clearer when one recognizes the 
opacity of the complement position of ask. The meaning of sentence (26) is 
changed if we substitute the phase "Mary's phone number" in place of 
"Mike's phone number" even if Mike and Mary have the same phone 
number. 

(26) Pat asks Joe for Mike's phone number. 

Therefore, in order to represent (26), we must create a new node which 
represents the intension of the Mike's phone number which Pat asks Joe 
for. We then equivalence it to the existing node. The resulting interpretation 
is depicted in Figure 15. 

There are additional constraints to consider. We do not want to create 
a split to answer a simple question if we have already postulated splitting to 
be computationally expensive; and we want to use as much shared network 
structure as possible. The representation is constructed and integrated into 
the rest of memory as follows. The relation ask has three arguments: 1) the 
person doing the asking; 2) the person asked; and, 3) the thing being asked 
about. Only the thing being asked about is treated opaquely, so it is the only 
node that does not get matched to the network as the question is being 
parsed. Rather, it must be asserted to be extensionally equivalent to some 
other node in memory. Referring to Figure 15, node M8 gets matched to 
memory via the network pattern determined by nodes M9, M2, and M1. 
The node which is found as a result of this pattern match (M7 in this case) 
will be asserted to be extensionally equivalent to node MS. The system 
should be able to use information which is asserted about M7 to answer the 
question. In summary then, the listener constructs a representation of the 
question, matches it to the rest of the network, and finds a node which plays 
two roles: 1) it is treated as being extensionally equivalent to the concept 
being asked about; and, 2) it should serve as the access route to information 
suitable for answering the question. Note also that the system remembers 
who asked whom what question. 

The question is, in fact, an enquiry about a particular intension, and 
that is the feature the representation unambiguously captures. But it is not 
so clear for the system as to how to determine what constitutes a good 
answer to the enquiry about the intension. This sort of task requires domain 
specific knowledge. It seems necessary to include discourse rules in the 



)< 
M I  

J J  
IM 

, . I  

X 
l U  

._1 

o t h e r  
i n f o  

n u m b e r  

REL 

Figure 15. The representation (node MIO) for the propositional information contained in the 
sentence "Pat asks Joe for Mike's phone number." 
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system to decide exactly what information the questioner is looking for. It is 
a mysterious phenomenon that humans perceive wh-questions as asking for 
specific information; on a literal level, they are vague, (e.g., Where is the 
salt? In the salt shaker). One possible rule for answering questions about  
phone numbers is given below in (27). 

(27) If a person asks you for a description of a phone number that you 
believe2 or know2, then he wants you to generate a linguistic de- 
scription of a digit sequence that is extensionally equivalent to the 
phone number. 

Lehnert (1978), Allen (1979), and Allen and Perrault  (1980) have extensively 
treated the problem of  deciding what is so specific about specific questions 
in natural language discourse. 

A more general rule for answering wh-questions, probably reserved 
for use when the system cannot find relevant domain specific knowledge, is 
given below in (28). 

(28) When answering a wh-question, use any identifying description of 
the entity that the questioner asked about, but which the ques- 
tioner himself did not use in formulating the question. 

Thus if Joe answered (26) by saying, "Oh ,  Mike's phone n u m b er "  then rule 
(28) would be violated. Alternatively, if he said "Oh ,  that 's  Mary's  phone 
number , "  then rule (28) would be satisfied but not rule (27). 

CONCLUSION 

This paper makes an integrated statement concerning the semantic status of  
nodes in a propositional semantic network, claiming that nodes in such a 
network represent only intensions. Within the network, the only reference 
to extensionality should be via some mechanism to assert that two inten- 
sions have the same extension (e.g., The Morning Star is the Evening Star). 
We have also shown how processes which simulate referential transparency 
or referential opacity can operate on the network. Our analyses have been 
influenced by analytic philosophy, artificial intelligence, and cognitive 
psychology. 

We have employed this framework in three application areas to illus- 
trate the nature of  its solutions. First, we map out a solution to McCarthy's 
telephone number problem, which he devised to succinctly capture the dif- 
ference between referential transparency and opacity. Second, we directly 
represent the notion of  the truth value of  a proposition as is needed to repre- 
sent a sentence like " J o h n  knows whether he is taller than Bill." Finally, we 
represent sentences like "Since John asked me whether I was taller than 
Bill, I assumed he never met Bill ." 



INTENSIONAL CONCEPTS IN SEMANTIC NETWORKS 327 

We also discuss some of the psychological implications of  network 
processes which we call node merging and node splitting. It has been well 
recognized that a merge process should occur for co-referential nodes but 
little attention has been given to restrictions on this merge process and to the 
need for a splitting process. We theorize that merging should be inhibited in 
opaque contexts and suggest that Anderson's results on node merging will 
not generalize to opaque contexts. We also point out the need for a splitting 
process. 

The formalism we use in this paper employs only assertional informa- 
tion and no structural, or definitional, information. This is consistent with 
network models in the psychological literature. In particular, neither Ander- 
son (1978), nor Collins and Loftus (1975) mention the distinction. Our net- 
works our prone to memory confusions to which the psychologically based 
networks will also be vulnerable. The notation employed in this paper can 
be augmented, by the use of  functional individuals (cf. Maida, 1982) to 
eliminate the tendency for memory confusions. Whether psychologists 
should employ the use of functional individuals is an empirical question. 
This change in formalism, however, results in a drastic change in the seman- 
tic interpretation of network structure, as Quillian proposed it. 

Propositional semantic networks continueto be a fruitful data struc- 
ture by which to model the organization of the human mind. 
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APPENDIX 

This  appendix  conta ins  a list o f  inference rules whose purpose  is to p ropoga te  asser- 
t ions across extensional  equivalence paths .  This  is not  a comple te  list to enable  all 
valid inferences,  and  the  specific fo rma t  o f  these rules would depend on  the specific 
no ta t ion  one  used. The  rules consist  o f  cond i t ion -ac t ion  pairs in which the  condi t ion  
specifies a pa t te rn  tha t  must  match  the ne twork  in order  for  the  rule to apply and  the  
act ion builds more  ne twork  s t ructure.  The  cond i t ion  o f  a rule consists  o f  a sequence 
of  clauses which all must  match  the ne twork .  Clauses specify ne twork  s t ructure  as 
follows: 

( ls t -arg-s lot  re lat ion-slot  2nd-arg  slot) 
or,  

(property-s lot  arg-slot) 
or ,  

(arg-slot equivalent  arg-slot) 

Variables are prefixed with a ques t ion  m a r k  and  while u n b o u n d  will ma tch  any  node  
in the ne twork  provided the  rest of  the clause matches  tha t  par t  of  the  ne twork .  Once  
a variable  matches  a node,  it is b o u n d  to tha t  node  for the  rest o f  the  appl ica t ion o f  

tha t  rule. 
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Rule 1: 

(is-transparent ?rel) & 
(?agent ?rel ?obj l )  & 
(?objl  equivalent ?obj2) = = > (?agent ?rel ?obj2) 

Note: For example, 

If likes is a transparent relation and 
John likes Mary and 
Mary is Sally's mother then 

John likes Sally's mother. 

However, he may not believe he likes Sally's mother. 

Rule 2: 

(?agent believe (?agent ?rel ?obj l ) )  & 
(?agent believe (?objl  equivalent ?obj2)) 

- - > (?agent believe (?agent ?rel ?obj2)) 

If a person believes Jim's wife is Sally's mother and he believes he wants to 
meet Jim's wife, then he believes he wants to meet Sally's mother regardless of  
whether Jim's wife in fact is Sally's mother. 

Rule 3: 

(?agent know (?agent ?rel ?obj l ) )  & 
(?agent believe (?objl  equivalent ?obj2)) 

- - > (?agent believe (?agent ?rel ?obj2)) 

Note: For example, 

If John knows he likes Mary and 
John believes that Mary is Sally's mother 

then he believes he likes Sally's mother. 

Although the premises of  this rule are stronger than those of rule 2, the con- 
clusion is the same as rule 2. 

Rule 4: 

(?agent know (?agent ?rel ?obj l ) )  & 
(?agent know (?objl  equivalent ?obj2)) 

- - > (?agent know (?agent ?rel ?obj l ) )  

The conclusion of this rule is stronger than that of  rule 3 because the system 
believes the agent is correct in his belief about the coreferentiality of  objects 1 and 2. 


